Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (185)

Search Parameters:
Keywords = insulated greenhouse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 9378 KiB  
Article
Contribution of Glazed Additions as Passive Elements of the Reduction in Energy Consumption in Detached Houses
by Hristina Krstić, Dušan Ranđelović, Vladan Jovanović, Marko Mančić and Branislava Stoiljković
Buildings 2025, 15(15), 2715; https://doi.org/10.3390/buildings15152715 - 1 Aug 2025
Viewed by 125
Abstract
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the [...] Read more.
If implemented properly in architectural design, passive measures can contribute to achieving the desired comfort in a building while reducing its energy consumption. Glazed additions in the form of sunspaces or greenhouses can influence the improvement of building energy efficiency and, at the same time, create appealing and pleasant building extensions. Through energy simulations performed using EnergyPlus software, this study aims to analyze the potential contribution of glazed additions to a detached house to reducing energy consumption and creating additional space for living. Research was performed as a case study at the following locations: Niš (Serbia), Berlin (Germany), and Tromsø (Norway). For the purposes of this study, five models (M0–M4) were developed and subjected to analysis across two different scenarios. The results of the conducted research showed that the integration of glazed elements can significantly contribute to energy savings: maximum total annual savings regarding heating and cooling go from 21% for Tromsø, up to 32% for Berlin and 40% for Niš, depending on whether the building to which the glazed element(s) is/are attached is insulated or not and the number and the position of glazed elements. Although glazed additions can create a pleasant microclimate around the house, the overheating observed in the study indicates that proper ventilation and shading are mandatory, especially in more southern locations. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

25 pages, 8622 KiB  
Article
Low-Carbon Insulating Geopolymer Binders: Thermal Properties
by Agnieszka Przybek, Jakub Piątkowski, Paulina Romańska, Michał Łach and Adam Masłoń
Sustainability 2025, 17(15), 6898; https://doi.org/10.3390/su17156898 - 29 Jul 2025
Viewed by 207
Abstract
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating [...] Read more.
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating geopolymer binders made from fly ash with diatomite, chalcedonite, and wood wool aiming to assess their potential for use in thermal insulation systems in energy-efficient buildings. The stability of the foamed geopolymer structure is also assessed. Measurements of thermal conductivity, specific heat, microstructure, density, and compressive strength are presented. The findings indicate that the selected geopolymer formulations exhibit low thermal conductivity, high heat capacity and low density, making them competitive with conventional insulation materials—mainly load-bearing ones such as aerated concrete and wood wool insulation boards. Additionally, incorporating waste-derived materials reduces the production carbon footprint. The best results are represented by the composite incorporating all three additives (diatomite, chalcedonite, and wood wool), which achieved the lowest thermal conductivity (0.10154 W/m·K), relatively low density (415 kg/m3), and high specific heat (1.529 kJ/kg·K). Full article
Show Figures

Figure 1

24 pages, 3944 KiB  
Article
Effect of Rice Husk Addition on the Hygrothermal, Mechanical, and Acoustic Properties of Lightened Adobe Bricks
by Grégoire Banaba, Sébastien Murer, Céline Rousse, Fabien Beaumont, Christophe Bliard, Éric Chatelet and Guillaume Polidori
Materials 2025, 18(14), 3364; https://doi.org/10.3390/ma18143364 - 17 Jul 2025
Viewed by 292
Abstract
In the context of efforts to reduce greenhouse gas emissions in the building sector, the reintegration of traditional earthen construction into modern architectural and renovation practices offers a sustainable alternative. To address the mechanical and water-resistance limitations of adobe bricks, the use of [...] Read more.
In the context of efforts to reduce greenhouse gas emissions in the building sector, the reintegration of traditional earthen construction into modern architectural and renovation practices offers a sustainable alternative. To address the mechanical and water-resistance limitations of adobe bricks, the use of agricultural waste—such as rice husk—is increasingly being explored. This experimental study evaluates the effects of rice husk addition on the mechanical, hygrothermal, and acoustic properties of adobe bricks. Two soil types—one siliceous and one calcareous—were combined with 1, 2, and 3 wt% rice husk to produce bio-based earthen bricks. The influence of rice husk was found to depend strongly on the soils’ mineralogical and granulometric characteristics. The most significant improvements were in hygrothermal performance: at 3 wt%, thermal conductivity was reduced by up to 35% for calcareous soil and 20% for siliceous soil, indicating enhanced insulation. Specific heat capacity also increased with husk content, suggesting better thermal inertia. The moisture buffering capacity, already high in raw soils, is further improved due to increased surface porosity. Mechanically, rice husk incorporation had mixed effects: a modest increase in compressive strength was observed in siliceous soil at 1 wt%, while calcareous soil showed slight improvement at 3 wt%. Acoustic performance remained low across all samples, with minimal gains attributed to limited macro-porosity. These findings highlight the importance of soil composition in optimizing rice husk dosage and suggest promising potential for rice husk-stabilized adobe bricks, especially in thermally demanding environments. Full article
Show Figures

