Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (281)

Search Parameters:
Keywords = instability failure process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6108 KiB  
Article
Acoustic Emission and Infrared Radiation Energy Evolution in the Failure of Phosphate Rock: Characteristics and Damage Modeling
by Manqing Lin, Xuan Peng, Ye Chen, Qi Liao, Xianglong Lu and Xiqi Liu
Appl. Sci. 2025, 15(16), 9001; https://doi.org/10.3390/app15169001 - 14 Aug 2025
Abstract
Accurately characterizing the energy evolution during rock failure is crucial in understanding instability mechanisms and enabling the real-time monitoring and early warning of geological hazards in mining and geotechnical engineering. However, the energy evolution characteristics and correlations of multi-physics signals like acoustic emission [...] Read more.
Accurately characterizing the energy evolution during rock failure is crucial in understanding instability mechanisms and enabling the real-time monitoring and early warning of geological hazards in mining and geotechnical engineering. However, the energy evolution characteristics and correlations of multi-physics signals like acoustic emission (AE) and infrared radiation (IR) require further investigation. This study specifically investigated the energy evolution of AE and IR and their correlation during the uniaxial compression failure process of phosphate rock. Tests were performed on specimens under different loading rates to analyze energy dissipation and damage progression. Based on damage mechanics theory, damage evolution models were developed to describe the relationship between the cumulative AE energy, IR radiation variations (specifically the change in the average infrared radiation temperature, ΔAIRT), and strain under varying loading conditions. The results indicate that the loading rate significantly influences the energy release mechanism, with higher rates intensifying rock damage. The peak AE energy rate coincides with the inflection point of the cumulative energy curve, marking substantial internal energy release at failure. Additionally, as the loading rate increases, high-temperature regions in IR thermograms appear earlier, while the variation in ΔAIRT follows a decreasing trend. From an energy perspective, the correlation between AE ringing counts and the average IR temperature was analyzed at both the precursor and failure stages, revealing a strong relationship between AE activity and thermal energy dissipation. Furthermore, mathematical expressions for rock damage variables and coupled relationship equations were derived and validated using experimental data, yielding correlation coefficients (R2) exceeding 0.92. These findings provide a theoretical and methodological foundation for the development of enhanced real-time rock monitoring and early warning systems, contributing to improved safety in geological and mining engineering. Full article
Show Figures

Figure 1

22 pages, 9740 KiB  
Article
A Novel Error Correction Method for Airborne HRWS SAR Based on Azimuth-Variant Attitude and Range-Variant Doppler Domain Pattern
by Yihao Xu, Fubo Zhang, Longyong Chen, Yangliang Wan and Tao Jiang
Remote Sens. 2025, 17(16), 2831; https://doi.org/10.3390/rs17162831 - 14 Aug 2025
Abstract
In high-resolution and wide-swath (HRWS) synthetic aperture radar (SAR) imaging, the azimuth multi-channel technique effectively suppresses azimuth ambiguity, serving as a reliable approach for achieving wide-swath imaging. However, due to mechanical vibrations of the platform and airflow instabilities, airborne SAR may experience errors [...] Read more.
In high-resolution and wide-swath (HRWS) synthetic aperture radar (SAR) imaging, the azimuth multi-channel technique effectively suppresses azimuth ambiguity, serving as a reliable approach for achieving wide-swath imaging. However, due to mechanical vibrations of the platform and airflow instabilities, airborne SAR may experience errors in attitude and flight path during operation. Furthermore, errors also exist in the antenna patterns, frequency stability, and phase noise among the azimuth multi-channels. The presence of these errors can cause azimuth multi-channel reconstruction failure, resulting in azimuth ambiguity and significantly degrading the quality of HRWS images. This article presents a novel error correction method for airborne HRWS SAR based on azimuth-variant attitude and range-variant Doppler domain pattern, which simultaneously considers the effects of various errors, including channel attitude errors and Doppler domain antenna pattern errors, on azimuth reconstruction. Attitude errors are the primary cause of azimuth-variant errors between channels. This article uses the vector method and attitude transformation matrix to calculate and compensate for the attitude errors of azimuth multi-channels, and employs the two-dimensional frequency-domain echo interferometry method to calculate the fixed delay errors and fixed phase errors. To better achieve channel error compensation, this scheme also considers the estimation and compensation of Doppler domain antenna pattern errors in wide-swath scenes. Finally, the effectiveness of the proposed scheme is confirmed through simulations and processing of airborne real data. Full article
Show Figures

