Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (208)

Search Parameters:
Keywords = insoluble dietary fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1253 KiB  
Article
Effect of Modification Methods on Composition and Technological Properties of Sea Buckthorn (Hippophae rhamnoides L.) Pomace
by Gabrielė Kaminskytė, Jolita Jagelavičiūtė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(15), 8722; https://doi.org/10.3390/app15158722 - 7 Aug 2025
Abstract
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the [...] Read more.
With the growth of the plant-based food sector, increasing amounts of by-products are generated. Sea buckthorn pomace (SBP), a by-product of juice and other manufacturing products, is rich in bioactive compounds such as phenolics, oligosaccharides, proteins, and dietary fiber. The aim of the study was to evaluate the impact of modification methods, such as enzymatic hydrolysis and supercritical carbon dioxide extraction (SFE-CO2), on the chemical composition and technological properties of SBP. SBP and SBP obtained after SFE-CO2 (SBP-CO2) were enzymatically modified using Pectinex® Ultra Tropical, Viscozyme® L, and Celluclast® 1.5 L (Novozyme A/S, Bagsværd, Denmark). The SBP’s main constituent was insoluble dietary fiber (IDF), followed by crude proteins and lipids (respectively, 58.7, 21.1 and 12.6 g/100 in d.m.). SFE-CO2 reduced the lipid content (by 85.7%) in the pomace while increasing protein and TDF content. Enzymatic hydrolysis decreased the content of both soluble dietary fiber (SDF) and IDF, and increased the content of mono- and oligosaccharides as well as free phenolics, depending on the commercial enzyme preparation used in SBP and SBP-CO2 samples. Celluclast® 1.5 L was the most effective in hydrolyzing IDF, while Viscozyme® L and Pectinex® Ultra Tropical were the most effective in degrading SDF. Enzymatic treatment improved water swelling capacity, water retention capacity, water solubility index, oil retention capacity of SBP and SBP-CO2; however, it did not have a significant effect on the stability of the emulsions. Modification of SBP by SFE-CO2 effectively increased WSC and WSI, however it reduced WRC. These findings highlight the potential of targeted modifications to enhance the nutritional and technological properties of SBP for functional food applications. Full article
Show Figures

Figure 1

24 pages, 1159 KiB  
Review
Physicochemical and Functional Properties of Soluble and Insoluble Dietary Fibers in Whole Grains and Their Health Benefits
by Pathumi Ariyarathna, Patryk Mizera, Jarosław Walkowiak and Krzysztof Dziedzic
Foods 2025, 14(14), 2447; https://doi.org/10.3390/foods14142447 - 11 Jul 2025
Viewed by 603
Abstract
The growing global prevalence of non-communicable diseases (NCDs) is drawing an increasing amount of attention to the health-promoting potential of whole-grain dietary fibers. Whole grains are rich sources of both soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), contributing distinct physicochemical properties [...] Read more.
The growing global prevalence of non-communicable diseases (NCDs) is drawing an increasing amount of attention to the health-promoting potential of whole-grain dietary fibers. Whole grains are rich sources of both soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), contributing distinct physicochemical properties and playing vital roles in promoting human health. This review provides a comprehensive analysis of the dietary fiber compositions of various whole grains, including wheat, oats, barley, rye, corn, sorghum, and rice, highlighting their structural characteristics, physiochemical properties, and associated health benefits. The physicochemical properties of dietary fibers, such as solubility, water- and oil-holding capacity, viscosity, swelling ability, and bile-acid-binding capacity, contribute significantly to their technological applications and potential health benefits, particularly in the prevention of NCDs. Although there is growing evidence supporting their health benefits, global whole-grain intake remains below recommended levels. Therefore, promoting whole-grain intake and developing fiber-rich functional foods are essential for enhancing public health and preventing chronic diseases. Future research should focus on enhancing the bioavailability and functionality of whole-grain dietary fibers, optimizing the methods by which they are extracted, and exploring their potential applications in the food and pharmaceutical industries. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