Figure 1

29 pages, 13314 KiB  
Article
Development of Unfired Clay Bricks with Alumina Waste from Liquid Nitrogen Production: A Sustainable Alternative for Construction Materials
by Noppadol Sangiamsak, Nopanom Kaewhanam, Meesakthana Puapitthayathorn, Seksan Numsong, Kowit Suwannahong, Sukanya Hongthong, Torpong Kreetachat, Sompop Sanongraj and Surachai Wongcharee
Sustainability 2025, 17(14), 6424; https://doi.org/10.3390/su17146424 - 14 Jul 2025
Viewed by 407
Abstract
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and [...] Read more.
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and aggravate environmental damage. By removing the need for high-temperature firing and allowing for the valorization of industrial byproducts including alumina waste and lateritic soil, unfired clay bricks offer a reasonable low-carbon alternative. High silica and alumina contents define the alumina waste, which shows pozzolanic reactivity, thus improving the physicomechanical performance of the bricks. With alumina waste substituting 0–8.57% of the cement content, seven different formulations showed improvements in compressive strength, reduced water absorption, and optimal thermal conductivity. Especially, the mechanical performance was much enhanced with alumina waste inclusion up to 30%, without sacrificing thermal insulation capacity or moisture resistance. Further supporting the environmental and financial sustainability of the suggested brick compositions is the economic viability of using industrial waste and regionally derived soils. A comparative analysis of the conventional fired bricks shows that the unfired substitutes have a much lower environmental impact and show better mechanical properties, including greater compressive strength and modulus of rupture. These results support the more general goals of circular economy systems and low-carbon urban development by highlighting the feasibility of including alumina waste and lateritic soil into sustainable building materials. Using such waste-derived inputs in building fits world initiatives to lower resource consumption, lower greenhouse gas emissions, and build strong infrastructure systems. Full article
(This article belongs to the Special Issue Solid Waste Management and Sustainable Environmental Remediation)
Show Figures

Figure 1

16 pages, 8021 KiB  
Article
From First Frost to Last Snow: Tracking the Microclimate Evolution of Greenhouses Across North China’s Winter Spectrum
by Hongrun Liu, He Zhao, Yanan Tian, Song Liu, Wei Li, Yanfang Wang, Dan Sun, Tianqun Wang, Ning Zhu, Yuan Tao and Xihong Lei
Agronomy 2025, 15(7), 1663; https://doi.org/10.3390/agronomy15071663 - 9 Jul 2025
Viewed by 472
Abstract
Global climate change has intensified the challenges of low-temperature, low-light, and high-humidity microclimates in North China’s greenhouses during winter, exposing the limitations of traditional controlled-environment agriculture (CEA) facilities. This study monitored air temperature, relative humidity, and light intensity in three greenhouse types—an externally [...] Read more.
Global climate change has intensified the challenges of low-temperature, low-light, and high-humidity microclimates in North China’s greenhouses during winter, exposing the limitations of traditional controlled-environment agriculture (CEA) facilities. This study monitored air temperature, relative humidity, and light intensity in three greenhouse types—an externally insulated plastic greenhouse, soft-shell solar greenhouse, and brick-walled solar greenhouse—across three overwintering periods (pre-, mid-, post-) using high-precision sensors (monitoring period is from 1 October 2024 to 31 March 2025). A Comprehensive Evaluation Index (CEI) based on the entropy method was developed, integrating seven indicators (daily average temperature, temperature range, hours below 5 °C, average humidity, hours above 80% humidity, average light intensity, and light utilization efficiency) to systematically evaluate greenhouse microclimate regulation performance. Results showed that the brick-walled solar greenhouse exhibited superior thermal insulation, with nearly zero hours below 5 °C during mid-overwintering, while the soft-shell solar greenhouse achieved the highest light utilization efficiency (75.1–79.6%). The externally insulated plastic greenhouse exhibited the highest relative humidity (>80% for 13–19 h/day) but a poor thermal insulation performance. The CEI ranked the brick-walled solar greenhouse (0.86) and the soft-shell solar greenhouse (0.84) significantly higher than the externally insulated plastic greenhouse (0.39), with the relative humidity significantly negatively correlated with light indicators (P < 0.05), and the temperature and light indicators strongly correlated with the CEI (P < 0.01). Structural design and material innovation are critical for climate adaptation. Brick-walled and soft-shell solar greenhouses balance thermal and light performance, while the externally insulated plastic greenhouse faces structural limitations. The findings provide a scientific basis for greenhouse optimization and regional layout planning. Full article
Show Figures

