Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (352)

Search Parameters:
Keywords = insulin-like 3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2340 KB  
Article
Aortic Valve Annular Features in Acromegaly—A Detailed Three-Dimensional Speckle-Tracking Echocardiographic Analysis from the MAGYAR-Path Study
by Attila Nemes, Csaba Lengyel, Tamás Várkonyi, Zsuzsanna Valkusz and Krisztina Kupai
J. Clin. Med. 2025, 14(22), 7899; https://doi.org/10.3390/jcm14227899 - 7 Nov 2025
Viewed by 134
Abstract
Background: Acromegaly, typically caused by growth hormone (GH)-secreting pituitary adenomas, leads to chronic GH and insulin-like growth factor-1 overproduction, resulting in significant cardiovascular complications, including left ventricular (LV) hypertrophy, myocardial fibrosis, diastolic/systolic LV dysfunction, and frequent valvular disease. Although aortic root dilation [...] Read more.
Background: Acromegaly, typically caused by growth hormone (GH)-secreting pituitary adenomas, leads to chronic GH and insulin-like growth factor-1 overproduction, resulting in significant cardiovascular complications, including left ventricular (LV) hypertrophy, myocardial fibrosis, diastolic/systolic LV dysfunction, and frequent valvular disease. Although aortic root dilation has been documented, the morphology and function of the aortic valve annulus (AVA) and its relationship with LV performance remain unexplored. Methods: The present study comprised a total of 31 patients with acromegaly, from which eight subjects were excluded due to inferior image quality. The remaining group of acromegalics consisted of 23 cases (mean age: 54.3 ± 14.5 years, 6 males). Their results were compared to 31 age- and gender-matched healthy subjects (mean age: 50.0 ± 7.4 years, 9 males). Cardiac assessment involved routine two-dimensional Doppler echocardiography and three-dimensional speckle-tracking echocardiography (3DSTE) to quantify basal regional and global longitudinal strains. Detailed planimetric measurements of AVA dimensions and its spatial displacement, called AVA plane systolic excursion (AAPSE), were also obtained. Results: Among 12 patients with inactive acromegaly, 7 patients (58%) showed larger end-systolic AVA area (AVA-A), while 5 patients (42%) had larger end-diastolic AVA-A. Among the 11 patients with active acromegaly, 3 patients (27%) had larger end-systolic AVA-A and 5 patients (45%) had larger end-diastolic AVA-A, while in 3 patients (27%) end-systolic and end-diastolic AVA-A proved to be equal. All end-systolic and end-diastolic AVA dimensions were tendentiously greater in acromegaly, with more pronounced values seen in the presence of an active disease. AAPSE was reduced both in all acromegaly patients and in those with active disease compared to controls. From LV strains, basal and global LV longitudinal strain (LS) and basal LV circumferential strain (CS) were similar when comparing acromegaly patients and those with active and inactive disorder to controls. However, basal and global LV-LS tended to be reduced, while basal LV-CS tended to be increased. Significantly increased global LV-CS were present in active acromegaly patients compared to inactive acromegaly patients and controls Conclusions: Significant aortic valve annular dilation is present in acromegaly, which is associated with its reduced spatial systolic displacement. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

15 pages, 2409 KB  
Article
Over-Represented Senescent Keratinocytes in Hyperpigmented Spots Promote Melanocyte Activation via IGFBP3 and NGF
by Tomohiro Hakozaki, Holly Rovito, Bradley B. Jarrold, John Snowball, Jiazhen Wang, Wenzhu Zhao and Timothy Laughlin
Int. J. Mol. Sci. 2025, 26(21), 10724; https://doi.org/10.3390/ijms262110724 - 4 Nov 2025
Viewed by 399
Abstract
The occurrence and impact of cellular senescence on skin aging and hyperpigmentation is an ongoing area of exploration, encompassing both intrinsic and extrinsic stressors. Traditionally, research has focused on melanocyte and fibroblast senescence due to their slower turnover compared to keratinocytes. In this [...] Read more.
The occurrence and impact of cellular senescence on skin aging and hyperpigmentation is an ongoing area of exploration, encompassing both intrinsic and extrinsic stressors. Traditionally, research has focused on melanocyte and fibroblast senescence due to their slower turnover compared to keratinocytes. In this study, we identified the accumulation of p16, a senescence marker, in keratinocytes from biopsies of multiple spot types. We explored their impact using doxorubicin-induced senescent keratinocytes in vitro. Conditioned media from these senescent keratinocytes stimulated melanocyte dendricity, a hallmark of hyperpigmented spots. Transcriptomic analysis of senescent keratinocytes identified two key senescence-induced factors: Insulin-like Growth Factor-Binding Protein 3 (IGFBP3) and Nerve Growth Factor (NGF). IGFBP3 and NGF ligand treatment enhanced melanin synthesis by 33% and 17%, and dendricity by 23% and 14%, respectively, in human melanocyte cultures. These findings suggest that keratinocyte senescence contributes to spot formation by mediating melanocyte activation through IGFBP3 and NGF. Furthermore, we evaluated skincare ingredients such as sucrose dilaurate, glabridin, and niacinamide in neutral and low pH solutions, demonstrating their efficacy in reducing the secretion of these ligands, thereby offering potential cosmetic benefits. This study provides insights into the mechanisms of spot formation and highlights promising strategies for managing pigmentation disorders. Full article
(This article belongs to the Special Issue Melanin Pigmentation: Physiology and Pathology)
Show Figures

