Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,879)

Search Parameters:
Keywords = insulating layers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6365 KB  
Article
Flexural Behavior of One-Way Lightweight UHPC-NC Superimposed Sandwich Slabs
by Ziqian Ma, Hao Li, Tian Su, Tianyu Wu, Jiaqi Li and Jing Zhu
Buildings 2026, 16(3), 641; https://doi.org/10.3390/buildings16030641 - 3 Feb 2026
Abstract
A novel type of ultra-high-performance concrete–normal concrete (UHPC-NC) superimposed sandwich slab is introduced, which eliminates the need for conventional longitudinal reinforcement. This sandwich slab consists of a prefabricated thin UHPC layer at the bottom, a cast-in-place NC layer at the top, and an [...] Read more.
A novel type of ultra-high-performance concrete–normal concrete (UHPC-NC) superimposed sandwich slab is introduced, which eliminates the need for conventional longitudinal reinforcement. This sandwich slab consists of a prefabricated thin UHPC layer at the bottom, a cast-in-place NC layer at the top, and an extruded polystyrene foam core that provides both acoustic and thermal insulation. The resulting lightweight composite sandwich structure is integrated with web walls reinforced by a three-dimensional truss reinforcement system. The flexural performance is examined through four-point bending tests and compared with that of a fully UHPC sandwich slab of identical structural configuration and casting progress. Relative to the fully UHPC slab, the UHPC-NC slab demonstrates superior flexural structural integrity, significantly reduces costs and improves construction efficiency. The ductility coefficient of the UHPC-NC slab reaches 3.23, which is superior to the UHPC slab. This indicates that it has a stronger collaborative working ability with the rebars and the compressed concrete. Comprehensive analytical, numerical, and experimental investigations into the flexural behavior of the proposed UHPC-NC sandwich slab yield accurate evaluation of cracking and ultimate load capacities, thereby offering valuable guidance for the engineering application of this innovative superimposed sandwich slab system. Full article
Show Figures

Figure 1

9 pages, 1634 KB  
Proceeding Paper
Integrated Strategies for Structural, Thermal, and Fire Failure Mitigation in Lightweight TRC/CLCi Composite Facade Panels
by Pamela Voigt, Mario Stelzmann, Robert Böhm, Lukas Steffen, Hannes Franz Maria Peller, Matthias Tietze, Miguel Prieto, Jan Suchorzewski, Dionysios Kolaitis, Andrianos Koklas, Vasiliki Tsotoulidi, Maria Myrto Dardavila and Costas Charitidis
Eng. Proc. 2025, 119(1), 56; https://doi.org/10.3390/engproc2025119056 - 29 Jan 2026
Viewed by 97
Abstract
The thermally efficient and lightweight TRC/CLCi composite panels for functional and smart building envelopes, funded by the iclimabuilt project (Grant Agreement no. 952886), offer innovative solutions to sustainably address common failure risks in facade systems. This work specifically emphasizes strategies for mitigating structural, [...] Read more.
The thermally efficient and lightweight TRC/CLCi composite panels for functional and smart building envelopes, funded by the iclimabuilt project (Grant Agreement no. 952886), offer innovative solutions to sustainably address common failure risks in facade systems. This work specifically emphasizes strategies for mitigating structural, thermal, and fire-related failures through targeted material selection, advanced design methodologies, and rigorous validation protocols. To effectively mitigate structural failures, high-pressure concrete (HPC) reinforced with carbon fibers is utilized, significantly enhancing tensile strength, reducing susceptibility to cracking, and improving overall durability. To counteract thermal bridging—a critical failure mode compromising energy efficiency and structural integrity—the panels employ specially designed glass-fiber reinforced pins connecting HPC outer layers through the cellular lightweight concrete (CLC) insulation core that has a density of around 70 kg/m3 and a thermal conductivity in the range 35 mW/m∙K comparable to those of expanded polystyrene and Rockwool. These connectors ensure effective load transfer and maintain optimal thermal performance. A central focus of the failure mitigation strategy is robust fire behavior. The developed panels undergo rigorous standardized fire tests, achieving an exceptional reaction to fire classification of A2. This outcome confirms that HPC layers maintain structural stability and integrity even under prolonged fire exposure, effectively preventing catastrophic failures and ensuring occupant safety. In conclusion, this work highlights explicit failure mitigation strategies—reinforced concrete materials for structural stability, specialized glass-fiber connectors to prevent thermal bridging, rigorous fire behavior protocols, and comprehensive thermal performance validation—to produce a facade system that is robust, energy-efficient, fire-safe, and sustainable for modern buildings. Full article
(This article belongs to the Proceedings of The 8th International Conference of Engineering Against Failure)
Show Figures

