Evaluating the Antioxidant and Antidiabetic Properties of Medicago sativa and Solidago virgaurea Polyphenolic-Rich Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Characterization
2.2. Total Antioxidant Activity
2.3. Antidiabetic Activity
- α-amylase and α-glucosidase inhibition
- Effect of extracts on insulin secretion by β-TC6 cell lines
3. Materials and Methods
3.1. Materials
3.2. Extract Preparation
3.2.1. ASE Extraction
3.2.2. Laser Irradiation Extraction
3.3. Analysis of Polyphenolic Compounds
3.3.1. Quantification of Total Polyphenols and Flavonoids
3.3.2. HPLC-MS Analysis
3.4. Antioxidant Assays
3.4.1. DPPH Radical Scavenging
3.4.2. Fe (III) Reducing Power Assay
3.5. Antidiabetic Assay
3.5.1. α-Amylase- and α-Glucosidase-Inhibitory Activities
3.5.2. In Vitro Insulin Secretion Assay
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haq, F.; Siraj, A.; Ameer, M.; Hamid, T.; Rahman, M.; Khan, S.; Khan, S.; Masud, S. Comparative Review of Drugs Used in Diabetes Mellitus—New and Old. J. Diabetes Mellit. 2021, 11, 115–131. [Google Scholar] [CrossRef]
- Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A.; et al. Antidiabetic phytochemicals from medicinal plants: Prospective candidates for new drug discovery and development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 2007, 51, 116–134. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Vitale, D.C.; Piazza, C.; Melilli, B.; Drago, F.; Salomone, S. Isoflavones: Estrogenic Activity, Biological Effect and Bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 15–25. [Google Scholar] [CrossRef]
- Famuyiwa, S.O.; Sanusi, K.; Faloye, K.O.; Yilmaz, Y.; Ceylan, U. Antidiabetic and antioxidant activities: Is there any link between them? New J. Chem. 2019, 43, 13326–13329. [Google Scholar] [CrossRef]
- de Souza, P.M.; de Sales, P.M.; Simeoni, L.A.; Silva, E.C.; Silveira, D.; de Oliveira Magalhães, P. Inhibitory activity of α-amylase and α-glucosidase by plant extracts from the Brazilian cerrado. Planta Med. 2012, 78, 393–399. [Google Scholar] [CrossRef]
- Nicolle, E.; Souard, F.; Faure, P.; Boumendjel, A. Flavonoids as promising lead compounds in type 2 diabetes mellitus: Molecules of interest and structure-activity relationship. Curr. Med. Chem. 2011, 18, 2661–2672. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Ravindran, R.; Walsh, O.; O’Doherty, J.; Jaiswal, A.K.; Tiwari, B.K.; Rajauria, G. Evaluation of Ultrasound, Microwave, Ultrasound–Microwave, Hydrothermal and High Pressure Assisted Extraction Technologies for the Recovery of Phytochemicals and Antioxidants from Brown Macroalgae. Mar. Drugs 2021, 19, 309. [Google Scholar] [CrossRef]
- Pereira, D.T.V.; Zabot, G.L.; Reyes, F.G.R.; Iglesias, A.H.; Martínez, J. Integration of pressurized liquids and ultrasound in the extraction of bioactive compounds from passion fruit rinds: Impact on phenolic yield, extraction kinetics and technical-economic evaluation. Innov. Food Sci. Emerg. Technol. 2021, 67, 102549. [Google Scholar] [CrossRef]
- Mihelčič, A.; Lisjak, K.; Vanzo, A. Accelerated solvent extraction of phenols from lyophilised ground grape skins and seeds. Beverages 2023, 9, 4. [Google Scholar] [CrossRef]
