Predictive Modeling of Central Precocious Puberty Using IGF-1 and IGFBP-3 Standard Deviation Scores
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Analytical Methods
2.3. Definitions
2.4. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | area under the curve |
CPP | central precocious puberty |
FSH | follicle-stimulating hormone |
GnRH | gonadotropin-releasing hormone |
IGF-1 | insulin-like growth factor-1 |
IGFBP-3 | insulin-like growth factor binding protein-3 |
KNHANES | Korea National Health and Nutrition Examination Survey |
LH | luteinizing hormone |
ROC | receiver operating characteristic |
SDS | Standard Deviation Score |
TSH | thyroid-stimulating hormone |
References
- Huang, R.; Shi, J.; Wei, R.; Li, J. Challenges of insulin-like growth factor-1 testing. Crit. Rev. Clin. Lab. Sci. 2024, 61, 388–403. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, J.H.; Hong, Y.H.; Chung, I.H.; Lee, E.B.; Kang, E.; Kim, J.; Yang, A.; Rhie, Y.-J.; Yoo, E.-G.; et al. 2022 Clinical practice guidelines for central precocious puberty of Korean children and adolescents. Ann. Pediatr. Endocrinol. Metab. 2023, 28, 168–177. [Google Scholar] [CrossRef]
- Health Insurance Review and Assessment Service (HIRA), Korea. GnRH Agonist Injection. Ministry of Health and Welfare Notification No. 2024-100 (Pharmaceuticals). Available online: https://www.hira.or.kr/rc/insu/insuadtcrtr/InsuAdtCrtrList.do?pgmid=HIRAA030069000400 (accessed on 28 July 2025).
- Choi, R.; Kwon, A.; Oh, Y.; Lee, S.G.; Lee, E.H. Time Points for Gonadotropin-Releasing Hormone Stimulation Test Results in Korean Children. J. Clin. Med. 2021, 10, 252. [Google Scholar] [CrossRef]
- Ouyang, L.; Yang, F. Combined diagnostic value of insulin-like growth factor-1, insulin-like growth factor binding protein-3, and baseline luteinizing hormone levels for central precocious puberty in girls. J. Pediatr. Endocrinol. Metab. 2022, 35, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Song, H.S.; Choi, W.B.; Song, J.S.; Hwang, I.T.; Yang, S. Relationship between serum insulin-like growth factor-1, IGF binding protein-3 levels and body height before and after gonadotropin-releasing hormone agonist therapy. Ann. Pediatr. Endocrinol. Metab. 2014, 19, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Baier, I.; Pereira, A.; Ferrer, P.; Iñiguez, G.; Mericq, V. Higher Prepubertal IGF-1 Concentrations Associate to Earlier Pubertal Tempo in Both Sexes. Horm. Res. Paediatr. 2023, 96, 404–411. [Google Scholar] [CrossRef]
- Zevin, E.L.; Eugster, E.A. Central precocious puberty: A review of diagnosis, treatment, and outcomes. Lancet Child Adolesc. Health 2023, 7, 886–896. [Google Scholar] [CrossRef]
- Krishna, K.B.; Garibaldi, L. Critical appraisal of diagnostic laboratory tests in the evaluation of central precocious puberty. Front. Pediatr. 2025, 12, 1504874. [Google Scholar] [CrossRef]
- Jo, Y.; Song, K.; Heo, S.-J.; Suh, J.; Chae, H.W.; Rim, J.H.; Park, Y.; Lim, J.B.; Kim, H.-S.; Kim, J.-H. Establishment of IGF-1 and IGFBP-3 continuous reference percentiles from data of healthy children using three kinds of immunoassay systems. Heliyon 2024, 10, e38245. [Google Scholar] [CrossRef]