Figure 1

32 pages, 2059 KiB  
Review
A State-of-the-Art Review on the Potential of Waste Cooking Oil as a Sustainable Insulating Liquid for Green Transformers
by Samson Okikiola Oparanti, Esther Ogwa Obebe, Issouf Fofana and Reza Jafari
Appl. Sci. 2025, 15(14), 7631; https://doi.org/10.3390/app15147631 - 8 Jul 2025
Viewed by 485
Abstract
Petroleum-based insulating liquids have traditionally been used in the electrical industry for cooling and insulation. However, their environmental drawbacks, such as non-biodegradability and ecological risks, have led to increasing regulatory restrictions. As a sustainable alternative, vegetable-based insulating liquids have gained attention due to [...] Read more.
Petroleum-based insulating liquids have traditionally been used in the electrical industry for cooling and insulation. However, their environmental drawbacks, such as non-biodegradability and ecological risks, have led to increasing regulatory restrictions. As a sustainable alternative, vegetable-based insulating liquids have gained attention due to their biodegradability, non-toxicity to aquatic and terrestrial ecosystems, and lower carbon emissions. Adopting vegetable-based insulating liquids also aligns with United Nations Sustainable Development Goals (SDGs) 7 and 13, which focus on cleaner energy sources and reducing carbon emissions. Despite these benefits, most commercially available vegetable-based insulating liquids are derived from edible seed oils, raising concerns about food security and the environmental footprint of large-scale agricultural production, which contributes to greenhouse gas emissions. In recent years, waste cooking oils (WCOs) have emerged as a promising resource for industrial applications through waste-to-value conversion processes. However, their potential as transformer insulating liquids remains largely unexplored due to limited research and available data. This review explores the feasibility of utilizing waste cooking oils as green transformer insulating liquids. It examines the conversion and purification processes required to enhance their suitability for insulation applications, evaluates their dielectric and thermal performance, and assesses their potential implementation in transformers based on existing literature. The objective is to provide a comprehensive assessment of waste cooking oil as an alternative insulating liquid, highlight key challenges associated with its adoption, and outline future research directions to optimize its properties for high-voltage transformer applications. Full article
(This article belongs to the Special Issue Novel Advances in High Voltage Insulation)
Show Figures

Figure 1

22 pages, 12499 KiB  
Article
Optimization of Structural Configuration and Ridge Height for Large-Span Insulated Plastic Greenhouse Based on Finite Element Analysis
by Xiaoxing Dong, Fengzhi Piao, Nanshan Du, Han Dong, Tao Zhang, Yanping Qin, Yaling Li and Zhixin Guo
Agriculture 2025, 15(13), 1333; https://doi.org/10.3390/agriculture15131333 - 21 Jun 2025
Viewed by 310
Abstract
The large-span insulated plastic greenhouse is a highly promising horticultural facility. The design parameters and configuration of structural components significantly impact their safety and load-bearing performance. However, current research in this field remains insufficient. In this study, the deformation, stress distribution, and stability [...] Read more.
The large-span insulated plastic greenhouse is a highly promising horticultural facility. The design parameters and configuration of structural components significantly impact their safety and load-bearing performance. However, current research in this field remains insufficient. In this study, the deformation, stress distribution, and stability of large-span insulated plastic greenhouses with different structural configurations were investigated using the finite element method. Subsequently, the ultimate bearing capacity of large-span insulated plastic greenhouses with varying ridge heights was examined. The research indicated that the greenhouse with a plane truss and double-layer tie rod exhibited the smallest deformation and stress in its members, as well as the highest ultimate load-bearing capacity. The analysis revealed that the installation of double-layer tie rods not only enhanced the collaborative effect of arch frames within the structural calculation unit but also reduced displacement along the Z direction, effectively mitigated the P- effect, reduced out-of-plane bending stress, and improved the ultimate load-bearing capacity. Ridge height affected the load-bearing capacity of the greenhouse structure. However, a higher ridge height did not necessarily result in a stronger ultimate load-bearing capacity. The greenhouse structure with a ridge height of 5 m demonstrated the maximum ultimate load-bearing capacity, capable of bearing 1.98 times the initial load. This study provides theoretical support for the configuration of structural components of large-span insulated plastic greenhouses and offers a scientific basis for the optimal design of ridge height. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