Figure 1

17 pages, 5889 KiB  
Article
Investigating Three-Dimensional Auxetic Structural Responses to Impact Loading with the Generalized Interpolation Material Point Method
by Xiatian Zhuang, Yu-Chen Su and Zhen Chen
Buildings 2025, 15(16), 2878; https://doi.org/10.3390/buildings15162878 - 14 Aug 2025
Abstract
Understanding three-dimensional (3D) auxetic structural responses to impact loading remains challenging due to large deformations involving failure evolution and the interaction between geometric and material instabilities. In this study, the Generalized Interpolation Material Point Method (GIMP) is used to investigate representative auxetic structures, [...] Read more.
Understanding three-dimensional (3D) auxetic structural responses to impact loading remains challenging due to large deformations involving failure evolution and the interaction between geometric and material instabilities. In this study, the Generalized Interpolation Material Point Method (GIMP) is used to investigate representative auxetic structures, with the focus on the negative Poisson’s ratio effect on the responses to impact loading. Using a cubic lattice model for 3D re-entrant structures, simulations with different impact speeds are performed to evaluate corresponding energy absorption characteristics and deformation behaviors. Three constitutive models for lattice materials (linear elasticity, elastoplasticity, and damage) are employed to analyze the corresponding variations in auxetic structural performance. The computational results indicate that distinct deformation mechanisms are mainly associated with microstructural geometry, while the constitutive modeling effect is not significant. The findings demonstrate the importance of the process–structure–property relationship in the impact performance of protective structures. Verification against theoretical predictions of the Poisson’s ratio–strain relationship confirms the potential of GIMP in effectively engineering auxetic structures for general applications. Full article
(This article belongs to the Special Issue Extreme Performance of Composite and Protective Structures)
Show Figures

Figure 1

27 pages, 17901 KiB  
Article
Identification of Dominant Controlling Factors and Susceptibility Assessment of Coseismic Landslides Triggered by the 2022 Luding Earthquake
by Jin Wang, Mingdong Zang, Jianbing Peng, Chong Xu, Zhandong Su, Tianhao Liu and Menghao Li
Remote Sens. 2025, 17(16), 2797; https://doi.org/10.3390/rs17162797 - 12 Aug 2025
Viewed by 159
Abstract
Coseismic landslides are geological events in which slopes, either on the verge of instability or already in a fragile state, experience premature failure due to seismic shaking. On 5 September 2022, an Ms 6.8 earthquake struck Luding County, Sichuan Province, China, triggering numerous [...] Read more.
Coseismic landslides are geological events in which slopes, either on the verge of instability or already in a fragile state, experience premature failure due to seismic shaking. On 5 September 2022, an Ms 6.8 earthquake struck Luding County, Sichuan Province, China, triggering numerous landslides that caused severe casualties and property damage. This study systematically interprets 13,717 coseismic landslides in the Luding earthquake’s epicentral area, analyzing their spatial distribution concerning various factors, including elevation, slope gradient, slope aspect, plan curvature, profile curvature, surface cutting degree, topographic relief, elevation coefficient variation, lithology, distance to faults, epicentral distance, peak ground acceleration (PGA), distance to rivers, fractional vegetation cover (FVC), and distance to roads. The analytic hierarchy process (AHP) was improved by incorporating frequency ratio (FR) to address the subjectivity inherent in expert scoring for factor weighting. The improved AHP, combined with the Pearson correlation analysis, was used to identify the dominant controlling factor and assess the landslide susceptibility. The accuracy of the model was verified using the area under the receiver operating characteristic (ROC) curve (AUC). The results reveal that 34% of the study area falls into very-high- and high-susceptibility zones, primarily along the Moxi segment of the Xianshuihe fault and both sides of the Dadu river valley. Tianwan, Caoke, Detuo, and Moxi are at particularly high risk of coseismic landslides. The elevation coefficient variation, slope aspect, and slope gradient are identified as the dominant controlling factors for landslide development. The reliability of the proposed model was evaluated by calculating the AUC, yielding a value of 0.845, demonstrating high reliability. This study advances coseismic landslide susceptibility assessment and provides scientific support for post-earthquake reconstruction in Luding. Beyond academic insight, the findings offer practical guidance for delineating priority zones for risk mitigation, planning targeted engineering interventions, and establishing early warning and monitoring strategies to reduce the potential impacts of future seismic events. Full article
(This article belongs to the Special Issue Advances in AI-Driven Remote Sensing for Geohazard Perception)
Show Figures