Figure 1

25 pages, 4329 KB  
Article
Numerical Simulation and Experimental Study on Systematic Thermal Bridges of High-Performance Sandwich Insulation Wall Panels: Implications for Building Sustainability
by Yi Zhang, Qinqin Deng, Lixin Sun, Chu Zhao, Yu Zou and Weijun Li
Sustainability 2026, 18(3), 1308; https://doi.org/10.3390/su18031308 - 28 Jan 2026
Viewed by 90
Abstract
As a prevalent integrated structure-insulation system, sandwich insulation wall panels have emerged as a critical structural configuration for zero- and nearly zero-energy green buildings, owing to their high construction efficiency and superior thermal insulation performance which directly aligns with the core goals of [...] Read more.
As a prevalent integrated structure-insulation system, sandwich insulation wall panels have emerged as a critical structural configuration for zero- and nearly zero-energy green buildings, owing to their high construction efficiency and superior thermal insulation performance which directly aligns with the core goals of sustainability and sustainable energy utilization in the built environment. However, connectors penetrate the insulation layer and form systematic thermal bridges, which cause substantial heat loss and become a key bottleneck limiting further improvement in the overall thermal performance of wall systems. This study established three-dimensional numerical models of sandwich insulation wall panels with four typical connectors (fiber-reinforced polymers (FRPs), clamp-type stainless steel, plate-type stainless steel, and truss-type stainless steel) using Ansys Fluent 2021R1. The model reliability was verified by calibrated hot-box experiments, with relative errors between simulation and experimental results ranging from 2.1% to 16.1%. Systematic numerical simulations were then performed to investigate the effects of connector type, insulation material, climate zone, inner–outer temperature difference, connector quantity, and wall dimensions on the thermal bridge effect. The results indicated that FRP connectors caused the minimal heat flux increment (only 0.27%), followed by clamp-type stainless steel connectors (9.59%), while plate-type and truss-type stainless steel connectors led to significant increments (27.17% and 27.62%, respectively). The lower the heat transfer coefficient (K-value) of the wall was, the more prominent the connector-induced thermal bridge effect was. Within the typical temperature difference range, the heat flux increment of each connector remained stable, and polyurethane (PU) insulation exhibited a more significant inhibitory effect on thermal bridges than extruded polystyrene (XPS) under the same K-value. Linear fitting formulas for the relationship between wall K-value/temperature difference and the heat flux correction coefficient were derived, with high goodness-of-fit. The maximum impact of connectors on wall thermal performance did not exceed 30%. This study provides theoretical support and design references for the selection of connectors, material optimization, and thermal performance calculation of sandwich insulation wall panels, contributing to the promotion of energy-saving building envelope technologies. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