Figure 1

15 pages, 1488 KB  
Review
Postprandial Inflammation in Obesity: Dietary Determinants, Adipose Tissue Dysfunction and the Gut Microbiome
by Donya Shahamati, Neda S. Akhavan and Sara K. Rosenkranz
Biomolecules 2025, 15(11), 1516; https://doi.org/10.3390/biom15111516 - 27 Oct 2025
Viewed by 1049
Abstract
Obesity is characterized by chronic low-grade inflammation that disrupts metabolic homeostasis and increases cardiometabolic risk. The postprandial period, during which individuals spend much of the day, is a critical window when nutrient absorption, lipid metabolism, and immune activation intersect. In obesity, dysfunctional adipose [...] Read more.
Obesity is characterized by chronic low-grade inflammation that disrupts metabolic homeostasis and increases cardiometabolic risk. The postprandial period, during which individuals spend much of the day, is a critical window when nutrient absorption, lipid metabolism, and immune activation intersect. In obesity, dysfunctional adipose tissue and impaired gut barrier integrity amplify postprandial inflammatory responses through increased translocation of lipopolysaccharides and altered adipokine secretion. These processes converge on signaling pathways such as Toll-like receptor 4/nuclear factor-κB, c-Jun n-terminal kinase, and the NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, leading to insulin resistance, endothelial dysfunction, and atherogenesis. This review synthesizes evidence on the interplay between gut-derived endotoxemia and adipose tissue dysfunction in postprandial inflammation. We further highlight the modulatory roles of dietary fat quality, plant-based dietary patterns, polyphenols, omega-3 fatty acids, dietary fiber, and nuclear receptor activation, particularly through peroxisome proliferator-activated receptors (PPARs). Emerging evidence indicates that nutritional and pharmacological strategies targeting these mechanisms can attenuate postprandial inflammation and improve metabolic outcomes. A combined approach integrating personalized nutrition, functional foods, and therapies targeting PPAR isoforms may represent a promising avenue for mitigating obesity-associated postprandial inflammation and long-term cardiometabolic complications. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

14 pages, 1200 KB  
Article
Predictive Modeling of Central Precocious Puberty Using IGF-1 and IGFBP-3 Standard Deviation Scores
by Rihwa Choi, Gayoung Chun, Sung-Eun Cho and Sang Gon Lee
Diagnostics 2025, 15(19), 2508; https://doi.org/10.3390/diagnostics15192508 - 2 Oct 2025
Viewed by 742
Abstract
Background/Objectives: Central precocious puberty (CPP) is diagnosed via gonadotropin-releasing hormone (GnRH) stimulation testing, which can be burdensome in pediatric settings. This study evaluated the utility of baseline hormonal markers—particularly insulin-like growth fac-tor 1 (IGF-1) and IGF-binding protein 3 (IGFBP-3)—as auxiliary tools for [...] Read more.
Background/Objectives: Central precocious puberty (CPP) is diagnosed via gonadotropin-releasing hormone (GnRH) stimulation testing, which can be burdensome in pediatric settings. This study evaluated the utility of baseline hormonal markers—particularly insulin-like growth fac-tor 1 (IGF-1) and IGF-binding protein 3 (IGFBP-3)—as auxiliary tools for CPP diagnosis in Korean children. Methods: We retrospectively analyzed patients who underwent GnRH stimulation testing. Baseline LH, FSH, IGF-1, and IGFBP-3 levels were assessed, along with standard deviation scores (SDS) calculated using two different reference intervals. Multivariable logistic regression was performed to improve diagnostic accuracy. Performance was evaluated using area under the curve (AUC) values from receiver operating characteristic (ROC) analyses, stratified by sex. Results: Among 2464 Korean children (2025 girls and 439 boys), CPP diagnosis rates were 54.2% in girls and 65.6% in boys. Among baseline markers, FSH showed the highest AUCs using raw values with sex-specific cutoffs (AUC = 0.767 in girls and 0.895 in boys). Although IGF-1 SDS and IGFBP-3 SDS showed AUCs < 0.7 when used alone, predictive models incorporating these SDS values yielded higher performance (AUC = 0.800 in girls and 0.920 in boys. Conclusions: SDS-based IGF-1 and IGFBP-3 enhance CPP diagnosis when used in predictive models, emphasizing the need for sex-specific interpretation and standardized reference intervals in real-world clinical practice. Full article
(This article belongs to the Special Issue Advances in Laboratory Markers of Human Disease)
Show Figures