Graphical abstract

19 pages, 626 KiB  
Review
Why Should Return to Sport Be Delayed by up to Two Years After ACL Reconstruction? A Narrative Review of the Biological, Surgical and Rehabilitation Evidence
by Sebastiano Vasta, Pierangelo Za, Giuseppe Massazza, Ugo Riba, Alessandro Scotto di Palumbo, Kristian Samuelsson, Alexandra Horvath and Arrigo Giombini
J. Clin. Med. 2025, 14(16), 5699; https://doi.org/10.3390/jcm14165699 - 12 Aug 2025
Viewed by 291
Abstract
Background: Despite outstanding clinical outcomes are routinely achieved after ACL reconstruction (ACLR), the major current issue is the failure rate (re-rupture or objective clinical instability). Reinjury rates have been reported to be about 6% for ipsilateral graft rupture and 8% for contralateral ACL [...] Read more.
Background: Despite outstanding clinical outcomes are routinely achieved after ACL reconstruction (ACLR), the major current issue is the failure rate (re-rupture or objective clinical instability). Reinjury rates have been reported to be about 6% for ipsilateral graft rupture and 8% for contralateral ACL rupture, with a cumulative reinjury rate of about 20%. Methods: A comprehensive review of the literature was performed to summarize the latest evidence on biological, surgical and rehabilitation aspects of ACLR. Results: It has been demonstrated that young age is a risk factor for ACL graft rupture and so is not passing return-to-play (RTP) testing following ACLR (those who pass the RTP test battery have a one-third reduction in the ACL re-rupture rate). Furthermore, up to 30% of reinjury occurs within two years from ACLR. These data can be explained by numerous pieces of evidence showing that the recovery of proprioception, proper neuromuscular activation and strength, as well as proper biomechanics, remains affected for a long time after surgery (up to two or three years in some cases) despite adequate rehabilitation programs. Conclusions: Clinical evidence, together with biological data on the ligamentization process and the remodeling phase, suggest that return to strenuous sports, especially in younger athletes, should be delayed by at least 18 months or 2 years after ACLR. Full article
(This article belongs to the Special Issue Orthopedic Surgery: Latest Advances and Future Prospects)
Show Figures

Figure 1

22 pages, 8133 KiB  
Article
Predicting Rock Failure in Wet Environments Using Nonlinear Energy Signal Fusion for Sustainable Infrastructure Design
by Tong Wang, Bin Zhi, Xiaoxu Tian, Yun Cheng, Changwei Li and Zhanping Song
Sustainability 2025, 17(16), 7232; https://doi.org/10.3390/su17167232 - 10 Aug 2025
Viewed by 320
Abstract
Moisture-induced instability in rock masses presents a significant threat to the safety and sustainability of underground infrastructure. This study proposes a nonlinear energy signal fusion framework to predict failure in moisture-affected limestone by integrating acoustic emission data with energy dissipation metrics. Uniaxial compression [...] Read more.
Moisture-induced instability in rock masses presents a significant threat to the safety and sustainability of underground infrastructure. This study proposes a nonlinear energy signal fusion framework to predict failure in moisture-affected limestone by integrating acoustic emission data with energy dissipation metrics. Uniaxial compression tests were carried out under controlled moisture conditions, with real-time monitoring of AE signals and strain energy evolution. The results reveal that increasing moisture content reduces the compressive strength and elastic modulus, prolongs the compaction phase, and induces a transition in failure mode from brittle shear to ductile tensile–shear behavior. An energy partitioning analysis shows a clear shift from storage-dominated to dissipation-dominated failure. A dissipation factor (η) is introduced to characterize the failure process, with critical thresholds ηmin and ηf identified. A nonlinear AE-energy coupling model incorporating water-sensitive parameters is proposed. Furthermore, an energy-based instability criterion integrating multiple indicators is established to quantify failure transitions. The proposed method offers a robust tool for intelligent monitoring and predictive stability assessment. By integrating data-driven indicators with environmental sensitivity, the study provides engineering insights that support adaptive support design, long-term resilience, and sustainable decision making in groundwater-rich rock environments. Full article
Show Figures