23 pages, 1821 KiB  
Systematic Review
Livestock Buildings in a Changing World: Building Sustainability Challenges and Landscape Integration Management
by Daniela Isola, Stefano Bigiotti and Alvaro Marucci
Sustainability 2025, 17(12), 5644; https://doi.org/10.3390/su17125644 - 19 Jun 2025
Cited by 1 | Viewed by 441
Abstract
The awareness of global warming has boosted research on methods to reduce energy consumption and greenhouse gas (GHG) emissions. Livestock buildings, although essential for food production, represent a sustainability challenge due to their high maintenance energy costs, GHG emissions, and impact on the [...] Read more.
The awareness of global warming has boosted research on methods to reduce energy consumption and greenhouse gas (GHG) emissions. Livestock buildings, although essential for food production, represent a sustainability challenge due to their high maintenance energy costs, GHG emissions, and impact on the environment and rural landscapes. Since the environment, cultural heritage, and community identity deserve protection, research trends and current knowledge on livestock buildings, building sustainability, energy efficiency strategies, and landscape management were investigated using the Web of Science and Scopus search tools (2005–2025). Research on these topics was found to be uneven, with limited focus on livestock buildings compared to food production and animal welfare, and significant interest in eco-sustainable building materials. A total of 96 articles were selected after evaluating over 5400 records. The analysis revealed a lack of universally accepted definitions for building design strategies and their rare application to livestock facilities, where passive solutions and insulation prevailed. The application of renewable energy was rare and limited to rural buildings, as was the application of sustainable building materials to livestock, agriculture, and vernacular buildings. Conversely, increased attention was paid to the definition and classification of vernacular architecture features aimed at enhancing existing buildings and mitigating or facilitating the landscape integration of those that diverge most from them. Although not exhaustive, this review identified some knowledge gaps. More efforts are needed to reduce environmental impacts and meet the milestones set by international agreements. Research on building materials could benefit from collaboration with experts in cultural heritage conservation because of their command of traditional materials, durability-enhancing methods, and biodeterioration. Full article
Show Figures

Graphical abstract

20 pages, 2051 KiB  
Review
Unfired Bricks from Wastes: A Review of Stabiliser Technologies, Performance Metrics, and Circular Economy Pathways
by Yuxin (Justin) Wang and Hossam Abuel-Naga
Buildings 2025, 15(11), 1861; https://doi.org/10.3390/buildings15111861 - 28 May 2025
Cited by 1 | Viewed by 693
Abstract
Unfired bricks offer a sustainable alternative to traditional fired bricks by enabling the large-scale reuse of industrial, construction, and municipal wastes while significantly reducing energy consumption and greenhouse gas emissions. This review contributes to eliminating knowledge fragmentation by systematically organising stabiliser technologies, performance [...] Read more.
Unfired bricks offer a sustainable alternative to traditional fired bricks by enabling the large-scale reuse of industrial, construction, and municipal wastes while significantly reducing energy consumption and greenhouse gas emissions. This review contributes to eliminating knowledge fragmentation by systematically organising stabiliser technologies, performance metrics, and sustainability indicators across a wide variety of unfired brick systems. It thus provides a coherent reference framework to support further development and industrial translation. Emphasis is placed on the role of stabilisers—including cement, lime, geopolymers, and microbial or bio-based stabilisers—in improving mechanical strength, moisture resistance, and durability. Performance data are analysed in relation to compressive strength, water absorption, drying shrinkage, thermal conductivity, and resistance to freeze–thaw and wet–dry cycles. The findings indicate that properly stabilised unfired bricks can achieve compressive strengths above 20 MPa and water absorption rates below 10%, with notable improvements in insulation and acoustic properties. Additionally, life-cycle comparisons reveal up to 90% reductions in CO2 emissions and energy use relative to fired clay bricks. Despite technical and environmental advantages, broader adoption remains limited due to standardisation gaps and market unfamiliarity. The paper concludes by highlighting the importance of hybrid stabiliser systems, targeted certification frameworks, and waste valorisation policies to support the transition toward low-carbon, resource-efficient construction practices. Full article
(This article belongs to the Special Issue Recycling of Waste in Material Science and Building Engineering)
Show Figures