22 pages, 4596 KB  
Article
Mechanical Response Analysis of the Overhead Cable for Offshore Floating Photovoltaic Systems
by Qiang Fu, Hao Zhang, Liqian Zhang, Peng Chen, Lin Cui, Chunjie Wang and Bin Wang
J. Mar. Sci. Eng. 2026, 14(3), 258; https://doi.org/10.3390/jmse14030258 - 26 Jan 2026
Viewed by 215
Abstract
To address the issues of insulation layer damage and conductor exposure in offshore floating photovoltaic systems occurring in shallow marine regions characterized by significant tidal ranges under multi-field coupling effects, an overhead cable laying scheme based on the hybrid pile–floater structure is proposed, [...] Read more.
To address the issues of insulation layer damage and conductor exposure in offshore floating photovoltaic systems occurring in shallow marine regions characterized by significant tidal ranges under multi-field coupling effects, an overhead cable laying scheme based on the hybrid pile–floater structure is proposed, while its mechanical response is investigated in this paper. The motion response model of the floating platform, considering wind load, wave load, current load, and mooring load, as well as the equivalent density and mathematical model of the overhead cable are established. The mechanical response characteristics of the overhead cable are analyzed through finite element analysis software. The results indicate that the overhead cable’s mechanical response is influenced by the span length and coupled wind–ice loads. Specifically, the tension exhibits a nonlinear increasing trend, while the deflection shows differential variations driven by the antagonistic interaction between wind and ice loads. The influence of ice loads on the configuration of overhead cables is significantly weaker than that of wind loads. This study provides crucial theoretical support for enhancing the lifespan of the overhead cable. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 4874 KB  
Article
HDTMS-, Polybutadiene-, and Benzotriazole-Modified Polylactic-Based Resin for Solar Cells Encapsulation with Exceptional Environmental Stability of MAPI Perovskite Films
by Ayad Aicha Aziza, Elbar Mohamed, Ievgen Zaitsev and Kuchansky Vladislav
Molecules 2026, 31(3), 427; https://doi.org/10.3390/molecules31030427 - 26 Jan 2026
Viewed by 178
Abstract
In this work, we report a protective encapsulation intended as the final coating layer on solar cells. The formulation consists of polylactic (PLA)-based resin, modified with hexadecyltrimethoxysilane (HDTMS), epoxidized polybutadiene (EPB), and benzotriazole as a UV absorber with approximate weight fractions ranging from [...] Read more.
In this work, we report a protective encapsulation intended as the final coating layer on solar cells. The formulation consists of polylactic (PLA)-based resin, modified with hexadecyltrimethoxysilane (HDTMS), epoxidized polybutadiene (EPB), and benzotriazole as a UV absorber with approximate weight fractions ranging from 20 to 60 wt% for PLA, 30–80 wt% for solvents (toluene and chloroform), and 0–5 wt% for HDTM, EPB, and benzotriazole with percentages 54.2%, 29.2%, and 16.7%, respectively. The encapsulating material, due to its insulating nature and high optical transparency, surpasses that of ethylene–vinyl acetate (EVA), as demonstrated in this study. To assess the protective effect of the developed formulation, the study focused on applying the modified PLA resin onto isolated methylammonium lead iodide (MAPI) perovskite films on glass substrates. The samples were prepared as isolated MAPI absorbers to specifically assess the intrinsic contribution of the dual encapsulation configuration at its real position in a complete solar cell stack, demonstrating that even this unoptimized perovskite film exhibits remarkable stability and excellent structural and optical retention over two months under the protective scheme (86% of its initial structural stability, as quantified from integrated XRD peak intensities, and 68% of its initial optical absorbance, determined from the integrated UV–Vis spectra), whereas the uncoated films showed significant degradation. Although MAPI was selected as a model system due to its well-known environmental instability, the proposed encapsulation material and methodology are not limited to this architecture and can, in principle, be applied to various photovoltaic technologies. These findings demonstrate the strong potential of the polylactic-based resin as an effective environmental barrier for solar cells and provide a solid foundation for future full-device integration studies. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