- Khongthaw, B.; Chauhan, P.K.; Dulta, K.; Kumar, V.; Ighalo, J.O. A comparison of conventional and novel phytonutrient extraction techniques from various sources and their potential applications. J. Food Meas. Charact. 2023, 17, 1317–1342. [Google Scholar] [CrossRef]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; et al. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Anal. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Carabias-Martínez, R.; Rodríguez-Gonzalo, E.; Revilla-Ruiz, P.; Hernández-Méndez, J. Pressurized liquid extraction in the analysis of food and biological samples. J. Chromatogr. A 2005, 1089, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Nieto, A.; Borrull, F.; Pocurull, E.; Marcé, R.M. Pressurized liquid extraction: A useful technique to extract pharmaceuticals and personal-care products from sewage sludge. TrAC Trends Anal. Chem. 2010, 29, 752–764. [Google Scholar] [CrossRef]
- Perra, M.; Leyva-Jiménez, F.-J.; Manca, M.L.; Manconi, M.; Rajha, H.N.; Borrás-Linares, I.; Segura-Carretero, A.; Lozano-Sánchez, J. Application of pressurized liquid extraction to grape by-products as a circular economy model to provide phenolic compounds enriched ingredient. J. Clean. Prod. 2023, 402, 136712. [Google Scholar] [CrossRef]
- Pirvu, L.C.; Nita, S.; Rusu, N.; Bazdoaca, C.; Neagu, G.; Bubueanu, C.; Udrea, M.; Udrea, R.; Enache, A. Effects of laser irradiation at 488, 514, 532, 552, 660, and 785 nm on the aqueous extracts of Plantago lanceolata L.: A comparison on chemical content, antioxidant activity and caco-2 viability. Appl. Sci. 2022, 12, 5517. [Google Scholar] [CrossRef]
- Galanakis, C. Food Waste Recovery: Processing Technologies, Industrial Techniques, and Applications, 2nd ed.; Elsevier: Vienna, Austria, 2020. [Google Scholar]
- Panchev, I.N.; Kirtchev, N.A.; Dimitrov, D.D. Possibilities for application of laser ablation in food technologies. Innov. Food Sci. Emerg. Technol. 2011, 12, 369–374. [Google Scholar] [CrossRef]
- Wyse, J.M.; Latif, S.; Gurusinghe, S.; Berntsen, E.D.; Weston, L.A.; Stephen, C.P. Characterization of phytoestrogens in Medicago sativa L. and grazing beef cattle. Metabolites 2021, 11, 550. [Google Scholar] [CrossRef]
- Bajkacz, S.; Baranowska, I.; Buszewski, B.; Kowalski, B.; Ligor, M. Determination of flavonoids and phenolic acids in plant materials using SLE-SPE-UHPLC-MS/MS method. Food Anal. Method. 2018, 11, 3563–3575. [Google Scholar] [CrossRef]
- Bora, K.S.; Sharma, A. Phytochemical and pharmacological potential of Medicago sativa: A review. Pharm. Biol. 2011, 49, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.I.; Mosbach, E.H.; Matoba, N.; Suh, S.O.; McSherry, C.K. The effect of alfalfa-corn diets on cholesterol metabolism and gallstones in prairie dogs. Lipids 1990, 25, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Gaweł, E.; Grzelak, M.; Janyszek, M. Lucerne (medicago sativa L.) in the human diet—Case reports and short reports. J. Herb. Med. 2017, 10, 8–16. [Google Scholar] [CrossRef]
- Dutu, L.E.; Istudor, V.; Loloiu, T.; Radulescu, V. Research on polyphenolic compounds from Medicago sativa L. Farmacia 2002, 50, 44–56. [Google Scholar]
- Mansourzadeh, S.; Esmaeili, F.; Shabani, L.; Gharibi, S. Trans-differentiation of mouse mesenchymal stem cells into pancreatic β-like cells by a traditional anti-diabetic medicinal herb Medicago sativa L. J. Tradit. Complement. Med. 2022, 12, 466–476. [Google Scholar] [CrossRef]
- Eruygur, N.; Dincel, B.; Kutuk Dincel, N.; Ucar, E. Comparative study of in vitro antioxidant, acetylcholinesterase and butyrylcholinesterase activity of alfalfa (Medicago sativa L.) collected during different growth stages. Open Chem. 2018, 16, 963–967. [Google Scholar] [CrossRef]