Figure 1

20 pages, 2748 KB  
Article
CYR61 Expression Is Induced by IGF1 and Promotes the Proliferation of Prostate Cancer Cells Through the PI3/AKT Signaling Pathway
by Greisha L. Ortiz-Hernández, Carmina Patrick, Stefan Hinz, Mark A. LaBarge, Yun R. Li and Susan L. Neuhausen
Int. J. Mol. Sci. 2025, 26(18), 8991; https://doi.org/10.3390/ijms26188991 - 15 Sep 2025
Viewed by 663
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61) promotes prostate cancer (PCa) cell growth, but its role in disease progression remains unclear. Given its insulin-like growth factor (IGF)-binding domain and the known involvement of insulin-like growth factor-1 (IGF1) in PCa, we investigated the molecular interplay between [...] Read more.
Cysteine-rich angiogenic inducer 61 (CYR61) promotes prostate cancer (PCa) cell growth, but its role in disease progression remains unclear. Given its insulin-like growth factor (IGF)-binding domain and the known involvement of insulin-like growth factor-1 (IGF1) in PCa, we investigated the molecular interplay between CYR61 and IGF1. CYR61 was silenced using small interfering RNA (siRNA) in prostate carcinoma 3 (PC3), lymph node carcinoma of the prostate (LNCaP), and androgen receptor (AR)-positive 22Rv1 cells, followed by assessments of their proliferation, viability, colony formation, migration, and signaling pathway activation. CYR61 knockdown significantly reduced cell growth, viability, prostasphere formation, and migration across all three cell lines. Mechanistically, CYR61 silencing inhibited PI3K/AKT signaling but had no effect on MAPK activation. In addition, treatment with recombinant IGF1 induced CYR61 expression in a time-dependent manner, and the inhibition of PI3K/AKT signaling suppressed both CYR61 expression and cell proliferation. These findings suggest that IGF1 promotes PCa progression through CYR61 and that CYR61 may serve as a potential therapeutic target for limiting tumor growth and metastasis. Full article
(This article belongs to the Special Issue Molecular Research on Prostate Cancer)
Show Figures

Figure 1

14 pages, 1158 KB  
Article
Neuroinflammatory Signature of Post-Traumatic Confusional State: The Role of Cytokines in Moderate-to-Severe Traumatic Brain Injury
by Federica Piancone, Francesca La Rosa, Ambra Hernis, Ivana Marventano, Pietro Arcuri, Marco Rabuffetti, Jorge Navarro, Marina Saresella, Mario Clerici and Angela Comanducci
Int. J. Mol. Sci. 2025, 26(17), 8593; https://doi.org/10.3390/ijms26178593 - 4 Sep 2025
Viewed by 843
Abstract
Traumatic brain injury (TBI), a leading cause of mortality and disability, recognizes a primary, immediate injury due to external forces, and a secondary phase that includes inflammation that can lead to complications such as the post-traumatic confusional state (PTCS), potentially impacting long-term neurological [...] Read more.
Traumatic brain injury (TBI), a leading cause of mortality and disability, recognizes a primary, immediate injury due to external forces, and a secondary phase that includes inflammation that can lead to complications such as the post-traumatic confusional state (PTCS), potentially impacting long-term neurological recovery. An earlier identification of these complications, including PTCS, upon admission to intensive rehabilitation units (IRU) could possibly allow the design of personalized rehabilitation protocols in the immediate post-acute phase of moderate-to-severe TBI. The present study aims to identify potential biomarkers to distinguish between TBI patients with and without PTCS. We analyzed cellular and molecular mechanisms involved in neuroinflammation (IL-6, IL-1β, IL-10 cytokines), neuroendocrine function (norepinephrine, NE, epinephrine, E, dopamine), and neurogenesis (glial cell line-derived neurotrophic factor, GDNF, insuline-like growth factor 1, IGF-1, nerve growth factor, NGF, brain-derived growth factor, BDNF) using enzyme-linked immunosorbent assay (ELISA), comparing results between 29 TBI patients (17 with PTCS and 12 non-confused) and 34 healthy controls (HC), and correlating results with an actigraphy-derived sleep efficiency parameter. In TBI patients compared to HC, serum concentration of (1) pro-inflammatory IL-1β cytokine was significantly increased while that of anti-inflammatory IL-10 cytokine was significantly decreased; (2) NE, E and DA were significantly increased; (3) GDNF, NGF and IGF-1 were significantly increased while that of BDNF was significantly decreased. Importantly, IL-10 serum concentration was significantly lower in PTCS than in non-confused patients, correlating positively with an improved actigraphy-derived sleep efficiency parameter. An anti-inflammatory environment may be associated with better prognosis after TBI. Full article
Show Figures