Figure 1

26 pages, 2212 KiB  
Article
A Sustainability-Oriented Framework for Life Cycle Environmental Cost Accounting and Carbon Financial Optimization in Prefabricated Steel Structures
by Jingjing Liu, Hanchao Liu and Yun Liu
Sustainability 2025, 17(10), 4296; https://doi.org/10.3390/su17104296 - 9 May 2025
Viewed by 691
Abstract
The building sector significantly contributes to global resource depletion and greenhouse gas emissions, necessitating integrated approaches to evaluate both environmental and economic performance. This study developed a sustainability-oriented assessment framework—applied in a Chinese context—that integrates life cycle assessment (LCA), life cycle costing (LCC), [...] Read more.
The building sector significantly contributes to global resource depletion and greenhouse gas emissions, necessitating integrated approaches to evaluate both environmental and economic performance. This study developed a sustainability-oriented assessment framework—applied in a Chinese context—that integrates life cycle assessment (LCA), life cycle costing (LCC), and carbon financial optimization to evaluate the life cycle performance of prefabricated steel buildings. Using publicly available databases (CEADs, Ecoinvent, and the Chinese Life Cycle Database), the framework quantified cradle-to-grave environmental impacts across raw material extraction, prefabrication, transport, on-site assembly, operation, and end-of-life stages. Emissions were monetized using standardized emission factors and official cost coefficients, enabling environmental costs to be expressed in financial terms. A dynamic financial simulation module was incorporated to assess the effects of carbon price fluctuations and quota allocation schemes. Sensitivity analyses were performed to examine the influence of key variables such as retrofit investment costs, emission reduction efficiency, and carbon policy scenarios on financial returns. The results show that material production and operational energy use dominate life cycle carbon emissions, jointly contributing more than 90% of the total impacts. Moderate decarbonization investments—such as HVAC upgrades and improved insulation—can achieve positive net economic returns under baseline carbon pricing. This integrated, data-driven framework serves as a practical decision-support tool for policymakers and industry stakeholders. It is adaptable across different regions and material systems, supporting the global transition toward low-carbon and financially viable construction practices. Full article
Show Figures

Figure 1

19 pages, 6468 KiB  
Article
Research on the Sustainable Reuse of Tire Textile Waste for the Production of Thermal Insulating Mats
by Giedrius Balčiūnas, Sigitas Vėjelis, Saulius Vaitkus, Jurga Šeputytė-Jucikė, Arūnas Kremensas and Agnė Kairytė
Sustainability 2025, 17(10), 4288; https://doi.org/10.3390/su17104288 - 8 May 2025
Viewed by 552
Abstract
Waste tire textile fiber (WTTF), a secondary product from the processing of end-of-life tires, is predominantly disposed of through incineration or landfilling—both of which present significant environmental hazards. The incineration process emits large quantities of greenhouse gases (GHGs) as well as harmful substances [...] Read more.
Waste tire textile fiber (WTTF), a secondary product from the processing of end-of-life tires, is predominantly disposed of through incineration or landfilling—both of which present significant environmental hazards. The incineration process emits large quantities of greenhouse gases (GHGs) as well as harmful substances such as dioxins and heavy metals, exacerbating air pollution and contributing to climate change. Conversely, landfilling WTTF results in long-term environmental degradation, as the synthetic fibers are non-biodegradable and can leach pollutants into the surrounding soil and water systems. These detrimental impacts emphasize the pressing need for environmentally sustainable disposal and reuse strategies. We found that 80% of WTTF was used for the production of thermal insulation mats. The other part, i.e., 20% of the raw material, used for the twining, stabilization, and improvement of the properties of the mats, consisted of recycled polyester fiber (RPES), bicomponent polyester fiber (BiPES), and hollow polyester fiber (HPES). The research shows that 80% of WTTF produces a stable filament for sustainable thermal insulating mat formation. The studies on sustainable thermal insulating mats show that the thermal conductivity of the product varies from 0.0412 W/(m∙K) to 0.0338 W/(m∙K). The tensile strength measured parallel to the direction of formation ranges from 5.60 kPa to 13.8 kPa, and, perpendicular to the direction of formation, it ranges from 7.0 kPa to 23 kPa. In addition, the fibers, as well as the finished product, were characterized by low water absorption values, which, depending on the composition, ranged from 1.5% to 4.3%. This research is practically significant because it demonstrates that WTTF can be used to produce insulating materials using non-woven technology. The obtained thermal conductivity values are comparable to those of conventional insulating materials, and the measured mechanical properties meet the requirements for insulating mats. Full article
(This article belongs to the Special Issue Sustainable Materials: Recycled Materials Toward Smart Future)
Show Figures