- Kos, S.; Cobbaert, C.M.; Kuijper, T.M.; Oostdijk, W.; Hannema, S.E.; Wit, J.M.; Biermasz, N.; Ballieux, B.E.P.B. IGF-1 and IGF-1 SDS—Fit for purpose? Eur. J. Endocrinol. 2019, 181, L1–L4. [Google Scholar] [CrossRef]
- Kim, S.; Min, W.-K. Toward High-Quality Real-World Laboratory Data in the Era of Healthcare Big Data. Ann. Lab. Med. 2025, 45, 1–11. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, T.-D.; Lee, K.; Chung, J.-W.; Cho, E.-J.; Lee, S.; Chun, S.; Song, J.; Min, W.-K. Quantitative Evaluation of the Real-World Harmonization Status of Laboratory Test Items Using External Quality Assessment Data. Ann. Lab. Med. 2024, 44, 529–536. [Google Scholar] [CrossRef]
- Clemmons, D.R. Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin. Chem. 2011, 57, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Bidlingmaier, M.; Friedrich, N.; Emeny, R.T.; Spranger, J.; Wolthers, O.D.; Roswall, J.; Körner, A.; Obermayer-Pietsch, B.; Hübener, C.; Dahlgren, J.; et al. Reference intervals for insulin-like growth factor-1 (IGF-I) from birth to senescence: Results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. J. Clin. Endocrinol. Metab. 2014, 99, 1712–1721, Corrigendum in: J. Clin. Endocrinol. Metab. 2020, 105, dgaa641. [Google Scholar] [CrossRef] [PubMed]
- Chanson, P.; Arnoux, A.; Mavromati, M.; Brailly-Tabard, S.; Massart, C.; Young, J.; Piketty, M.-L.; Souberbielle, J.-C.; for the VARIETE Investigators. Reference Values for IGF-I Serum Concentrations: Comparison of Six Immunoassays. J. Clin. Endocrinol. Metab. 2016, 101, 3450–3458. [Google Scholar] [CrossRef] [PubMed]
- Bailo, P.S.; Estremera, M.F.; Alcocel, J.C.; Márquez, M.A.C. Beyond the method change in clinical practice: Evaluation of insulin-like growth factor I assay. Adv. Lab. Med. 2022, 3, 397–406. [Google Scholar]
- Yuen, K.C.J.; Biller, B.M.K.; Radovick, S.; Carmichael, J.D.; Jasim, S.; Pantalone, K.M.; Hoffman, A.R. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Growth Hormone Deficiency in Adults and Patients Transitioning from Pediatric to Adult Care. Endocr. Pract. 2019, 25, 1191–1232. [Google Scholar] [CrossRef]
- Sabbah, N.; Wolf, P.; Piedvache, C.; Trabado, S.; Verdelet, T.; Cornu, C.; Souberbielle, J.-C.; Chanson, P. Reference values for IGF-I serum concentration in an adult population: Use of the VARIETE cohort for two new immunoassays. Endocr. Connect. 2021, 10, 1027–1034. [Google Scholar] [CrossRef]
- Choi, R.; Park, W.; Chun, G.; Lee, S.G.; Lee, E.H. The Utilization of Serum Folate and Homocysteine Tests and the Prevalence of Folate Deficiency in Reproductive-Age Korean Women during the COVID-19 Pandemic. Nutrients 2023, 15, 3236. [Google Scholar] [CrossRef]
- Kwon, H.; Kim, W.G.; Jeon, M.J.; Han, M.; Kim, M.; Park, S.; Kim, T.Y.; Shong, Y.K.; Kim, W.B. Age-specific reference interval of serum TSH levels is high in adolescence in an iodine excess area: Korea national health and nutrition examination survey data. Endocrine 2017, 57, 445–454. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency. Korea National Health and Nutrition Examination Survey. Available online: https://knhanes.kdca.go.kr/knhanes/eng/main.do (accessed on 28 July 2025).