Figure 1

23 pages, 4696 KB  
Systematic Review
An Epigenomic Meta-Analysis of Differentially Methylated Sites in Pre- and Post-Metabolic/Bariatric Surgery Adult Female Patients
by Agnieszka Lovett, Graham A. Hitman, Georgios K. Dimitriadis, Alice M. Murphy, Gyanendra Tripathi and Aparna Duggirala
Epigenomes 2025, 9(3), 32; https://doi.org/10.3390/epigenomes9030032 - 29 Aug 2025
Viewed by 935
Abstract
Background/Objectives: Metabolic/bariatric surgery is currently the most successful treatment for patients with obesity; however, a fifth of patients undergoing surgery may not lose enough weight to be considered successful. Recent studies have shown that bariatric/metabolic surgery alters the epigenome and may explain postoperative [...] Read more.
Background/Objectives: Metabolic/bariatric surgery is currently the most successful treatment for patients with obesity; however, a fifth of patients undergoing surgery may not lose enough weight to be considered successful. Recent studies have shown that bariatric/metabolic surgery alters the epigenome and may explain postoperative improvements in metabolic health. The primary objective is to consolidate published differentially methylated CpG sites in pre- and post-metabolic/bariatric surgery female patients and associate them with the respective genes and pathways. Methods: This systematic review adhered to the PRISMA-P guidelines and was registered with the PROSPERO (CRD42023421852). Following an initial screening of 541 studies using COVIDENCE, six studies were selected, comprising three epigenome-wide association studies (EWAS) and three candidate gene methylation studies. The published studies collected DNA samples from female patients with obesity before and after surgery (3 months, 6 months, 9–31 months, and 2 years). KEGG pathway analysis was performed on genes where the extracted CpG sites were located. Results: The meta-analysis showed that 11,456 CpG sites are differentially methylated after a successful weight loss surgery, with 109 sites mapped to genes involved in key metabolic pathways, including FoxO, mTOR, insulin, cAMP, adipocytokine, Toll-like receptor, and PI3K-Akt. Conclusion: The highlighted differentially methylated CpG sites can be further used to predict the molecular signature associated with successful metabolic/bariatric surgery. Full article
Show Figures

Figure 1

24 pages, 2128 KB  
Article
Central Insulin-Like Growth Factor-1-Induced Anxiolytic and Antidepressant Effects in a Rat Model of Sporadic Alzheimer’s Disease Are Associated with the Peripheral Suppression of Inflammation
by Joanna Dunacka, Beata Grembecka and Danuta Wrona
Cells 2025, 14(15), 1189; https://doi.org/10.3390/cells14151189 - 1 Aug 2025
Cited by 1 | Viewed by 996
Abstract
(1) Insulin-like growth factor-1 (IGF-1) is a neurotrophin with anti-inflammatory properties. Neuroinflammation and stress activate peripheral immune mechanisms, which may contribute to the development of depression and anxiety in sporadic Alzheimer’s disease (sAD). This study aims to evaluate whether intracerebroventricular (ICV) premedication with [...] Read more.
(1) Insulin-like growth factor-1 (IGF-1) is a neurotrophin with anti-inflammatory properties. Neuroinflammation and stress activate peripheral immune mechanisms, which may contribute to the development of depression and anxiety in sporadic Alzheimer’s disease (sAD). This study aims to evaluate whether intracerebroventricular (ICV) premedication with IGF-1 in a rat model of streptozotocin (STZ)-induced neuroinflammation can prevent the emergence of anhedonia and anxiety-like behavior by impacting the peripheral inflammatory responses. (2) Male Wistar rats were subjected to double ICVSTZ (total dose: 3 mg/kg) and ICVIGF-1 injections (total dose: 2 µg). We analyzed the level of anhedonia (sucrose preference), anxiety (elevated plus maze), peripheral inflammation (hematological and cytometric measurement of leukocyte populations, interleukin (IL)-6), and corticosterone concentration at 7 (very early stage, VES), 45 (early stage, ES), and 90 days after STZ injections (late stage, LS). (3) We found that ICVIGF-1 administration reduces behavioral symptoms: anhedonia (ES and LS) and anxiety (VES, ES), and peripheral inflammation: number of leukocytes, lymphocytes, T lymphocytes, monocytes, granulocytes, IL-6, and corticosterone concentration (LS) in the rat model of sAD. (4) The obtained results demonstrate beneficial effects of central IGF-1 administration on neuropsychiatric symptoms and peripheral immune system activation during disease progression in the rat model of sAD. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