- Gray, A.M.; Flatt, P.R. Pancreatic and extra-pancreatic effects of the traditional anti-diabetic plant, Medicago sativa (lucerne). Br. J. Nutr. 1997, 78, 325–334. [Google Scholar] [CrossRef]
- Abdel Motaal, A.; Ezzat, S.M.; Tadros, M.G.; El-Askary, H.I. In vivo anti-inflammatory activity of caffeoylquinic acid derivatives from Solidago virgaurea in rats. Pharm. Biol. 2016, 54, 2864–2870. [Google Scholar] [CrossRef]
- Borchert, V.E.; Czyborra, P.; Fetscher, C.; Goepel, M.; Michel, M.C. Extracts from Rhois aromatica and Solidaginis virgaurea inhibit rat and human bladder contraction. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2004, 369, 281–286. [Google Scholar] [CrossRef]
- Zehra, S.A.; Bhattarai, P.; Zhang, J.; Liu, Y.; Parveen, Z.; Sajid, M.; Zhu, L. In vitro and In vivo Evaluation of the Antidiabetic Activity of Solidago virgaurea Extracts. Curr. Bioact. Compd. 2023, 19, 68–78. [Google Scholar]
- Jasicka-Misiak, I.; Makowicz, E.; Stanek, N. Chromatographic fingerprint, antioxidant activity, and colour characteristic of polish woundwort (Solidago virgaurea L.) honey and flower. Eur. Food Res. Technol. 2018, 244, 1169–1184. [Google Scholar] [CrossRef]
- Tămaş, M.; Vostinaru, O.; Soran, L.; Lung, I.; Opris, O.; Toiu, A.; Gavan, A.; Dinte, E.; Mogosan, C. Antihyperuricemic, anti-inflammatory and antihypertensive effect of a dry extract from Solidago virgaurea L. (Asteraceae). Sci. Pharm. 2021, 89, 27. [Google Scholar] [CrossRef]
- Paun, G.; Neagu, E.; Tache, A.; Radu, G.L.; Parvulescu, V. Application of nanofiltration process for concentration of polyphenolic compounds from Geranium robertianum and Salvia officinalis extracts. Chem. Biochem. Eng. Q. 2011, 25, 49–56. [Google Scholar]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Tucak, M.; Čupić, T.; Horvat, D.; Popović, S.; Krizmanić, G.; Ravlić, M. Variation of phytoestrogen content and major agronomic traits in alfalfa (Medicago sativa L.) populations. Agronomy 2020, 10, 87. [Google Scholar] [CrossRef]
- Chiriac, E.R.; Chiţescu, C.L.; Sandru, C.; Geană, E.-I.; Lupoae, M.; Dobre, M.; Borda, D.; Gird, C.E.; Boscencu, R. Comparative study of the bioactive properties and elemental composition of red clover (Trifolium pratense) and alfalfa (Medicago sativa) sprouts during germination. Appl. Sci. 2020, 10, 7249. [Google Scholar] [CrossRef]
- Raeeszadeh, M.; Moradi, M.; Ayar, P.; Akbari, A. The Antioxidant Effect of Medicago sativa L. (Alfalfa) Ethanolic Extract against Mercury Chloride (HgCl2) Toxicity in Rat Liver and Kidney: An in Vitro and in Vivo Study. Evid.-Based Complement. Altern. Med. 2021, 2021, 8388002. [Google Scholar] [CrossRef]
- Demir, H.; Acik, L.; Bali, E.B.; Koç, L.Y.; Kaynak, G. Antioxidant and antimicrobial activities of Solidago virgaurea extracts. Afr. J. Biotechnol. 2009, 8, 274–279. [Google Scholar]
- Sahreen, S.; Khan, M.R.; Khan, R.A. Evaluation of antioxidant activities of various solvent extracts of Carissa opaca fruits. Food Chem. 2010, 122, 1205–1211. [Google Scholar] [CrossRef]
- Pinto, M.D.S.; Ranilla, L.G.; Apostolidis, E.; Lajolo, F.M.; Genovese, M.I.; Shetty, K. Evaluation of anti-hyperglycemia and anti-hypertension potential of native Peruvian fruits using in vitro models. J. Med. Food 2009, 12, 278–291. [Google Scholar] [CrossRef]
- Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, S.T.; Yin, Y.C.; Xing, S.; Li, W.N.; Fu, X.Q. Hypoglycemic effect and mechanism of isoquercitrin as an inhibitor of dipeptidyl peptidase-4 in type 2 diabetic mice. RSC Adv. 2018, 8, 14967–14974. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.C.; Peng, R.Y.; Chen, Y.T.; Xu, H.X.; Zhang, Q.F. In vitro and in vivo Inhibitory Activity of C-glycoside Flavonoid Extracts from Mung Bean Coat on Pancreatic Lipase and α-glucosidase. Plant Foods Hum. Nutr. 2023, 78, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Tian, J.; Yang, W.; Chen, S.; Liu, D.; Fang, H.; Zhang, H.; Ye, X. Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chem. 2020, 317, 126346. [Google Scholar] [CrossRef] [PubMed]
- Amaral, S.; Mira, L.; Nogueira, J.M.F.; Silva, A.P.; Florêncio, M.H. Plant extracts with anti-inflammatory properties—A new approach for characterization of their bioactive compounds and establishment of structure–antioxidant activity relationships. Bioorg. Med. Chem. 2009, 17, 1876–1883. [Google Scholar] [CrossRef]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef]
- Fursenco, C.; Calalb, T.; Uncu, L.; Dinu, M.; Ancuceanu, R. Solidago virgaurea L.: A Review of its ethnomedicinal uses, phytochemistry, and pharmacological activities. Biomolecules 2020, 10, 1619. [Google Scholar] [CrossRef]
- Jakupović, L.; Kalvarešin, M.; Bukovina, K.; Poljak, V.; Vujić, L.; Zovko Končić, M. Optimization of Two Eco-Friendly Extractions of Black Medick (Medicago lupulina L.) Phenols and Their Antioxidant, Cosmeceutical, α-Glucosidase and α-Amylase Inhibitory Properties. Molecules 2021, 26, 1610. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Lin, J.-Y.; Tang, C.-Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147. [Google Scholar] [CrossRef]
- Cristea, V.; Deliu, C.; Oltean, B.; Butiuc-Keul, A.; Brummer, A.; Albu, C.; Radu, G.L. Soilless Cultures for Pharmaceutical Use and Biodiversity Conservation. Acta Hortic. 2009, 843, 157–164. [Google Scholar] [CrossRef]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and mechanism of antioxidant activity using the DPPH free radical method. Leb. Wiss Technol. 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Berker, K.; Guclu, K.; Tor, I.; Apak, R. Comparative evaluation of Fe (III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP) and ferricyanide reagents. Talanta 2007, 72, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Neagu, E.; Paun, G.; Albu, C.; Eremia, S.A.-M.V.; Radu, G.L. Artemisia abrotanum and Symphytum officinale Polyphenolic Compounds-Rich Extracts with Potential Application in Diabetes Management. Metabolites 2023, 13, 354. [Google Scholar] [CrossRef]
- Ranilla, L.G.; Kwon, Y.I.; Apostolidis, E.; Shetty, K. Phenolic compounds antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Biores. Technol. 2010, 101, 4676–4689. [Google Scholar] [CrossRef]
- Iosageanu, A.; Ilie, D.; Craciunescu, O.; Seciu-Grama, A.-M.; Oancea, A.; Zarnescu, O.; Moraru, I.; Oancea, F. Effect of Fish Bone Bioactive Peptides on Oxidative, Inflammatory and Pigmentation Processes Triggered by UVB Irradiation in Skin Cells. Molecules 2021, 26, 2691. [Google Scholar] [CrossRef]
- Newsholme, P.; Cruzat, V.; Arfuso, F.; Keane, K. Nutrient regulation of insulin secretion and action. J. Endocrinol. 2014, 221, R105–R120. [Google Scholar] [CrossRef]
Compound | M. sativa Polyphenolic-Rich Extract (µg/mL) | S. virgaurea Polyphenolic-Rich Extract (μg/mL) | ||