- Lee, H.S.; Park, H.K.; Ko, J.H.; Kim, Y.J.; Hwang, J.S. Utility of Basal luteinizing hormone levels for detecting central precocious puberty in girls. Horm. Metab. Res. 2012, 44, 851–854. [Google Scholar] [CrossRef]
- Cole, T.J.; Green, P.J. Smoothing reference centile curves: The LMS method and penalized likelihood. Stat. Med. 1992, 11, 1305–1319. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Assessment of the Diagnostic Accuracy of Laboratory Tests Using Receiver Operating Characteristic Curves; Approved Guide-line—Second Edition; CLSI Document EP24A2; Clinical and Laboratory Institute: Wayne, PA, USA, 2011. [Google Scholar]
- Belgorosky, A.; Rivarola, M.A. Irreversible increase of serum IGF-1 and IGFBP-3 levels in GnRH-dependent precocious puberty of different etiologies: Implications for the onset of puberty. Horm. Res. 1998, 49, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Escagedo, P.D.; Deal, C.L.; Dwyer, A.A.; Hauschild, M. Insulin-like Growth Factor 1, but Not Insulin-Like Growth Factor-Binding Protein 3, Predicts Central Precocious Puberty in Girls 6-8 Years Old: A Retrospective Study. Horm. Res. Paediatr. 2021, 94, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhao, W. Insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 in central precocious puberty: A systematic review and meta-analysis. Growth Factors 2025, 43, 97–105. [Google Scholar] [CrossRef]
- Chang, H.-P.; Yang, S.-F.; Wang, S.-L.; Su, P.-H. Associations among IGF-1, IGF2, IGF-1R, IGF-2R, IGFBP-3, insulin genetic polymorphisms and central precocious puberty in girls. BMC Endocr. Disord. 2018, 18, 66. [Google Scholar] [CrossRef]
- Lee, D.S.; Ryoo, N.Y.; Lee, S.H.; Kim, S.; Kim, J.H. Basal luteinizing hormone and follicular stimulating hormone: Is it sufficient for the diagnosis of precocious puberty in girls? Ann. Pediatr. Endocrinol. Metab. 2013, 18, 196–201. [Google Scholar] [CrossRef]
- Paediatric Reference Range Initiatives. Available online: https://ifcc.org/ifcc-emerging-technologies-division/etd-committees/c-etplm/paediatric-reference-range-initiatives/ (accessed on 28 July 2025).
- Ni, X.; Song, W.; Peng, X.; Shen, Y.; Peng, Y.; Li, Q.; Wang, Y.; Hu, L.; Cai, Y.; Shang, H.; et al. Pediatric reference intervals in China (PRINCE): Design and rationale for a large, multicenter collaborative cross-sectional study. Sci. Bull. 2018, 63, 1626–1634. [Google Scholar] [CrossRef]
- Park, H.; Park, B.; Jee, S.H.; Park, H.; Choi, Y.; Oh, K. Korean National Health and Nutrition Examination Survey—Follow-up (KNHANES-F) Survey Items and Implementation Plan. Public Health Wkly. Rep. 2025, 18, 654–673. [Google Scholar]