19 pages, 2415 KB  
Article
Thermal–Electrical Fusion for Real-Time Condition Monitoring of IGBT Modules in Transportation Systems
by Man Cui, Yun Liu, Zhen Hu and Tao Shi
Micromachines 2026, 17(2), 154; https://doi.org/10.3390/mi17020154 - 25 Jan 2026
Viewed by 263
Abstract
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework [...] Read more.
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework that innovatively synergizes micro-scale spatial thermal analysis with microsecond electrical dynamics inversion. The method requires only non-invasive temperature measurements on the module baseplate and utilizes standard electrical signals (load current, duty cycle, switching frequency, DC-link voltage) readily available from the converter’s controller, enabling simultaneous diagnosis without dedicated voltage or high-bandwidth current sensors. First, a non-invasive assessment of solder layer fatigue is achieved by correlating the normalized thermal gradient (TP) on the baseplate with the underlying thermal impedance (ZJC). Second, for bond wire aging, a cost-effective inversion algorithm estimates the on-state voltage (Vce,on) by calculating the total power loss from temperature, isolating the conduction loss (Pcond) with the aid of a Foster-model-based junction temperature (TJ) estimate, and finally computing Vce,on at a unique current inflection point (IC,inf) to nullify TJ dependency. Third, the health states from both failure modes are fused for comprehensive condition evaluation. Experimental validation confirms the method’s accuracy in tracking both degradation modes. This work provides a practical and economical solution for online IGBT condition monitoring, enhancing the predictive maintenance and operational safety of transportation electrification systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
Show Figures

Figure 1

13 pages, 12303 KB  
Article
Reversed Fabrication Approach for Exfoliated Hybrid Systems Enabling Magnetoresistance and Current-Voltage Characterisation
by Piotr Kałuziak, Jan Raczyński, Semir El-Ahmar, Katarzyna Kwiecień, Marta Przychodnia, Wiktoria Reddig, Agnieszka Żebrowska and Wojciech Koczorowski
Physchem 2026, 6(1), 7; https://doi.org/10.3390/physchem6010007 - 24 Jan 2026
Viewed by 195
Abstract
Studies on two-dimensional materials (such as topological insulators or transition metal dichalcogenides) have shown that they exhibit unique properties, including high charge carrier mobility and tunable bandgaps, making them attractive for next-generation electronics. Some of these materials (e.g., HfSe2) also offer [...] Read more.
Studies on two-dimensional materials (such as topological insulators or transition metal dichalcogenides) have shown that they exhibit unique properties, including high charge carrier mobility and tunable bandgaps, making them attractive for next-generation electronics. Some of these materials (e.g., HfSe2) also offer thickness-dependent bandgap engineering. However, the standard device fabrication techniques often introduce processing contamination, which reduces device efficiency. In this paper, we present a modified mechanical exfoliation technique, the Reversed Structuring Procedure, which enables the fabrication of hybrid systems based on 2D microflakes with improved interface cleanness and contact quality. Hall effect measurements on Bi2Se3 and HfSe2 devices confirm enhanced electrical performance, including the decrease in the measured total resistance. We also introduce a novel Star-Shaped Electrode Structure, which allows for accurate Hall measurements and the exploration of geometric magnetoresistance effects within the same device. This dual-purpose geometry enhances the flexibility and demonstrates broader functionality of the proposed fabrication method. The presented results validate the Reversed Structuring Procedure method as a robust and versatile approach for laboratory test-platforms for electronic applications of new types of layered materials whose fabrication technology is not yet compatible with CMOS. Full article
(This article belongs to the Section Surface Science)
Show Figures