Figure 1

13 pages, 2344 KiB  
Article
Study on the Risk of Reservoir Wellbore Collapse Throughout the Full Life Cycle of the Qianmiqiao Bridge Carbonate Rock Gas Storage Reservoir
by Yan Yu, Fuchun Tian, Feixiang Qin, Biao Zhang, Shuzhao Guo, Qingqin Cai, Zhao Chi and Chengyun Ma
Processes 2025, 13(8), 2480; https://doi.org/10.3390/pr13082480 - 6 Aug 2025
Viewed by 226
Abstract
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress [...] Read more.
Underground gas storage (UGS) in heterogeneous carbonate reservoirs is crucial for energy security but frequently faces wellbore instability challenges, which traditional static methods struggle to address due to dynamic full life cycle changes. This study systematically analyzes the dynamic evolution of wellbore stress in the Bs8 well (Qianmiqiao carbonate UGS) during drilling, acidizing, and injection-production operations, establishing a quantitative risk assessment model based on the Mohr–Coulomb criterion. Results indicate a significantly higher wellbore instability risk during drilling and initial gas injection stages, primarily manifested as shear failure, with greater severity observed in deeper well sections (e.g., 4277 m) due to higher in situ stresses. During acidizing, while the wellbore acid column pressure can reduce principal stress differences, the process also significantly weakens rock strength (e.g., by approximately 30%), inherently increasing the risk of wellbore instability, though the primary collapse mode remains shallow shear breakout. In the injection-production phase, increasing formation pressure is identified as the dominant factor, shifting the collapse mode from initial shallow shear failure to predominant wide shear collapse, notably at 90°/270° from the maximum horizontal stress direction, thereby significantly expanding the unstable zone. This dynamic assessment method provides crucial theoretical support for full life cycle integrity management and optimizing safe operation strategies for carbonate gas storage wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

28 pages, 4562 KiB  
Article
A Capacity-Constrained Weighted Clustering Algorithm for UAV Self-Organizing Networks Under Interference
by Siqi Li, Peng Gong, Weidong Wang, Jinyue Liu, Zhixuan Feng and Xiang Gao
Drones 2025, 9(8), 527; https://doi.org/10.3390/drones9080527 - 25 Jul 2025
Viewed by 257
Abstract
Compared to traditional ad hoc networks, self-organizing networks of unmanned aerial vehicle (UAV) are characterized by high node mobility, vulnerability to interference, wide distribution range, and large network scale, which make network management and routing protocol operation more challenging. Cluster structures can be [...] Read more.
Compared to traditional ad hoc networks, self-organizing networks of unmanned aerial vehicle (UAV) are characterized by high node mobility, vulnerability to interference, wide distribution range, and large network scale, which make network management and routing protocol operation more challenging. Cluster structures can be used to optimize network management and mitigate the impact of local topology changes on the entire network during collaborative task execution. To address the issue of cluster structure instability caused by the high mobility and vulnerability to interference in UAV networks, we propose a capacity-constrained weighted clustering algorithm for UAV self-organizing networks under interference. Specifically, a capacity-constrained partitioning algorithm based on K-means++ is developed to establish the initial node partitions. Then, a weighted cluster head (CH) and backup cluster head (BCH) selection algorithm is proposed, incorporating interference factors into the selection process. Additionally, a dynamic maintenance mechanism for the clustering network is introduced to enhance the stability and robustness of the network. Simulation results show that the algorithm achieves efficient node clustering under interference conditions, improving cluster load balancing, average cluster head maintenance time, and cluster head failure reconstruction time. Furthermore, the method demonstrates fast recovery capabilities in the event of node failures, making it more suitable for deployment in complex emergency rescue environments. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles for Enhanced Emergency Response)
Show Figures