Characteristics | Median | Interquartile Range |
---|---|---|
Age (years) | 8.3 | 7.7 to 8.9 |
Female (n = 2025) | 8.1 | 7.6 to 8.8 |
Male (n = 439) | 9.0 | 8.6 to 9.8 |
TSH (μIU/mL) | 2.25 | 1.61 to 3.08 |
Baseline LH (IU/L) | 0.21 | 0.21 to 0.40 |
Baseline FSH (IU/L) | 2.00 | 1.40 to 2.80 |
Baseline LH/FSH ratio | 0.14 | 0.10 to 0.21 |
IGF-1 (ng/mL) | 201 | 160 to 244 |
IGF-BP3 (ng/mL) | 4496 | 4066 to 4949 |
IGF-1/IGFBP-3 ratio | 0.04 | 0.04 to 0.05 |
IGF-1 SDS-Roche | 0.78 | 0.15 to 1.51 |
IGF-1 SDS-Jo et al. | 0.61 | −0.07 to 1.41 |
IGFBP-3 SDS-Roche | 0.62 | 0.10 to 1.19 |
IGFBP-3 SDS-Jo et al. | 0.54 | −0.14 to 1.27 |
GnRH stimulation test | ||
Positive for CPP | 1386 | 56.25% |
Negative for CPP | 1078 | 43.75% |
Characteristics | Female (n = 2025) | Male (n = 439) | ||||
---|---|---|---|---|---|---|
Negative for CPP (n = 927) | Positive for CPP (n = 1098) | p-Value | Negative for CPP (n = 151) | Positive for CPP (n = 288) | p-Value | |
Age | 7.98 (7.50 to 8.66) | 8.24 (7.72 to 8.82) | <0.0001 | 8.86 (8.25 to 9.25) | 9.38 (8.81 to 9.87) | <0.0001 |
TSH (μIU/mL) | 2.24 (1.60 to 3.02) | 2.22 (1.60 to 3.12) | 0.8089 | 2.44 (1.75 to 3.17) | 2.25 (1.65 to 3.04) | 0.3922 |
Baseline LH (IU/L) | 0.21 (0.21 to 0.21) | 0.21 (0.21 to 0.50) | <0.0001 | 0.21 (0.21 to 0.21) | 0.6 (0.21 to 1.10) | <0.0001 |
Baseline FSH (IU/L) | 1.60 (1.20 to 2.10) | 2.50 (1.90 to 3.30) | <0.0001 | 1.00 (0.73 to 1.40) | 2.35 (1.80 to 3.20) | <0.0001 |
Baseline LH/FSH ratio | 0.14 (0.10 to 0.19) | 0.12 (0.090 to 0.19) | <0.0001 | 0.23 (0.15 to 0.30) | 0.27 (0.15 to 0.47) | 0.0183 |
IGF-1 (ng/mL) | 189 (156 to 223) | 216 (179 to 266) | <0.0001 | 173 (142 to 205) | 200 (166 to 241) | <0.0001 |
IGFBP-3 (ng/mL) | 4451 (4001 to 4910) | 4500 (4070 to 4958) | 0.1291 | 4443 (4132 to 4967) | 4634 (4171 to 5062) | 0.1832 |
IGF-1/IGFBP-3 ratio | 0.04 (0.04 to 0.05) | 0.05 (0.04 to 0.06) | <0.0001 | 0.04 (0.03 to 0.04) | 0.04 (0.04 to 0.05) | <0.0001 |
IGF-1 SDS-Roche | 0.56 (0.00 to 1.23) | 0.95 (0.32 to 1.75) | <0.0001 | 0.72 (0.05 to 1.31) | 0.91 (0.35 to 1.67) | 0.0133 |
IGF-1 SDS-Jo et al. | 0.44 (−0.17 to 1.16) | 0.86 (0.17 to 1.71) | <0.0001 | 0.15 (−0.46 to 0.75) | 0.35 (−0.14 to 1.08) | 0.0100 |
IGFBP-3 SDS-Roche | 0.58 (0.06 to 1.20) | 0.60 (0.08 to 1.13) | 0.8517 | 0.77 (0.23 to 1.36) | 0.74 (0.21 to 1.28) | 0.5194 |
IGFBP-3 SDS-Jo et al. | 0.38 (−0.27 to 1.09) | 0.43 (−0.20 to 1.09) | 0.4306 | 1.17 (0.55 to 1.95) | 1.35 (0.57 to 2.03) | 0.3770 |