14 pages, 3410 KB  
Article
Gut Hormones and Postprandial Metabolic Effects of Isomaltulose vs. Saccharose Consumption in People with Metabolic Syndrome
by Jiudan Zhang, Dominik Sonnenburg, Stefan Kabisch, Stephan Theis, Margrit Kemper, Olga Pivovarova-Ramich, Domenico Tricò, Sascha Rohn and Andreas F. H. Pfeiffer
Nutrients 2025, 17(15), 2539; https://doi.org/10.3390/nu17152539 - 1 Aug 2025
Viewed by 1369
Abstract
Background: Low-glycemic index (GI) carbohydrates like isomaltulose (ISO) are known to enhance incretin release and to improve postprandial glucose control at the following meal (an effect known as second meal effect, or SME), which is particularly beneficial for individuals with metabolic syndrome (MetS). [...] Read more.
Background: Low-glycemic index (GI) carbohydrates like isomaltulose (ISO) are known to enhance incretin release and to improve postprandial glucose control at the following meal (an effect known as second meal effect, or SME), which is particularly beneficial for individuals with metabolic syndrome (MetS). This study aimed to assess the most effective preprandial interval of ISO- or saccharose (SUC) snacks (1 h vs. 3 h preload) to enhance prandial incretin responses to a subsequent meal. Methods: In a randomized crossover design, 15 participants with MetS completed four experimental conditions on four non-consecutive days, combining two preload types (ISO or SUC) and two preload timings (Intervention A: 3 h preload; Intervention B: 1 h preload). Specifically, the four conditions were (1) ISO + Intervention A, (2) SUC + Intervention A, (3) ISO + Intervention B, and (4) SUC + Intervention B. The order of conditions was randomized and separated by a 3–7-day washout period to minimize carryover effects. On each study day, participants consumed two mixed meal tests (MMT-1 and MMT-2) with a standardized preload (50 g ISO or SUC) administered either 3 h or 1 h prior to MMT-2. Blood samples were collected over 9 h at 15 predefined time points for analysis of glucose, insulin, C-peptide, and incretin hormones (GLP-1, GIP, and PYY). Results: The unique digestion profile of ISO resulted in a blunted glucose ascent rate (ΔG/Δt: 0.28 vs. 0.53 mmol/L/min for SUC, p < 0.01), paralleled by synonyms PYY elevation over 540 min monitoring, compared with SUC. ISO also led to higher and more sustained GLP-1 and PYY levels, while SUC induced a stronger GIP response. Notably, the timing of ISO consumption significantly influenced PYY secretion, with the 3 h preload showing enhanced PYY responses and a more favorable SME compared to the 1 h preload. Conclusions: ISO, particularly when consumed 3 h before a meal (vs. 1 h), offers significant advantages over SUC by elevating PYY levels, blunting the glucose ascent rate, and sustaining GLP-1 release. This synergy enhances the second meal effect, suggesting ISO’s potential for managing postprandial glycemic excursions in MetS. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