Graphical abstract

32 pages, 2701 KB  
Review
A Comprehensive Review of Application Techniques for Thermal-Protective Elastomeric Ablative Coatings in Solid Rocket Motor Combustion Chambers
by Mohammed Meiirbekov, Marat Nurguzhin, Marat Ismailov, Marat Janikeyev, Zhannat Kadyrov, Myrzakhan Omarbayev, Assem Kuandyk, Nurmakhan Yesbolov, Meiir Nurzhanov, Sunkar Orazbek and Mukhammed Sadykov
Technologies 2026, 14(2), 77; https://doi.org/10.3390/technologies14020077 - 23 Jan 2026
Viewed by 492
Abstract
Elastomeric ablative coatings are essential for protecting solid rocket motor (SRM) combustion chambers from extreme thermal and erosive environments, and their performance is governed by both material composition and processing strategy. This review examines the main elastomer systems used for SRM insulation, including [...] Read more.
Elastomeric ablative coatings are essential for protecting solid rocket motor (SRM) combustion chambers from extreme thermal and erosive environments, and their performance is governed by both material composition and processing strategy. This review examines the main elastomer systems used for SRM insulation, including ethylene propylene diene monomer (EPDM), nitrile butadiene rubber (NBR), hydroxyl-terminated polybutadiene (HTPB), polyurethane (PU), silicone-based compounds, and related hybrids, and discusses how their rheological behavior, cure kinetics, thermal stability, and ablation mechanisms affect manufacturability and in-service performance. A comprehensive assessment of coating technologies is presented, covering casting, molding, centrifugal forming, spraying, automated deposition, and emerging additive-manufacturing approaches for complex geometries. Emphasis is placed on processing parameters that control adhesion to metallic substrates, layer uniformity, defect formation, and thermomechanical integrity under high-heat-flux exposure. The review integrates current knowledge on how material choice, surface preparation, and application sequence collectively determine insulation efficiency under operational SRM conditions. Practical aspects such as scalability, compatibility with complex chamber architectures, and integration with quality-control tools are highlighted. By comparing the capabilities and limitations of different materials and technologies, the study identifies key development trends and outlines remaining challenges for improving the durability, structural robustness, and ablation resistance of next-generation elastomeric coatings for SRMs. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

32 pages, 3155 KB  
Article
Experimentally Calibrated Thermal and Economic Optimization of Wall Insulation Systems for Residential Buildings in Cold Regions of Northwest China
by Xue Bai, Dawei Yang and Gehong Zhang
Buildings 2026, 16(3), 470; https://doi.org/10.3390/buildings16030470 - 23 Jan 2026
Viewed by 115
Abstract
Improving the thermal performance of building envelopes is an effective approach for reducing energy consumption and carbon emissions in cold and heating-dominated regions. This study presents an experimentally calibrated thermal–economic optimization of external wall insulation systems for residential buildings in Northwest China, using [...] Read more.
Improving the thermal performance of building envelopes is an effective approach for reducing energy consumption and carbon emissions in cold and heating-dominated regions. This study presents an experimentally calibrated thermal–economic optimization of external wall insulation systems for residential buildings in Northwest China, using Xi’an as a representative cold–dry continental climate. A guarded hot-box apparatus was employed to measure the steady-state thermal transmittance (U-value) of multilayer wall assemblies incorporating expanded polystyrene (EPS), extruded polystyrene (XPS), and rock wool at different insulation thicknesses. The measured U-values were integrated into a dynamic building energy simulation model (DeST-h), and the simulated energy demand was subsequently evaluated through life-cycle cost (LCC) analysis to identify cost-optimal insulation configurations. The results indicate a nonlinear reduction in heating energy demand with increasing insulation thickness, with diminishing marginal returns beyond approximately 50 mm. Among the investigated materials, XPS exhibits the most favorable thermal–economic performance. For the climatic and economic conditions of Xi’an, a 50 mm XPS insulation layer minimizes total life-cycle cost while reducing annual building energy consumption by approximately 23–24% compared with the uninsulated reference case. This experimentally calibrated framework provides practical and policy-relevant guidance for insulation design and retrofit strategies in cold and dry regions. Full article
(This article belongs to the Special Issue Advanced Characterization and Evaluation of Construction Materials)
Show Figures