18 pages, 1903 KiB  
Article
Effects of Dietary Ratio of Insoluble Fiber to Soluble Fiber on Reproductive Performance, Biochemical Parameters, and Fecal Microbial Composition of Gestating Sows
by Xiaolu Wen, Qiwen Wu, Kaiguo Gao, Xuefen Yang, Hao Xiao, Zongyong Jiang and Li Wang
Animals 2025, 15(13), 1850; https://doi.org/10.3390/ani15131850 - 23 Jun 2025
Viewed by 396
Abstract
This study aimed to investigate the effects of dietary ISF:SF ratio on reproductive performance, biochemical parameters, colostrum composition, and fecal microbial composition in gestating sows. A total of 30 multiparous sows were randomly allocated to three dietary treatment groups: 8% inulin diet (ISF:SF [...] Read more.
This study aimed to investigate the effects of dietary ISF:SF ratio on reproductive performance, biochemical parameters, colostrum composition, and fecal microbial composition in gestating sows. A total of 30 multiparous sows were randomly allocated to three dietary treatment groups: 8% inulin diet (ISF:SF 1.14, Inulin group), 8% cotton fiber diet (ISF:SF 6.61, Cotton group), and 4% inulin + 4% cotton fiber diet (ISF:SF 2.37, Inulin + Cotton group). The results showed that, compared to the other groups, the Inulin group had a significantly higher number of piglets born alive, as well as increased plasma concentrations of acetic acid, butyric acid, hexanoic acid, and total short-chain fatty acids (SCFAs) (p < 0.05). Sows in the Inulin group had significantly lower fecal scores than those in the other groups from days 81 to 85 and from days 106 to 110 of gestation (p < 0.05). On day 90 of gestation, the serum levels of albumin, urea, uric acid, calcium, and phosphorus in the Inulin group were significantly lower than those in the other groups (p < 0.05). Additionally, the serum levels of triacylglycerol in the Inulin + Cotton Fiber group were significantly higher than those in the other groups (p < 0.05). However, there were no significant differences in serum concentrations of total protein, creatinine, glucose, cholesterol, HDL-cholesterol, or LDL-cholesterol among the treatments (p > 0.05). On day 110 of gestation, the serum content of urea, uric acid, calcium, and phosphorus in the Inulin group was significantly lower than those in the other groups (p < 0.05). Furthermore, the plasma levels of uric acid, triacylglycerol, and HDL-cholesterol in the Inulin + Cotton Fiber group were significantly higher than those in the Cotton Fiber group (p < 0.05), while the creatinine levels in the Inulin group were higher than those in the other groups (p < 0.05). No differences were observed in the composition and immune performance of colostrum (p > 0.05). Microbial sequencing analysis showed that dietary inulin supplementation to increase the proportion of soluble fiber significantly decreased the abundance of Firmicutes, Clostridia, Clostridiales, Lachnospiraceae, Streptococcaceae, and Streptococcus (p < 0.05). The abundance of short-chain fatty acid-producing microorganisms—Bacteroidetes, Bacteroidia, Bacteroidales, and Muribaculaceae—was significantly increased (p < 0.05). The results indicated that inulin supplementation decreased the dietary ISF:SF ratio, significantly alleviated constipation in sows, increased the number of piglets born alive, regulated intestinal microecology, and increased the plasma concentrations of short-chain fatty acids (SCFAs), including acetic, propionic, and butyric acids. Full article
Show Figures