19 pages, 4365 KB  
Article
Fecal Virome Transplantation Confirms Non-Bacterial Components (Virome and Metabolites) Participate in Fecal Microbiota Transplantation-Mediated Growth Performance Enhancement and Intestinal Development in Broilers with Spatial Heterogeneity
by Shuaihu Chen, Tingting Liu, Junyao Chen, Hong Shen and Jungang Wang
Microorganisms 2025, 13(8), 1795; https://doi.org/10.3390/microorganisms13081795 - 31 Jul 2025
Cited by 1 | Viewed by 847
Abstract
Fecal microbiota transplantation (FMT) promotes growth performance and intestinal development in yellow-feathered broilers, but whether the virome and metabolites contribute to its growth-promoting effect remains unclear. This study removed the microbiota from FMT filtrate using a 0.45 μm filter membrane, retaining the virome [...] Read more.
Fecal microbiota transplantation (FMT) promotes growth performance and intestinal development in yellow-feathered broilers, but whether the virome and metabolites contribute to its growth-promoting effect remains unclear. This study removed the microbiota from FMT filtrate using a 0.45 μm filter membrane, retaining the virome and metabolites to perform fecal virome transplantation (FVT), aiming to investigate its regulatory role in broiler growth. Healthy yellow-feathered broilers with high body weights (top 10% of the population) were used as FVT donors. Ninety-six 8-day-old healthy male yellow-feathered broilers (95.67 ± 3.31 g) served as FVT recipients. Recipient chickens were randomly assigned to a control group and an FVT group. The control group was gavaged with 0.5 mL of normal saline daily, while the FVT group was gavaged with 0.5 mL of FVT solution daily. Growth performance, immune and antioxidant capacity, intestinal development and related gene expression, and microbial diversity were measured. The results showed that FVT improved the feed utilization rate of broilers (the feed conversion ratio decreased by 3%; p < 0.05), significantly increased jejunal length (21%), villus height (69%), and crypt depth (84%) (p < 0.05), and regulated the jejunal barrier: insulin-like growth factor-1 (IGF-1) (2.5 times) and Mucin 2 (MUC2) (63 times) were significantly upregulated (p < 0.05). FVT increased the abundance of beneficial bacteria Lactobacillales. However, negative effects were also observed: Immunoglobulin A (IgA), Immunoglobulin G (IgG), Immunoglobulin M (IgM), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α), and Interferon-gamma (IFN-γ) in broilers were significantly upregulated (p < 0.05), indicating immune system overactivation. Duodenal barrier-related genes Mucin 2 (MUC2), Occludin (OCLN), Claudin (CLDN1), and metabolism-related genes solute carrier family 5 member 1 (SLC5A1) and solute carrier family 7 member 9 (SLC7A9) were significantly downregulated (p < 0.05). The results of this trial demonstrate that, besides the microbiota, the gut virome and metabolites are also functional components contributing to the growth-promoting effect of FMT. The differential responses in the duodenum and jejunum reveal spatial heterogeneity and dual effects of FVT on the intestine. The negative effects limit the application of FMT/FVT. Identifying the primary functional components of FMT/FVT to develop safe and targeted microbial preparations is one potential solution. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

15 pages, 1273 KB  
Perspective
Glucagon-like Peptide-1 Receptor (GLP-1R) Signaling: Making the Case for a Functionally Gs Protein-Selective GPCR
by Anastasios Lymperopoulos, Victoria L. Altsman and Renee A. Stoicovy
Int. J. Mol. Sci. 2025, 26(15), 7239; https://doi.org/10.3390/ijms26157239 - 26 Jul 2025
Cited by 1 | Viewed by 4054
Abstract
Spurred by the enormous therapeutic success of glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP1-RAs) against diabetes and obesity, glucagon family receptor pharmacology has garnered a tremendous amount of interest. Glucagon family receptors, e.g., the glucagon receptor itself (GCGR), the GLP-1R, and the glucose-dependent insulinotropic [...] Read more.
Spurred by the enormous therapeutic success of glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP1-RAs) against diabetes and obesity, glucagon family receptor pharmacology has garnered a tremendous amount of interest. Glucagon family receptors, e.g., the glucagon receptor itself (GCGR), the GLP-1R, and the glucose-dependent insulinotropic peptide receptor (GIPR), belong to the incretin receptor superfamily, i.e., receptors that increase blood glucose-dependent insulin secretion. All incretin receptors are class B1 G protein-coupled receptors (GPCRs), coupling to the Gs type of heterotrimeric G proteins which activates adenylyl cyclase (AC) to produce cyclic adenosine monophosphate (cAMP). Most GPCRs undergo desensitization, i.e., uncouple from G proteins and internalize, thanks to interactions with the βarrestins (arrestin-2 and -3). Since the βarrestins can also mediate their own G protein-independent signaling, any given GPCR can theoretically signal (predominantly) either via G proteins or βarrestins, i.e., be a G protein- or βarrestin-“biased” receptor, depending on the bound ligand. A plethora of experimental evidence suggests that the GLP-1R does not undergo desensitization in physiologically relevant tissues in vivo, but rather, it produces robust and prolonged cAMP signals. A particular property of constant cycling between the cell membrane and caveolae/lipid rafts of the GLP-1R may underlie its lack of desensitization. In contrast, GIPR signaling is extensively mediated by βarrestins and the GIPR undergoes significant desensitization, internalization, and downregulation, which may explain why both agonists and antagonists of the GIPR exert the same physiological effects. Here, we discuss this evidence and make a case for the GLP-1R being a phenotypically or functionally Gs-selective receptor. We also discuss the implications of this for the development of GLP-1R poly-ligands, which are increasingly pursued for the treatment of obesity and other diseases. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