Figure 1

16 pages, 13695 KB  
Article
InGaN Laser Diode with Spin-on-Glass Isolation Fabricated by Planarization and Etch-Back Process
by Katarzyna Piotrowska-Wolińska, Szymon Grzanka, Łucja Marona, Krzysztof Gibasiewicz, Anna Kafar and Piotr Perlin
Micromachines 2026, 17(2), 142; https://doi.org/10.3390/mi17020142 - 23 Jan 2026
Viewed by 198
Abstract
We report on the fabrication and characterization of InGaN-based ridge-waveguide laser diodes employing spin-on-glass (SOG) as the insulation and planarization layer. In contrast to conventional silicon dioxide (SiO2) isolation deposited by PECVD, the SOG approach provides improved surface planarity, reduced processing [...] Read more.
We report on the fabrication and characterization of InGaN-based ridge-waveguide laser diodes employing spin-on-glass (SOG) as the insulation and planarization layer. In contrast to conventional silicon dioxide (SiO2) isolation deposited by PECVD, the SOG approach provides improved surface planarity, reduced processing complexity, and lower fabrication cost. The laser structures were grown on GaN substrates by MOCVD, with the active region consisting of In0.11Ga0.89N quantum wells. Following ridge formation and SOG deposition, an etch-back process was used to form the electrical contacts. We have demonstrated the formation of high-quality insulating surfaces with strong adhesion to the ridge sidewalls. When using a Ni protective layer, the fabricated devices exhibited favorable electrical and optical characteristics and achieved stable laser operation under both pulsed and continuous-wave conditions. These results indicate that the SOG-based insulation process represents a promising alternative for the scalable and cost-effective fabrication of InGaN laser diodes targeting advanced photonic applications. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

17 pages, 3132 KB  
Article
Experimental Thermal Study of the Materials Used in the Construction of Combustion Chamber of Firewood Stoves in Southern Mexico and Central America
by Edwin N. Hernandez-Estrada, José B. Robles-Ocampo, Perla Y. Sevilla-Camacho, Marco Antonio Zúñiga Reyes, Roberto Adrian González Domínguez and Juvenal Rodriguez-Resendiz
Thermo 2026, 6(1), 8; https://doi.org/10.3390/thermo6010008 - 21 Jan 2026
Viewed by 236
Abstract
A firewood stove’s combustion chamber can withstand temperatures of 1500 °C. To prevent the deterioration of a firewood stove due to excessive heat, it is necessary to use thermal insulation materials that stop heat transfer to the walls. These materials must be economical [...] Read more.
A firewood stove’s combustion chamber can withstand temperatures of 1500 °C. To prevent the deterioration of a firewood stove due to excessive heat, it is necessary to use thermal insulation materials that stop heat transfer to the walls. These materials must be economical and durable. This work examines the materials used in the construction of combustion chambers of firewood stoves in southern Mexico and Central America. This field study collects information and samples of materials used in the manufacture of firewood stoves. Heat transfer experiments are conducted, and the thermal properties of each material are analyzed. As a result, methodology and information is provided for the manufacture of future plancha-type firewood stoves used in the study area, such as pine wood (pinus chiapensis) which is mainly used as casing for firewood stoves in coniferous forest areas; in addition, the use of wood ash as thermal insulation material is proposed since it does not present direct costs and has a thermal conductivity between 0.10 and 0.20 W/m°C and a melting point greater than 1500 °C. The next layer proposed is hollow brick, a high-temperature-resistant material that can be used as support due to its mechanical strength and low thermal conductivity of 0.6 W/m°C. Finally, the use of calcium hydroxide as a coating material is proposed, applied in the form of a paste or paint to detail the imperfections of the combustion chamber construction as it resists temperatures above 1000 °C. Full article
Show Figures