Figure 1

19 pages, 312 KiB  
Article
The Potential of Combining Faba Bean (Vicia faba L.) and Pea Pod (Pisum sativum L.) Flours to Enhance the Nutritional Qualities of Food Products
by Khaoula Ben Said, Amel Hedhili, Sihem Bellagha, Hela Gliguem and Marie Dufrechou
Foods 2025, 14(13), 2167; https://doi.org/10.3390/foods14132167 - 21 Jun 2025
Viewed by 507
Abstract
Legumes have been identified as a key element of food innovation and excellent candidates for ensuring sustainability in food systems. However, certain legumes, such as faba beans and legume by-products, such as pea pods, are currently mainly being used in animal feed rather [...] Read more.
Legumes have been identified as a key element of food innovation and excellent candidates for ensuring sustainability in food systems. However, certain legumes, such as faba beans and legume by-products, such as pea pods, are currently mainly being used in animal feed rather than exploited and valued in human nutrition. In this study, the nutritional properties, anti-nutritional factors, and in vitro protein digestibility of pea pod flour and raw and thermally treated (80, 120, 150, and 180 °C during 30 min) faba bean flours were investigated. For pea pod flours, the results showed a very interesting protein content (12.13%) and insoluble fibers (37.45%), as well as appreciable amounts of minerals, mainly calcium, potassium, magnesium, manganese, and iron. For faba bean flours, thermal treatment did not significantly affect the crude protein, ash, starch, and fat contents of the processed beans. Meanwhile, compared with raw faba bean flours, thermal treatment significantly decreased insoluble dietary fibers, anti-nutritional factors such as phytic acid, tannins, trypsin inhibitors, and alpha-galactosides and progressively improved the in vitro protein digestibility by 7,7%. In conclusion, faba bean and pea pod flours show significant potential as novel ingredients in the food industry. Their combination will enable the development of protein, fiber, and mineral-rich food products. Full article
12 pages, 1052 KiB  
Article
Study on Effect of Germination on Flavonoid Content and Nutritional Value of Different Varieties of Chickpeas
by Jiyuan Xue, Jia Yang and Yongqi Yin
Foods 2025, 14(13), 2157; https://doi.org/10.3390/foods14132157 - 20 Jun 2025
Viewed by 377
Abstract
Chickpeas (Cicer arietinum L.) were popular for their high nutritional profile and abundance of bioactive constituents, making them highly sought after in the consumer market. This investigation evaluated the impact of germination on the levels of total phenolics, total flavonoids, and other [...] Read more.
Chickpeas (Cicer arietinum L.) were popular for their high nutritional profile and abundance of bioactive constituents, making them highly sought after in the consumer market. This investigation evaluated the impact of germination on the levels of total phenolics, total flavonoids, and other bioactive compounds, as well as free amino acids, soluble proteins, dietary fiber, and starch, in two chickpea sprout cultivars. The results demonstrated that germination significantly enhanced the concentrations of total flavonoids and phenolics in chickpeas. Compared to ungerminated seeds, the total flavonoid content in Xinying No. 1 and Xinying No. 2 sprouts increased by 3.95-fold and 3.25-fold, respectively, while total phenolic content increased by 2.47-fold and 2.38-fold. Germination also significantly augmented free amino acid, soluble protein, and total dietary fiber content while reducing resistant starch and insoluble dietary fiber. Concurrently, the bioaccessibility of essential nutrients was substantially improved, as indicated by enhanced solubility. This research provided valuable insights for optimizing the nutritional quality and bioactive compound content of chickpeas through sprouting technology. These results provided critical insights for optimizing the nutritional and functional properties of chickpeas via sprouting and established a scientific basis for the development of functional foods from germinated chickpeas, underscoring their potential to support dietary health and wellness. Full article
Show Figures

Figure 1

16 pages, 1441 KiB  
Article
Effects of Tricholoma Matsutake-Derived Insoluble Fiber on the Pasting Properties, Structural Characteristics, and In Vitro Digestibility of Rice Flour
by Qin Qiu, Jing Chen, Dafeng Sun, Yongshuai Ma, Yujie Zhong, Junjie Yi, Ming Du, Man Zhou and Tao Wang
Foods 2025, 14(12), 2143; https://doi.org/10.3390/foods14122143 - 19 Jun 2025
Viewed by 498
Abstract
This study explores the effects of Tricholoma matsutake-derived insoluble dietary fiber (TMIDF) on the pasting behavior, structural properties, and in vitro digestibility of rice flour. The incorporation of 5% TMIDF significantly increased the peak viscosity (from 2573.21 to 2814.52 mPa·s) by competitively [...] Read more.
This study explores the effects of Tricholoma matsutake-derived insoluble dietary fiber (TMIDF) on the pasting behavior, structural properties, and in vitro digestibility of rice flour. The incorporation of 5% TMIDF significantly increased the peak viscosity (from 2573.21 to 2814.52 mPa·s) by competitively adsorbing water and forming a dense transient network, while simultaneously reducing the final viscosity (from 1998.27 to 1886.18 mPa·s) by inhibiting amylose recrystallization. Multi-scale structural analyses revealed that TMIDF enhanced V-type crystallinity and limited enzyme access via a porous fibrous matrix. Fourier-transform infrared spectroscopy and low-field nuclear magnetic resonance analyses confirmed that hydrogen bonding and water redistribution were key interaction mechanisms. TMIDF significantly lowered in vitro starch digestibility and increased resistant starch content by 16% (from 14.36% to 30.94%) through synergistic effects, including physical encapsulation of starch granules, formation of enzyme-resistant amylose-lipid complexes, and α-amylase inhibition (31.08%). These results demonstrate that TMIDF possesses a unique multi-tiered modulation mechanism, involving structural optimization, enzyme suppression, and diffusion control, which collectively surpasses the functional performance of conventional plant-derived insoluble dietary fibers. This research establishes a theoretical basis for applying fungal insoluble dietary fibers to develop low glycemic index functional foods, highlighting their dual role in improving processing performance and nutritional quality. Full article
Show Figures