Figure 1

21 pages, 9163 KiB  
Article
Characterization and Energy Performance of Rice Husk Fiber Insulation Applied by the Blowing Technique in an Industrialized Modular Housing System
by Karin Rodríguez Neira, Carlos Javier Rojas-Herrera, Juan Pablo Cárdenas-Ramírez, Joaquín Torres Ramo and Ana Sánchez-Ostiz
Appl. Sci. 2025, 15(9), 4602; https://doi.org/10.3390/app15094602 - 22 Apr 2025
Viewed by 1037
Abstract
The construction sector plays a key role in climate change due to its high energy consumption and greenhouse gas emissions. Developing environmentally friendly building materials with low environmental impact is essential to improving energy efficiency. Insulation derived from agricultural waste is particularly promising [...] Read more.
The construction sector plays a key role in climate change due to its high energy consumption and greenhouse gas emissions. Developing environmentally friendly building materials with low environmental impact is essential to improving energy efficiency. Insulation derived from agricultural waste is particularly promising due to its low ecological footprint, responsible resources use, and potential for integration into various construction systems. This study evaluates the potential of rice husk fiber as a thermal insulating material applied through the blowing technique in the Skylark 250 modular system. Rice husk fiber was morphologically and thermally characterized using scanning electron microscopy (SEM), while its thermal behavior was analyzed by thermogravimetric analysis (TGA) alongside a fire behavior assessment. Additionally, energy simulations were conducted to compare the thermal performance of rice husk fiber with other insulating materials when integrated into a building’s thermal envelope. The results showed an average thermal conductivity of 0.040 W/mK, a U-value of 0.17 W/m2K, and a heating demand of 9.56 kWh/m2-year when applied to the modular system. The material also exhibited good fire resistance, with a smoldering velocity of 3.40 mm/min. These findings highlight rice husk fiber’s potential as a sustainable insulation material for modular construction, contributing to energy efficiency and climate change mitigation. Full article
Show Figures

Figure 1

22 pages, 11771 KiB  
Article
Analysis of the Possible Use of Straw from Agriculture as an Environmental Insulation Material in Buildings
by Jitka Peterková, Azra Korjenic, Jiří Zach, Jiří Bydžovský, Simona Halásová and Eldira Sesto
Sustainability 2025, 17(8), 3589; https://doi.org/10.3390/su17083589 - 16 Apr 2025
Viewed by 566
Abstract
Straw has been used as a building material since time immemorial and has been considered as a waste product from the agricultural sector, usually used for feed, bedding, or fertilization. Nowadays, the construction industry strives to reduce greenhouse gas emissions and is focusing [...] Read more.
Straw has been used as a building material since time immemorial and has been considered as a waste product from the agricultural sector, usually used for feed, bedding, or fertilization. Nowadays, the construction industry strives to reduce greenhouse gas emissions and is focusing on renewable materials; hence, straw seems to be an attractive, low-energy option. Straw bales or blown insulation are common uses, with limited detailed knowledge regarding the properties of different straw types. Straw is made up of the dry stems of crops. Straw’s chemical composition will differ with different crops and can have a great impact on its effectiveness. As a renewable material, straw also has the potential to be used in buildings, enhancing thermal insulation and reducing environmental impacts. This study considers four kinds of straw: barley, oats, oilseed rape, and triticale, regarding their possible usage in insulation materials. The thermal conductivity, bulk density, and dust generation of each type were tested in the laboratory. Among them, the best performance was shown by the barley straw treated with mechanical pulping using a knife mill at 4000 rpm for 60 s, which showed the lowest bulk density and thermal conductivity and generated the least dust. It is thus proven to be an environmental insulation material with significant implications for sustainable construction and energy-efficient building design, further helping in maintaining environmental sustainability in building construction. Full article
Show Figures