39 pages, 2934 KB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Cited by 2 | Viewed by 1543
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

14 pages, 1664 KB  
Article
Depletion of IGFALS Serum Level up to 3 Months After Cardiac Surgery, with Exploration of Potential Relationships to Surrogates of Organ Failures and Clinical Outcomes
by Krzysztof Laudanski, Mohamed A. Mahmoud, Hossam Gad and Daniel A. Diedrich
Curr. Issues Mol. Biol. 2025, 47(8), 581; https://doi.org/10.3390/cimb47080581 - 23 Jul 2025
Viewed by 662
Abstract
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients [...] Read more.
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients undergoing elective cardiac surgery with implementation of cardiopulmonary bypass had their serum isolated at baseline, 24 h, seven days, and three months postoperatively to assess serum concentrations of IGFALS and insulin growth factor 1 (IGF-1). Markers of perioperative injury included troponin I (TnI), high-mobility group box 1 (HMGB-1), and heat shock protein 60 (Hsp-60). Inflammatory status was assessed via interleukin-6 (IL-6) and interleukin-8 (IL-8). Additionally, we measured in vitro cytokine production to viral stimulation of whole blood and monocytes. Surrogates of neuronal distress included neurofilament light chain (NF-L), total tau (τ), phosphorylated tau at threonine 181 (τp181), and amyloid β40 and β42. Renal impairment was defined by RIFLE criteria. Cardiac dysfunction was denoted by serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. Serum IGFALS levels declined significantly after surgery and remained depressed even at 3 months. Administration of acetaminophen and acetylsalicylic acid differentiated IGFALS levels at the 24 h postoperatively. Serum IGFALS 24 h post-operatively correlated with production of cytokines by leukocytes after in vitro viral stimulation. Serum amyloid-β1-42 was significantly associated with IGFALS at baseline and 24 h post-surgery Patients discharged home had higher IGFALS levels at 28 days and 3 months than those discharged to healthcare facilities or who died. These findings suggest that IGFALS may serve as a prognostic biomarker for recovery trajectory and postoperative outcomes in cardiac surgery patients. Full article
(This article belongs to the Special Issue The Role of Neuroinflammation in Neurodegenerative Diseases)
Show Figures