Graphical abstract

21 pages, 1372 KiB  
Article
Biochemical Analysis of Wheat Milling By-Products for Their Valorization as Potential Food Ingredients
by Chiara Suanno, Lorenzo Marincich, Simona Corneti, Iris Aloisi, Luca Pincigher, Elisa Papi, Luigi Parrotta, Fabiana Antognoni and Stefano Del Duca
Int. J. Mol. Sci. 2025, 26(12), 5830; https://doi.org/10.3390/ijms26125830 - 18 Jun 2025
Viewed by 345
Abstract
Wheat bran forms the outermost part of the kernel, which is typically discarded as a by-product. Depending on the milling process, bran can be separated into four fractions: coarse bran (CB), coarse weatings (CW), fine weatings (FW), and low-grade flour (LGF). This study [...] Read more.
Wheat bran forms the outermost part of the kernel, which is typically discarded as a by-product. Depending on the milling process, bran can be separated into four fractions: coarse bran (CB), coarse weatings (CW), fine weatings (FW), and low-grade flour (LGF). This study aimed to analyze the macronutrient and bioactive compound profiles of these four by-products across five cultivars and two wheat mixtures. Dietary fibers, free and bound phenolics, phytic acid, fatty acids, and aleurone layer markers were examined in all samples. The results indicate that insoluble fibers, phenolic compounds, and phytic acid decreased from CB to LGF, whereas soluble fiber content exhibited a greater variability among fractions. In all samples, coarse bran was the richest fraction in the protein 7S globulin. The same fraction from the two commercial mixtures and Manitoba cultivar exhibited significantly higher levels of bound ferulic acid compared to the other cultivars (+34%). Manitoba CB also had the highest oleic acid content (18.04% of total lipid content) among all samples, followed by the Rumeno cultivar (17.75%), which also had the highest linolenic acid content (6.35%). Given their health-promoting and technological potential, these by-products could be selectively used to enrich food products and dietary supplements with functional nutrients. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 1370 KiB  
Article
Influence of Enzymatic Hydrolysis on Composition and Technological Properties of Black Currant (Ribes nigrum) Pomace
by Aurelija Kairė, Jolita Jagelavičiūtė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(11), 6207; https://doi.org/10.3390/app15116207 - 31 May 2025
Viewed by 586
Abstract
Blackcurrant (Ribes nigrum) is valued for its health-promoting compounds, many of which remain in the pomace after juice extraction. Berry pomace can be considered a valuable source of dietary fiber. However, it is typically dominated by insoluble dietary fiber (IDF), and [...] Read more.
Blackcurrant (Ribes nigrum) is valued for its health-promoting compounds, many of which remain in the pomace after juice extraction. Berry pomace can be considered a valuable source of dietary fiber. However, it is typically dominated by insoluble dietary fiber (IDF), and the soluble-to-insoluble fiber ratio is often nutritionally suboptimal. The aim of this study was to evaluate the influence of enzymatic hydrolysis on the composition and technological properties of blackcurrant pomace (BCP). Three commercial enzyme preparations—Viscozyme® L, Celluclast® 1.5 L, and Pectinex® Ultra Tropical (Novozymes A/S, Denmark)—were used for enzymatic hydrolysis, which was conducted at 50 °C for 1 h. The enzymatic treatments altered BCP’s chemical composition and technological properties. Pectinex® Ultra Tropical and Viscozyme® L primarily hydrolyzed SDF, while Celluclast® 1.5 L was more effective on IDF, resulting in increased SDF content and an improved SDF/IDF ratio. Enzymatic hydrolysis reduced the oil retention capacity and impaired stabilizing properties, but it increased both the water retention capacity and the solubility index. It was found that the creaming index of the pomace deteriorated with decreased IDF content. The findings indicate that the effects of enzymatic modification on BCP’s composition and technological properties can vary significantly, supporting its potential application in the development of novel food products. Full article
Show Figures