Figure 1

20 pages, 4640 KB  
Article
Cooperative Effect of Ammonium Polyphosphate and Talcum for Enhancing Fire-Proofing Performance of Silicone Rubber-Based Insulators via Formation of a HIGH-Strength Barrier Layer
by Dong Zhao, Yihan Jiang, Yong Fang, Tingwei Wang and Yucai Shen
Polymers 2026, 18(2), 283; https://doi.org/10.3390/polym18020283 - 20 Jan 2026
Viewed by 1345
Abstract
Enhancing the flame retardancy of polymeric materials by adding only eco-friendly ammonium polyphosphate (APP) while simultaneously maintaining high-temperature resistance has become a challenge. Talcum has been introduced as a cooperative agent into the silicone rubber/APP system to investigate the effect of talcum on [...] Read more.
Enhancing the flame retardancy of polymeric materials by adding only eco-friendly ammonium polyphosphate (APP) while simultaneously maintaining high-temperature resistance has become a challenge. Talcum has been introduced as a cooperative agent into the silicone rubber/APP system to investigate the effect of talcum on flame retardancy, thermal stability, and high-temperature resistance. The machining process induces the orientation of talcum in the system. The ceramifiable silicone rubber blends containing oriented talcum (e.g., sample SA6T4) exhibited superb flame retardancy, including an LOI of 29.4%, a UL-94 rating of V-0, and a peak heat release rate (PHRR) of 250.2 kW·m−2. More importantly, the blends present excellent thermal stability and high-temperature resistance, characterized by outstanding self-supporting properties and dimensional stability. Based on the structural analysis of the blends and their residues, the made of action for the improved flame retardancy may be attributed to the formation of a compact barrier layer. This layer is formed by oriented talcum platelets combined with phosphoric acid, from the thermal decomposition of APP, promoting crosslinking, thereby achieving a good inhibition barrier to inhibit heat feedback from the condensation zone. The excellent thermal stability and high-temperature resistance of the ceramifiable silicone rubber blends may be ascribed to a cooperative effect between APP and talcum at high temperatures, which facilitates the formation of ceramic structures. The novel ceramifiable silicone rubber composite has potential applications as flame-retardant sealing components for rail transit equipment and encapsulation materials for new energy battery modules. Full article
(This article belongs to the Special Issue Challenges and Innovations in Fire Safety Polymeric Materials)
Show Figures

Graphical abstract

30 pages, 40775 KB  
Article
Dynamic Hygrothermal Analysis for Retrofitting Opaque Envelopes in Humid Climates: From Simulations to Guidelines
by Antonio Cristaudo, Francesco Nicoletti, Cristina Carpino and Roberto Bruno
Buildings 2026, 16(2), 419; https://doi.org/10.3390/buildings16020419 - 19 Jan 2026
Viewed by 162
Abstract
This paper introduces the dynamic hygrothermal performances of existing walls in humid climates using the EN ISO 15026 procedure. Water content, mould formation and freezing risk were investigated considering rock wool (RW) and expanded polystyrene (EPS) allocated at different points of two typologies [...] Read more.
This paper introduces the dynamic hygrothermal performances of existing walls in humid climates using the EN ISO 15026 procedure. Water content, mould formation and freezing risk were investigated considering rock wool (RW) and expanded polystyrene (EPS) allocated at different points of two typologies of existing walls requiring renovation. Results show that RW is recommended for insulation on the external side, whereas EPS is more suitable for the internal side. A freezing risk occurs in massive walls insulated internally with RW in severe winter climates. Mould formation appears in the initial phases on the renovated side, driven by the built-in humidity of the new layers. Wall thermal transmittance shows large fluctuations, especially in lightweight structures renovated with EPS, reaching an increase of over 22% at the beginning of the heating period, driven by EPS water content peaks of 1.9 kg/m2 in cold climates when installed on the external side, achieved in a stabilized regime and independently from the wall’s technical solution. Outcomes confirm transient hygrothermal analysis as the recommended approach to evaluate the component behaviour over a long-term projection, facilitating sizing in the design phase and ensuring compliance with regulations for retrofitted elements. Full article
Show Figures