Figure 1

22 pages, 5236 KiB  
Article
Research on Slope Stability Based on Bayesian Gaussian Mixture Model and Random Reduction Method
by Jingrong He, Tao Deng, Shouxing Peng, Xing Pang, Daochun Wan, Shaojun Zhang and Xiaoqiang Zhang
Appl. Sci. 2025, 15(14), 7926; https://doi.org/10.3390/app15147926 - 16 Jul 2025
Viewed by 239
Abstract
Slope stability analysis is conventionally performed using the strength reduction method with the proportional reduction in shear strength parameters. However, during actual slope failure processes, the attenuation characteristics of rock mass cohesion (c) and internal friction angle (φ) are [...] Read more.
Slope stability analysis is conventionally performed using the strength reduction method with the proportional reduction in shear strength parameters. However, during actual slope failure processes, the attenuation characteristics of rock mass cohesion (c) and internal friction angle (φ) are often inconsistent, and their reduction paths exhibit clear nonlinearity. Relying solely on proportional reduction paths to calculate safety factors may therefore lack scientific rigor and fail to reflect true slope behavior. To address this limitation, this study proposes a novel approach that considers the non-proportional reduction of c and φ, without dependence on predefined reduction paths. The method begins with an analysis of slope stability states based on energy dissipation theory. A Bayesian Gaussian Mixture Model (BGMM) is employed for intelligent interpretation of the dissipated energy data, and, combined with energy mutation theory, is used to identify instability states under various reduction parameter combinations. To compute the safety factor, the concept of a “reference slope” is introduced. This reference slope represents the state at which the slope reaches limit equilibrium under strength reduction. The safety factor is then defined as the ratio of the shear strength of the target analyzed slope to that of the reference slope, providing a physically meaningful and interpretable safety index. Compared with traditional proportional reduction methods, the proposed approach offers more accurate estimation of safety factors, demonstrates superior sensitivity in identifying critical slopes, and significantly improves the reliability and precision of slope stability assessments. These advantages contribute to enhanced safety management and risk control in slope engineering practice. Full article
(This article belongs to the Special Issue Slope Stability and Earth Retaining Structures—2nd Edition)
Show Figures

Figure 1

21 pages, 8594 KiB  
Article
Analysis and Detection of Four Typical Arm Current Measurement Faults in MMC
by Qiaozheng Wen, Shuguang Song, Jiaxuan Lei, Qingxiao Du and Wenzhong Ma
Energies 2025, 18(14), 3727; https://doi.org/10.3390/en18143727 - 14 Jul 2025
Viewed by 306
Abstract
Circulating current control is a critical part of the Modular Multilevel Converter (MMC) control system. Existing control methods rely on arm current information obtained from complex current measurement devices. However, these devices are susceptible to failures, which can lead to distorted arm currents, [...] Read more.
Circulating current control is a critical part of the Modular Multilevel Converter (MMC) control system. Existing control methods rely on arm current information obtained from complex current measurement devices. However, these devices are susceptible to failures, which can lead to distorted arm currents, increased peak arm current values, and higher losses. In extreme cases, this can result in system instability. This paper first analyzes four typical arm current measurement faults, i.e., constant gain faults, amplitude deviation faults, phase shift faults, and stuck faults. Then, a Kalman Filter (KF)-based fault detection method is proposed, which allows for the simultaneous monitoring status of all six arm current measurements. Moreover, to facilitate fault detection, the Moving Root Mean Square (MRMS) value of the observation residual is defined, which effectively detects faults while suppressing noise. The entire fault detection process takes less than 20 ms. Finally, the feasibility and effectiveness of the proposed method are validated through MATLAB/Simulink simulations and experimental results. Full article
(This article belongs to the Special Issue Advanced Power Electronics Technology: 2nd Edition)
Show Figures

Figure 1

20 pages, 28340 KiB  
Article
Rockfall Hazard Assessment for Natural and Cultural Heritage Site: Close Vicinity of Rumkale (Gaziantep, Türkiye) Using Digital Twins
by Ugur Mursal, Abdullah Onur Ustaoglu, Yasin Baskose, Ilyas Yalcin, Sultan Kocaman and Candan Gokceoglu
Heritage 2025, 8(7), 270; https://doi.org/10.3390/heritage8070270 - 8 Jul 2025
Viewed by 516
Abstract
This study presents a digital twin–based framework for assessing rockfall hazards at the immediate vicinity of the Rumkale Archaeological Site, a geologically sensitive and culturally significant location in southeastern Türkiye. Historically associated with early Christianity and strategically located along the Euphrates, Rumkale is [...] Read more.
This study presents a digital twin–based framework for assessing rockfall hazards at the immediate vicinity of the Rumkale Archaeological Site, a geologically sensitive and culturally significant location in southeastern Türkiye. Historically associated with early Christianity and strategically located along the Euphrates, Rumkale is a protected heritage site that attracts increasing numbers of visitors. Here, high-resolution photogrammetric models were generated using imagery acquired from a remotely piloted aircraft system and post-processed with ground control points to produce a spatially accurate 3D digital twin. Field-based geomechanical measurements including discontinuity orientations, joint classifications, and strength parameters were integrated with digital analyses to identify and evaluate hazardous rock blocks. Kinematic assessments conducted in the study revealed susceptibility to planar, wedge, and toppling failures. The results showed the role of lithological structure, active tectonics, and environmental factors in driving slope instability. The proposed methodology demonstrates effective use of digital twin technologies in conjunction with traditional geotechnical techniques, offering a replicable and non-invasive approach for site-scale hazard evaluation and conservation planning in heritage contexts. This work contributes to the advancement of interdisciplinary methods for geohazard-informed management of cultural landscapes. Full article
(This article belongs to the Special Issue Geological Hazards and Heritage Safeguard)
Show Figures