Figure 1

25 pages, 3806 KiB  
Review
Technological Advancements of Insoluble Dietary Fiber from Food By-Product Processing: A Review
by Domenico Mammolenti, Francesca Romana Lupi, Noemi Baldino and Domenico Gabriele
Foods 2025, 14(10), 1822; https://doi.org/10.3390/foods14101822 - 21 May 2025
Viewed by 985
Abstract
Insoluble dietary fibers (IDFs) represent one of the most promising candidates for novel food formulations, since they can be produced from a wide range of food by-products and wastes, have health benefits, and often enhance the rheology and stability of foods. Recently, the [...] Read more.
Insoluble dietary fibers (IDFs) represent one of the most promising candidates for novel food formulations, since they can be produced from a wide range of food by-products and wastes, have health benefits, and often enhance the rheology and stability of foods. Recently, the most innovative engineering and processing aspects of these attractive ingredients have received considerable attention. The present work is aimed at enlightening the technological state of the art regarding IDFs (much less investigated than soluble fibers, as discussed in this review). The review begins with a brief but crucial discussion on the definition of this type of dietary fiber by highlighting the raw materials, functional properties, physiological activity, and stabilization capacity in food products. The analysis of the rheological methods dedicated to the technical investigations of these ingredients and recent advancements are discussed. Finally, food processing technologies used in the formulation of foods containing insoluble IDFs, such as homogenization techniques, are discussed. Full article
(This article belongs to the Special Issue Feature Review on Food Nutrition)
Show Figures

Graphical abstract

21 pages, 1792 KiB  
Article
Fortification of Bread with Carob Extract: A Comprehensive Study on Dough Behavior and Product Quality
by Jana Zahorec, Dragana Šoronja-Simović, Jovana Petrović, Ivana Nikolić, Branimir Pavlić, Katarina Bijelić, Nemanja Bojanić and Aleksandar Fišteš
Foods 2025, 14(10), 1821; https://doi.org/10.3390/foods14101821 - 20 May 2025
Viewed by 530
Abstract
The integration of functional ingredients into staple foods like bread offers a promising strategy for improving public health. Carob (Ceratonia siliqua L.) flour, rich in bioactive compounds, has potential as a functional additive. However, its incorporation into bread negatively affects dough behavior [...] Read more.
The integration of functional ingredients into staple foods like bread offers a promising strategy for improving public health. Carob (Ceratonia siliqua L.) flour, rich in bioactive compounds, has potential as a functional additive. However, its incorporation into bread negatively affects dough behavior and product quality due to high levels of insoluble dietary fibers. This study investigates the use of carob extract (PCE) as a functional additive to enhance the nutritional and bioactive profile of bread while preserving its rheological behavior and sensory quality. PCE was obtained via microwave-assisted extraction and spray drying, and incorporated into bread formulations at 1%, 3%, and 5%. The addition of PCE reduced water absorption by 1.5% and increased dough stability three times. Dough resistance increased by 15%, while extensibility decreased by 5%. The viscoelastic properties of dough were preserved, as the storage modulus increased and Tan δ values remained stable. Changes in specific volume, crumb texture, crumb porosity, and bread color of produced bread with PCE were minimal; however, aroma, taste, and overall sensory quality were improved. Additionally, the incorporation of PCE resulted in a significant increase in total phenolic content and antioxidant activity, indicating an enhancement of the bread’s functional properties. These improvements were achieved without negatively affecting the dough rheology or bread quality parameters. Overall, the findings suggest that PCE can be a promising functional ingredient in bread formulations, contributing to both nutritional value and technological performance. Full article
(This article belongs to the Special Issue Encapsulation-Based Technologies for Bioactive Compounds in Foods)
Show Figures