Figure 1

17 pages, 2267 KB  
Article
Research on Microwave Non-Destructive Testing Method for Defects in 10 kV Distribution Cable Intermediate Joints
by Wangjun Deng, Li Cheng, Xiying Wang, Hao Luo and Tengyi Zhang
Energies 2026, 19(2), 499; https://doi.org/10.3390/en19020499 - 19 Jan 2026
Viewed by 130
Abstract
This study aims to propose a defect diagnosis method for distribution cable intermediate joints based on microwave reflection. The research focuses on 10 kV cold-shrink-type distribution cable intermediate joints, employing both simulation analysis and experimental methods. Firstly, a microwave defect detection model for [...] Read more.
This study aims to propose a defect diagnosis method for distribution cable intermediate joints based on microwave reflection. The research focuses on 10 kV cold-shrink-type distribution cable intermediate joints, employing both simulation analysis and experimental methods. Firstly, a microwave defect detection model for intermediate joints is derived. CST simulations are conducted to analyze the variation of the reflection coefficient (S11) under different detection frequencies, defect depths, and defect types. Next, flat plate and real prototype samples of intermediate joints with defects such as insulation scratches, conductive impurities, and moisture ingress are fabricated. A microwave reflection detection platform is established to test the artificially defective samples. Reflection voltage signals corresponding to different defects are obtained. The concept of the relative value of the reflection voltage difference is then introduced, resulting in significant changes in the detection results, which effectively indicate the presence of different defects. Finally, the reflection voltage signals under different defect sizes, silicone rubber thicknesses, detection distances, and detection angles are studied. The results show that this method is capable of detecting defects as small as 2 mm in width and 0.2 mm in depth. The silicone rubber thickness, detection distance, and detection angle significantly affect the detection results. This demonstrates that microwave reflection signals can effectively identify the type and severity of defects within cable intermediate joints, and the method can be extended to detect internal defects in other layered composite insulation structures. Full article
(This article belongs to the Special Issue Cutting-Edge Insights into Electrical Equipment Lifespan Assessment)
Show Figures

Figure 1

15 pages, 2150 KB  
Article
Liquid Metal Particles–Graphene Core–Shell Structure Enabled Hydrogel-Based Triboelectric Nanogenerators
by Sangkeun Oh, Yoonsu Lee, Jungin Yang, Yejin Lee, Seoyeon Won, Sang Sub Han, Jung Han Kim and Taehwan Lim
Gels 2026, 12(1), 86; https://doi.org/10.3390/gels12010086 - 19 Jan 2026
Viewed by 234
Abstract
The development of flexible and self-powered electronic systems requires triboelectric materials that combine high charge retention, mechanical compliance, and stable dielectric properties. Here, we report a redox reaction approach to prepare liquid metal particle-reduced graphene oxide (LMP@rGO) core–shell structures and introduce into a [...] Read more.
The development of flexible and self-powered electronic systems requires triboelectric materials that combine high charge retention, mechanical compliance, and stable dielectric properties. Here, we report a redox reaction approach to prepare liquid metal particle-reduced graphene oxide (LMP@rGO) core–shell structures and introduce into a poly(acrylic acid) (PAA) hydrogel to create a high-performance triboelectric layer. The spontaneous interfacial reaction between gallium oxide of LMP and graphene oxide produces a conformal rGO shell while simultaneously removing the native insulating oxide layer onto the LMP surface, resulting in enhanced colloidal stability and a controllable semiconductive bandgap of 2.7 (0.01 wt%), 2.9 (0.005 wt%) and 3.2 eV (0.001 wt%). Increasing the GO content promotes more complete core–shell formation, leading to higher zeta potentials, stronger interfacial polarization, and higher electrical performance. After embedding in PAA, the LMP@rGO structures form hydrogen-bonding networks with the hydrogel nature, improving both dielectric constant and charge retention while notably preserving soft mechanical compliance. The resulting LMP@rGO/PAA hydrogels show enhanced triboelectric output, with the 2.0 wt/vol% composite generating sufficient power to illuminate more than half of 504 series-connected LEDs. All the results demonstrate the potential of LMP@rGO hydrogel composites as promising triboelectric layer materials for next-generation wearable and self-powered electronic systems. Full article
Show Figures

Figure 1

Back to TopTop