---|---|---|---|---|
Conc. ASE | Conc. LE | Conc. ASE | Conc. LE | |
Coumaric acid | 2.71 ± 0.1 | 6.18 ± 0.4 | 7.79 ± 0.6 | 4.84 ± 0.3 |
Gallic acid | 9.15 ± 0.4 | 10.27 ± 0.6 | 16.9 ± 1.2 | 35.31 ± 2.6 |
Caffeic acid | 1.1 ± 0.05 | 0.7 ± 0.05 | 41.24 ± 3.6 | 25.54 ± 1.4 |
Ellagic acid | 1.66 ± 0.08 | 4.25 ± 0.2 | 10.6 ± 0.9 | 9.57 ± 0.8 |
Chlorogenic acid | 263.81 ± 11.2 | 112.58 ± 8.2 | 2343.78 ± 120.2 | 1856.48 ± 101.5 |
Rutin | 157.16 ± 9.6 | 58.48 ± 4.8 | 1824.05 ± 108.9 | 1652.05 ± 94.7 |
Luteolin | 10.43 ± 1.2 | 8.43 ± 0.7 | 2.13 ± 0.2 | 2.88 ± 0.2 |
Quercitrin | 5.71 ± 0.5 | 6.02 ± 0.5 | 21.90 ± 1.8 | 22.62 ± 2.1 |
Quercetin 3-β-D-glucoside | 23.04 ± 2.2 | 73.07 ± 6.2 | 175.14 ± 11.6 | 183.11 ± 12.9 |
Quercetin | 1.10 ± 0.1 | 10.69 ± 0.9 | 2.48 ± 0.1 | 17.09 ± 1.4 |
Kaempferol | 10.20 ± 0.9 | 19.38 ± 1.4 | 52.05 ± 4.2 | 58.35 ± 5.1 |
Isorhamnetin | 1.29 ± 0.1 | 0.47 ± 0.04 | 6.52 ± 0.5 | 3.59 ± 0.3 |
Daidzein | 2.47 ± 0.2 | 1.65 ± 0.1 | - | - |
Formononetin | 4.13 ± 0.3 | 2.72 ± 0.2 | 0.55 ± 0.04 | 0.30 ± 0.02 |
Genistein | 8.35 ± 0.6 | 3.76 ± 0.2 | 2.21 ± 0.1 | 0.63 ± 0.05 |
Naringenin | 0.05 ± 0.01 | 0.12 ± 0.01 | 0.47 ± 0.03 | 0.68 ± 0.04 |
Biochanin A | 0.25 ± 0.02 | 0.36 ± 0.02 | 0.61 ± 0.03 | 0.67 ± 0.03 |
Vitexin | 7.00 ± 0.5 | 65.30 ± 4.9 | 96.58 ± 8.9 | 158.15 ± 11.8 |
Sample | Total Polyphenol Content, μg CA/mL | Total Flavonoid Content, μg RE/mL | DPPH | Fe(III) Reducing Power | |
---|---|---|---|---|---|
EC50, µg/mL | |||||
M. sativa | Conc. ASE | 4584.5 ± 36.4 | 355.4 ± 8.4 | 278.7 ± 2.5 * | 42.3 ± 0.3 * |
Conc. LE | 4623.6 ± 29.8 | 426.7 ± 11.2 | 105.2 ± 1.1 * | 40.9 ± 0.2 * | |
S. virgaurea | Conc. ASE | 7928.7 ± 45.2 | 2198.7 ± 15.6 | 381.3 ± 2.9 * | 58.7 ± 0.3 * |
Conc. LE | 11,669.8 ± 94.6 | 1982.6 ± 13.8 | 198.4 ± 1.6 * | 56.9 ± 0.4 * | |
Ascorbic | acid | 39.4 ± 0.1 | 125.0 ± 1.1 |
Sample | α-Amylase Inhibition | α-Glucosidase Inhibition | |
---|---|---|---|
IC50 (µg/mL) | |||
M. sativa | Conc. ASE | 23.9 ± 1.2 * | 24.2 ± 0.9 * |
Conc. LE | 26.8 ± 1.1 * | 25.7 ± 1.1 * | |
S. virgaurea | Conc. ASE | 33.9 ± 2.4 * | 9.3 ± 0.9 * |
Conc. LE | 32.1 ± 1.9 * | 8.7 ± 0.6 * | |
Acarbose | 24.2 ± 1.6 | 66.5 ± 4.2 | |
Rutin | 18.2 ± 2.4 | 8.6 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paun, G.; Neagu, E.; Alecu, A.; Albu, C.; Seciu-Grama, A.-M.; Radu, G.L. Evaluating the Antioxidant and Antidiabetic Properties of Medicago sativa and Solidago virgaurea Polyphenolic-Rich Extracts. Molecules 2024, 29, 326. https://doi.org/10.3390/molecules29020326
Paun G, Neagu E, Alecu A, Albu C, Seciu-Grama A-M, Radu GL. Evaluating the Antioxidant and Antidiabetic Properties of Medicago sativa and Solidago virgaurea Polyphenolic-Rich Extracts. Molecules. 2024; 29(2):326. https://doi.org/10.3390/molecules29020326
Chicago/Turabian StylePaun, Gabriela, Elena Neagu, Andreia Alecu, Camelia Albu, Ana-Maria Seciu-Grama, and Gabriel Lucian Radu. 2024. "Evaluating the Antioxidant and Antidiabetic Properties of Medicago sativa and Solidago virgaurea Polyphenolic-Rich Extracts" Molecules 29, no. 2: 326. https://doi.org/10.3390/molecules29020326
APA StylePaun, G., Neagu, E., Alecu, A., Albu, C., Seciu-Grama, A. -M., & Radu, G. L. (2024). Evaluating the Antioxidant and Antidiabetic Properties of Medicago sativa and Solidago virgaurea Polyphenolic-Rich Extracts. Molecules, 29(2), 326. https://doi.org/10.3390/molecules29020326