Figure 1

22 pages, 9006 KiB  
Article
Stability Assessment of Rock Slopes in the Former Quarry of Wojciech Bednarski Park in Kraków—A Case Study
by Malwina Kolano, Marek Cała, Agnieszka Stopkowicz, Piotr Olchowy and Marek Wendorff
Appl. Sci. 2025, 15(13), 7197; https://doi.org/10.3390/app15137197 - 26 Jun 2025
Viewed by 274
Abstract
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly [...] Read more.
This study presents a stability assessment of rock slopes, considering the joint systems of the rock walls of Wojciech Bednarski Park. Special emphasis was placed on analysing the orientation and infill characteristics of the identified joint sets. Based on archival data and newly conducted geological surveys, stability calculations were performed for eight representative cross-sections corresponding to designated sectors. Numerical analyses were conducted using a finite element method (FEM) programme, based on the actual structure of the rock mass, specifically its discontinuities. This ensured a reliable reflection of the real conditions governing the slope instability mechanisms. Factors of safety were estimated with the Shear Strength Reduction Technique. The results indicate that slope failure is highly unlikely in Sectors 1 and 2 (FS > 1.50), unlikely but not fully meeting the safety criteria in Sector 3 (FS < 1.50), and highly probable in Sectors 4 and 6 (FS << 1.00), where unstable rock blocks and deeper structural slides are anticipated. In Sector 5, failure is considered probable (FS < 1.30) due to rockfalls, unstable blocks, and creeping weathered cover. For Sectors 7 and 8, assuming debris cover above the rock walls, failure is unlikely (FS > 1.50). In contrast, under the assumption of weathered material, it becomes probable in Sector 7 (FS < 1.30), and remains unlikely in Sector 8 (FS > 1.50). Due to the necessity of adopting several modelling assumptions, the results should be interpreted primarily in qualitative terms. The outcomes of this research provide a critical basis for assessing the stability of rock slopes within Wojciech Bednarski Park and support decision-making processes related to its planned revitalisation. Full article
Show Figures

Figure 1

23 pages, 11085 KiB  
Article
Failure Mechanism and Movement Process Inversion of Rainfall-Induced Landslide in Yuexi Country
by Yonghong Xiao, Lu Wei and Xianghong Liu
Sustainability 2025, 17(12), 5639; https://doi.org/10.3390/su17125639 - 19 Jun 2025
Viewed by 365
Abstract
Shallow landslides are one of the main geological hazards that occur during heavy rainfall in Yuexi County every year, posing potential risks to the personal and property safety of local residents. A rainfall-induced shallow landslide named Baishizu No. 15 landslide in Yuexi Country [...] Read more.
Shallow landslides are one of the main geological hazards that occur during heavy rainfall in Yuexi County every year, posing potential risks to the personal and property safety of local residents. A rainfall-induced shallow landslide named Baishizu No. 15 landslide in Yuexi Country was taken as a case study. Based on the field geological investigation, combined with physical and mechanical experiments in laboratory as well as numerical simulation, the failure mechanism induced by rainfall infiltration was studied, and the movement process after landslide failure was inverted. The results show that the pore-water pressure within 2 m of the landslide body increases significantly and the factory of safety (Fs) has a good corresponding relationship with rainfall, which decreased to 0.978 after the heavy rainstorm on July 5 and July 6 in 2020. The maximum shear strain and displacement are concentrated at the foot and front edge of the landslide, which indicates a “traction type” failure mode of the Baishizu No. 15 landslide. In addition, the maximum displacement during landslide instability is about 0.5 m. The residual strength of soils collected from the soil–rock interface shows significant rate-strengthening, which ensures that the Baishizu No. 15 landslide will not exhibit high-speed and long runout movement. The rate-dependent friction coefficient of sliding surface was considered to simulate the movement process of the Baishizu No. 15 landslide by using PFC2D. The simulation results show that the movement velocity exhibited obvious oscillatory characteristics. After the movement stopped, the landslide formed a slip cliff at the rear edge and deposited as far as the platform at the front of the slope foot but did not block the road ahead. The final deposition state is basically consistent with the on-site investigation. The research results of this paper can provide valuable references for the disaster prevention, mitigation, and risk assessment of shallow landslides on residual soil slopes in the Dabie mountainous region. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