Categories | Female (n = 2025) | Male (n = 439) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biomarker High | p-Value | Sen. | Spec. | PPV | NPV | Biomarker High | p-value | Sen. | Spec. | PPV | NPV | |||
No (n, %) | Yes (n, %) | No (n, %) | Yes (n, %) | |||||||||||
Baseline LH high (>0.3 IU/L) | ||||||||||||||
Negative for CPP | 875 (94.4%) | 52 (5.6%) | <0.01 | 35.7% | 94.4% | 88.3% | 55.3% | 141 (93.4%) | 10 (6.6%) | <0.01 | 72.6% | 93.4% | 95.4% | 64.1% |
Positive for CPP | 706 (64.3%) | 392 (35.7%) | 79 (27.4%) | 209 (72.6%) | ||||||||||
Baseline LH high (>1.1 IU/L) | ||||||||||||||
Negative for CPP | 925 (99.8%) | 2 (0.2%) | <0.01 | 8.9% | 99.8% | 98.0% | 48.1% | 151 (100%) | 0 (0.0%) | <0.01 | 24.3% | 100.0% | 100.0% | 40.9% |
Positive for CPP | 1000 (91.1%) | 98 (8.9%) | 218 (75.7%) | 70 (24.3%) | ||||||||||
Baseline FSH high (>1.8 IU/L for female, >1.6 IU/L for male) | ||||||||||||||
Negative for CPP | 582 (62.8%) | 345 (37.2%) | <0.01 | 76.4% | 62.8% | 70.9% | 69.2% | 129 (85.4%) | 22 (14.6%) | <0.01 | 79.5% | 85.4% | 91.2% | 68.6% |
Positive for CPP | 259 (23.6%) | 839 (76.4%) | 59 (20.5%) | 229 (79.5%) | ||||||||||
IGF-1 high (>97.5th of Roche) | ||||||||||||||
Negative for CPP | 868 (97.6%) | 59 (6.4%) | <0.01 | 14.3% | 93.6% | 72.7% | 48.0% | 134 (88.7%) | 17 (11.3%) | 0.25 | 15.3% | 88.7% | 72.1% | 35.5% |
Positive for CPP | 941 (85.7%) | 157 (14.3%) | 244 (84.7%) | 44 (15.3%) | ||||||||||
IGF-1 high (>97.5th of Jo et al.) | ||||||||||||||
Negative for CPP | 808 (87.2%) | 119 (12.8%) | <0.01 | 21.1% | 87.1% | 66.1% | 48.3% | 140 (92.7%) | 11 (7.3%) | 0.24 | 10.8% | 92.7% | 73.8% | 35.3% |
Positive for CPP | 866 (78.9%) | 232 (21.1%) | 257 (89.2%) | 31 (10.8%) | ||||||||||
IGFBP-3 high (>97.5th of Roche) | ||||||||||||||
Negative for CPP | 870 (93.9%) | 57 (6.1%) | 0.23 | 4.9% | 93.9% | 48.6% | 45.5% | 133 (88.1%) | 18 (11.9%) | 0.55 | 10.1% | 88.1% | 61.7% | 33.9% |
Positive for CPP | 1044 (95.1%) | 54 (4.9%) | 259 (89.9%) | 29 (10.1%) | ||||||||||
IGFBP-3 high (>97.5th of Jo et al.) | ||||||||||||||
Negative for CPP | 847 (91.4%) | 80 (8.6%) | 0.96 | 8.6% | 91.4% | 54.0% | 45.8% | 133 (88.1%) | 18 (11.9%) | 0.86 | 12.5% | 88.1% | 66.7% | 34.5% |
Positive for CPP | 1004 (91.4%) | 94 (8.6%) | 252 (87.5%) | 36 (12.5%) |
Variable | Female (n = 2025) | Male (n = 439) | ||
---|---|---|---|---|
AUC | 95% CI | AUC | 95% CI | |
Baseline LH | 0.653 | 0.632 to 0.674 | 0.845 | 0.807 to 0.877 |
Baseline FSH | 0.767 | 0.748 to 0.786 | 0.895 | 0.862 to 0.922 |