Figure 1

25 pages, 6196 KiB  
Article
Development and Analysis of Easy-to-Implement Green Retrofit Technologies for Windows to Reduce Heating Energy Use in Older Residential Buildings
by Sukjoon Oh, Hosang Ahn, Minjung Bae and Jaesik Kang
Sustainability 2025, 17(8), 3307; https://doi.org/10.3390/su17083307 - 8 Apr 2025
Cited by 1 | Viewed by 854
Abstract
Green remodeling and retrofitting are effective strategies for enhancing the sustainability of existing buildings. While green remodeling involves significant structural modifications, green retrofitting typically focuses on improving energy efficiency and reducing environmental impact. However, easy-to-implement green retrofit technologies can be particularly valuable for [...] Read more.
Green remodeling and retrofitting are effective strategies for enhancing the sustainability of existing buildings. While green remodeling involves significant structural modifications, green retrofitting typically focuses on improving energy efficiency and reducing environmental impact. However, easy-to-implement green retrofit technologies can be particularly valuable for low-income communities, offering a more affordable way to upgrade residences without extensive renovations. This paper analyzed the effectiveness of newly developed, easy-to-implement green retrofit technologies for windows in reducing heating energy use and greenhouse gas emissions. We conducted experiments using secondary glazing and windproof materials to enhance the thermal insulation and air-tightness performance of a residential building. Subsequently, we simulated the effectiveness of these green retrofit technologies under various conditions for residential buildings. In addition, we analyzed utility bills using data collected from residents. Our findings demonstrated an average reduction of 10–15% in heating energy consumption through the implementation of these green retrofit technologies for windows in older residential buildings. Full article
(This article belongs to the Special Issue Sustainable Building Decarbonization)
Show Figures

Figure 1

19 pages, 6755 KiB  
Article
Evaluating the Influence of Alfa Fiber Morphology on the Thermo-Mechanical Performance of Plaster-Based Composites and Exploring the Cost–Environmental Effects of Fiber Content
by Othmane Horma, Mohammed Drissi, Boutahar Laaouar, Sara El Hassani, Aboubakr El Hammouti and Ahmed Mezrhab
Buildings 2025, 15(7), 1187; https://doi.org/10.3390/buildings15071187 - 4 Apr 2025
Cited by 2 | Viewed by 534
Abstract
The construction industry’s escalating energy demands and greenhouse gas emissions underscore the need for sustainable, high-performance building materials. This study investigates the incorporation of locally sourced alfa fibers (AFs) into plaster-based composites to enhance thermal insulation, reduce environmental impact, and lower production costs. [...] Read more.
The construction industry’s escalating energy demands and greenhouse gas emissions underscore the need for sustainable, high-performance building materials. This study investigates the incorporation of locally sourced alfa fibers (AFs) into plaster-based composites to enhance thermal insulation, reduce environmental impact, and lower production costs. Three distinct AF morphologies—small (<5 mm), medium (10 ± 5 mm), and large (20 ± 5 mm)—were incorporated at fixed mass ratios, and their effects on key material properties were systematically evaluated. The results indicate that integrating AFs into plaster reduces composite density by up to 16.5%, improves thermal characteristics—lowering thermal conductivity and diffusivity by up to 52%—and diminishes both CO2 emissions and production costs. The addition of fibers also enhances flexural strength (up to 40%) through a fiber bridging mechanism that mitigates crack propagation, although a general decline in compressive strength was observed. Notably, composites containing medium and large fibers achieved significantly lower densities (~1050 kg/m3) and superior thermal insulation (~0.25 W/mK) compared with those with small fibers, with the largest fibers delivering the greatest thermal performance at the expense of compressive strength. Overall, these findings highlight the potential of AF–plaster composites as environmentally responsible, high-performance building materials, while emphasizing the need to carefully balance mechanical trade-offs for structural applications. Full article
Show Figures

Figure 1

Back to TopTop