19 pages, 3627 KiB  
Article
Numerical Analysis of Pulse Decay Characteristics in Solid Rocket Motors for Different Finocyl Grain Configurations
by Fengnan Guo, Fengrui Li, Hongfeng Ji, Lin Fu and Xuyang Gao
Aerospace 2025, 12(6), 537; https://doi.org/10.3390/aerospace12060537 - 13 Jun 2025
Viewed by 831
Abstract
Combustion instability is an abnormal working state that often occurs in advanced solid rocket motors (SRMs), which can arouse pressure oscillations, increase the risk of mission failure, and even cause structural damage. In this paper, a numerical simulation method is adapted to analyze [...] Read more.
Combustion instability is an abnormal working state that often occurs in advanced solid rocket motors (SRMs), which can arouse pressure oscillations, increase the risk of mission failure, and even cause structural damage. In this paper, a numerical simulation method is adapted to analyze the combustion instability problem of a typical finocyl grain SRM, and the working process and pressure oscillation of different-structure SRMs are compared and analyzed. Firstly, the acoustic finite element analysis (FEA) method and the large eddy simulation (LES) method for SRM combustion instability analysis are given. Then, the numerical simulation method presented in this paper is verified by comparing the present results with the experimental data of Ariane-5 P230 motor, and finally, the pressure oscillation characteristics of SRMs with different structures by external pulse excitation are studied. The simulation results show that the pressure decay rate of the front finocyl grain structure is faster than that of the rear finocyl grain structure under the same external excitation. The excitation position has a relatively minor influence on the decay characteristics of pressure oscillations. The results can provide a certain reference for the combustion stability design of SRMs. Full article
(This article belongs to the Special Issue Combustion of Solid Propellants)
Show Figures

Figure 1

18 pages, 8036 KiB  
Article
Research on High-Temperature Frictional Performance Optimization and Synergistic Effects of Phosphate-Based Composite Lubricating Coatings
by Yong Ding, Shengjun Wang, Youxin Zhou, Hongmei Lv and Baoping Yang
Coatings 2025, 15(6), 704; https://doi.org/10.3390/coatings15060704 - 11 Jun 2025
Viewed by 531
Abstract
In high-temperature, high-pressure, and corrosive industrial environments, frictional wear of metallic components stands as a critical determinant governing the long-term operational reliability of mechanical systems. To address the challenge of traditional lubricating coating failure under a broad temperature range (−50 to 500 °C), [...] Read more.
In high-temperature, high-pressure, and corrosive industrial environments, frictional wear of metallic components stands as a critical determinant governing the long-term operational reliability of mechanical systems. To address the challenge of traditional lubricating coating failure under a broad temperature range (−50 to 500 °C), this study developed a phosphate-based composite lubricating coating. Through air-spraying technology and orthogonal experimental optimization, the optimal formulation was determined as follows: binder/filler ratio = 6:4, 5% graphite, 15% MoS2, and 10% aluminum powder. Experimental results demonstrated that at 500 °C, the coating forms an Al–O–P cross-linked network structure, with MoS2 oxidation generating MoO3 and aluminum powder transforming into Al2O3, significantly enhancing density and oxidation resistance. Friction tests revealed that the composite coating achieves a friction coefficient as low as 0.12 at room temperature with a friction time of 260 min. At 500 °C, the friction coefficient stabilizes at 0.24, providing 40 min of effective protection. This technology not only resolves the high-temperature instability of traditional coatings but also ensures an environmentally friendly preparation process with no harmful emissions, offering a technical solution for the protection of high-temperature equipment such as thermal power plant boiler tubes and petrochemical reactors. Full article
Show Figures

Figure 1

Back to TopTop