Baseline LH/FSH ratio | 0.561 | 0.539 to 0.583 | 0.569 | 0.521 to 0.615 |
IGF-1 | 0.641 | 0.620 to 0.662 | 0.645 | 0.598 to 0.690 |
IGFBP-3 | 0.520 | 0.498 to 0.542 | 0.539 | 0.491 to 0.586 |
IGF-1/IGFBP-3 ratio | 0.655 | 0.634 to 0.676 | 0.651 | 0.605 to 0.696 |
Based on baseline LH cutoff | ||||
>0.3 IU/L | 0.653 | 0.632 to 0.674 | 0.845 | 0.807 to 0.877 |
>1.1 IU/L | 0.544 | 0.522 to 0.565 | 0.622 | 0.574 to 0.667 |
Based on Cutoff (>97.5th percentile) | ||||
IGF-1 (Roche) | 0.540 | 0.518 to 0.562 | 0.520 | 0.472 to 0.568 |
IGF-1 (Jo et al.) | 0.541 | 0.519 to 0.563 | 0.517 | 0.470 to 0.565 |
IGFBP-3 (Roche) | 0.506 | 0.484 to 0.528 | 0.509 | 0.461 to 0.557 |
IGFBP-3 (Jo et al.) | 0.541 | 0.488 to 0.532 | 0.517 | 0.470 to 0.565 |
Based on SDS | ||||
IGF-1 SDS-Roche | 0.612 | 0.591 to 0.634 | 0.572 | 0.524 to 0.619 |
IGF-1 SDS-Jo et al. | 0.610 | 0.588 to 0.631 | 0.575 | 0.527 to 0.621 |
IGFBP-3 SDS-Roche | 0.502 | 0.480 to 0.524 | 0.519 | 0.471 to 0.566 |
IGFBP-3 SDS-Jo et al. | 0.510 | 0.488 to 0.532 | 0.526 | 0.478 to 0.573 |
Based on prediction model–derived scores | ||||
Model using LH and FSH | 0.783 | 0.765 to 0.801 | 0.924 | 0.896 to 0.947 |
Model using LH, FSH, IGF-1 SDS-Roche | 0.791 | 0.772 to 0.808 | 0.919 | 0.889 to 0.943 |
Model using LH, FSH, IGF-1 SDS-Jo et al. | 0.790 | 0.772 to 0.808 | 0.920 | 0.889 to 0.943 |
Model using LH, FSH, IGF-1 SDS & IGFBP-3 SDS-Roche | 0.800 | 0.782 to 0.818 | 0.919 | 0.889 to 0.943 |
Model using LH, FSH, IGF-1 SDS & IGFBP-3 SDS-Jo et al. | 0.800 | 0.782 to 0.818 | 0.920 | 0.891 to 0.944 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, R.; Chun, G.; Cho, S.-E.; Lee, S.G. Predictive Modeling of Central Precocious Puberty Using IGF-1 and IGFBP-3 Standard Deviation Scores. Diagnostics 2025, 15, 2508. https://doi.org/10.3390/diagnostics15192508
Choi R, Chun G, Cho S-E, Lee SG. Predictive Modeling of Central Precocious Puberty Using IGF-1 and IGFBP-3 Standard Deviation Scores. Diagnostics. 2025; 15(19):2508. https://doi.org/10.3390/diagnostics15192508
Chicago/Turabian StyleChoi, Rihwa, Gayoung Chun, Sung-Eun Cho, and Sang Gon Lee. 2025. "Predictive Modeling of Central Precocious Puberty Using IGF-1 and IGFBP-3 Standard Deviation Scores" Diagnostics 15, no. 19: 2508. https://doi.org/10.3390/diagnostics15192508
APA StyleChoi, R., Chun, G., Cho, S.-E., & Lee, S. G. (2025). Predictive Modeling of Central Precocious Puberty Using IGF-1 and IGFBP-3 Standard Deviation Scores. Diagnostics, 15(19), 2508. https://doi.org/10.3390/diagnostics15192508