Figure 1

27 pages, 3492 KB  
Article
Amelioration of Metabolic Syndrome by Co-Administration of Lactobacillus johnsonii CRL1231 and Wheat Bran in Mice via Gut Microbiota and Metabolites Modulation
by Matias Russo, Antonela Marquez, Estefanía Andrada, Sebastián Torres, Arlette Santacruz, Roxana Medina and Paola Gauffin-Cano
Metabolites 2025, 15(7), 466; https://doi.org/10.3390/metabo15070466 - 9 Jul 2025
Viewed by 714
Abstract
Background/Objectives: Lactobacillus johnsonii CRL1231 (Lj CRL1231) is a strain with feruloyl esterase (FE) activity that enhances ferulic acid (FA) release from wheat bran (WB) and has potential as a probiotic for metabolic syndrome (MS). Given the potential health benefits of FA and [...] Read more.
Background/Objectives: Lactobacillus johnsonii CRL1231 (Lj CRL1231) is a strain with feruloyl esterase (FE) activity that enhances ferulic acid (FA) release from wheat bran (WB) and has potential as a probiotic for metabolic syndrome (MS). Given the potential health benefits of FA and its microbial metabolites, this study aimed to evaluate the therapeutic effect of Lj CRL1231 co-administered with WB in a mouse model of metabolic syndrome (MS) induced by a high-fat diet (HFD). Methods: Mice were divided into three groups and fed for 14 weeks as follows: the Control group (standard diet), the MS group (HFD+WB), and the MS+Lj group (HFD+WB and Lj CRL1231-dose 108 cells/day). Specifically, we analyzed the changes in the intestinal microbiota (IM), colonic FE activity, generation of FA-derived and fermentation metabolites, and metabolic and inflammatory parameters. Results: Improvements in the MS+Lj group compared to the MS group included the following: a—a 38% increase in colonic FE activity, leading to elevated levels of FA-derived metabolites (e.g., dihydroferulic, dihydroxyphenylpropionic, and hydroxyphenylpropionic acids); b—a significant shift in the IM composition, with a 3.4-fold decrease in Firmicutes and a 2.9-fold increase in Bacteroidetes; c—a decrease in harmful bacteria (Desulfovibrio) by 93%, and beneficial bacteria like Bifidobacterium increased significantly (6.58 log cells/g); d—a 33% increase in total SCFAs; e—a 26% reduction in the adiposity index; f—a 12% increase in HDL cholesterol and a 19% reduction in triglycerides; g—normalized glucose and insulin resulting in a 2-fold lower HOMA-IR index; h—an improved inflammatory profile by decreasing TNF-α, IFN-γ, and IL-6 (3-, 5-, and 2-fold, respectively) and increasing IL-10 by 2-fold; i—alleviation of liver damage by normalizing of transaminases AST (19.70 ± 2.97 U/L) and ALT (13.12 ± 0.88 U/L); j—evidence of reduced oxidative damage. Conclusions: The co-administration of L. johnsonii CRL1231 and WB exerts a synergistic effect in mitigating the features of MS in HFD-fed mice. This effect is mediated by modulation of the gut microbiota, increased release of bioactive FA-derived compounds, and restoration of metabolic and inflammatory homeostasis. This strategy represents a promising dietary approach for MS management through targeted microbiota–metabolite interactions. Full article
Show Figures

Graphical abstract

29 pages, 15583 KB  
Article
Neuroinflammation Based Neurodegenerative In Vitro Model of SH-SY5Y Cells—Differential Effects on Oxidative Stress and Insulin Resistance Relevant to Alzheimer’s Pathology
by Csenge Böröczky, Alexandra Paszternák, Rudolf Laufer, Katinka Tarnóczi, Noémi Sikur, Fruzsina Bagaméry, Éva Szökő, Kamilla Varga and Tamás Tábi
Int. J. Mol. Sci. 2025, 26(14), 6581; https://doi.org/10.3390/ijms26146581 - 9 Jul 2025
Viewed by 2366
Abstract
Neuroinflammation is a key process in Alzheimer’s disease (AD). We aimed to examine the development and evaluation of a comprehensive in vitro model that captures the complex interplay between neurons and immune cell types. Retinoic acid-differentiated SH-SY5Y neuroblastoma cells exposed to LPS-conditioned media [...] Read more.
Neuroinflammation is a key process in Alzheimer’s disease (AD). We aimed to examine the development and evaluation of a comprehensive in vitro model that captures the complex interplay between neurons and immune cell types. Retinoic acid-differentiated SH-SY5Y neuroblastoma cells exposed to LPS-conditioned media (CM) from RAW264.7 macrophages, BV2 microglia, and HL60 promyelocytic cells differentiated into neutrophil- or monocyte-like phenotypes were analyzed. The effects of CM containing inflammatory factors on neuronal viability and function were systematically evaluated. Neuronal oxidative stress, mitochondrial function, autophagy and protein aggregates were analyzed. The involvement of insulin resistance was studied by assaying glucose uptake and determining its IC50 values for cell viability improvement and GSK3β phosphorylation. After short-term exposure (3 h), most inflammatory CMs induced peroxide production in neurons, with the strongest effect observed in media from DMSO- or RA-differentiated HL60 cells. Mitochondrial membrane potential was markedly reduced by LPS-stimulated BV2 and HL60-derived CMs. Prolonged exposure (72 h) revealed partial normalization of oxidative stress and mitochondrial membrane potential. Glucose uptake was significantly impaired in cells treated with LPS-activated RAW264.7, BV2, and DMSO-differentiated HL60 cell media, while insulin partially rescued this effect, except for the CM of BV2 cells. Notably, insulin IC50 increased dramatically under LPS-treated BV2 cells induced inflammation (35 vs. 198 pM), confirming the development of insulin resistance. Immune cell-specific inflammation causes distinct effects on neuronal oxidative stress, mitochondrial function, protein aggregation, insulin signaling and viability. LPS-activated BV2-derived CM best recapitulates AD-related pathology, offering a relevant in vitro model for further studies. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

Back to TopTop