Figure 1

16 pages, 6610 KiB  
Article
Optimization of Solid-State Fermentation Process for Dietary Fiber in Flaxseed Meal and Analysis of Its Microstructure and Functional Properties
by Chunpeng Hou, Yiyang Zhang, Jiaxun Chen, Jianguo Hu, Chenxian Yang, Fusheng Chen, Tingwei Zhu, Ying Xin and Xiaohui Geng
Foods 2025, 14(10), 1722; https://doi.org/10.3390/foods14101722 - 13 May 2025
Cited by 1 | Viewed by 667
Abstract
Flaxseed meal (FSM) is a by-product of flaxseed product production that is wasted unreasonably at present. In this study, we used Bacillus subtilis K6, a dominant microbial strain, for solid-state fermentation (SSF) of FSM following preliminary screening to improve FSM utilization efficiency and [...] Read more.
Flaxseed meal (FSM) is a by-product of flaxseed product production that is wasted unreasonably at present. In this study, we used Bacillus subtilis K6, a dominant microbial strain, for solid-state fermentation (SSF) of FSM following preliminary screening to improve FSM utilization efficiency and enhance the soluble dietary fiber (SDF) content while modifying its functional properties. FSM’s microstructure was characterized before and after fermentation, and the functional properties of the dietary fiber (DF) in the FSM were assessed. Single-factor experiments combined with response surface methodology were conducted to optimize SSF parameters using SDF yield as the response variable. The optimal conditions were determined as follows: 45 h fermentation time, 40.5 °C temperature, and 1:0.65 material-to-liquid ratio. Under these conditions, the SDF yield reached 33.45 ± 0.24%, an SDF yield increase of 36.92%. Scanning electron microscopy and confocal laser scanning microscopy demonstrated FSM’s structural disruption during fermentation. Furthermore, SDF and insoluble DF showed improved water-holding, oil-holding, and swelling capacities following fermentation. These results indicate that SSF effectively enhances the SDF content in FSM and optimizes its functional properties, thereby providing a theoretical foundation for the valorization of flaxseed by-products. Full article
Show Figures

Figure 1

16 pages, 4821 KiB  
Article
Red Wine Grape Pomace Restores Gut Barrier Function and Improves Survival in Diet-Induced Ischemic Heart Disease
by Katherine Rivera, Leticia González, Laura Parra, Juan E. Oyarzún, Alina Concepción-Alvarez, Adriano Costa de Camargo, Raquel Bridi, Attilio Rigotti and Marcelo E. Andia
Antioxidants 2025, 14(5), 574; https://doi.org/10.3390/antiox14050574 - 10 May 2025
Viewed by 697
Abstract
Red wine grape pomace (RWGP), a winemaking by-product rich in phenolics, flavonoids, and dietary fiber, has shown promise in mitigating cardiovascular disease (CVD), however, its mechanisms of action remain incompletely understood. This study comprehensively profiled the phenolic composition of RWGP—including free, esterified, etherified, [...] Read more.
Red wine grape pomace (RWGP), a winemaking by-product rich in phenolics, flavonoids, and dietary fiber, has shown promise in mitigating cardiovascular disease (CVD), however, its mechanisms of action remain incompletely understood. This study comprehensively profiled the phenolic composition of RWGP—including free, esterified, etherified, and insoluble-bound fractions—and evaluated the effects of RWGP dietary supplementation on gut barrier integrity, inflammation, oxidative stress, and survival in SR-B1−/−ApoE-R61h/h mice, a model of diet-induced lethal ischemic heart disease. RWGP supplementation significantly improved survival rates and restored gut barrier function, as evidenced by lower plasma FITC-dextran and LPS levels, increased circulating ZO-1 levels, and reduced histopathological colon damage. In addition, RWGP reduced pro-inflammatory cytokines (IL-1β) and showed a trend toward attenuating systemic oxidative stress (TBARS). Analysis of phenolic compounds indicated a significant presence of insoluble-bound phenolics. Nevertheless, the beneficial effects observed are likely attributable to the synergistic actions of RWGP’s complex phytochemical and fiber composition. These results highlight RWGP’s potential as a sustainable, gut-targeted functional food ingredient for CVD prevention and management. Full article
Show Figures

Figure 1

18 pages, 5762 KiB  
Article
Physicochemical, Functional, and In Vitro Fermentation Characteristics of Buckwheat Bran Dietary Fiber Modified by Enzymatic Extrusion
by Tingting Bu, Yue Yu, Xiao Kong, Weicheng Wu, Zhiguo Zhang, Weiwei Hu, Komarova Natallia, Ming Cai, Kai Yang and Peilong Sun
Foods 2025, 14(8), 1300; https://doi.org/10.3390/foods14081300 - 9 Apr 2025
Viewed by 676
Abstract
The effects of cellulase–xylanase synergistic treatment combined with twin-screw extrusion on the physicochemical, functional, and in vitro fermentation characteristics of buckwheat bran dietary fiber (BBDF) were investigated. Compared to single enzymatic hydrolysis, the synergetic modification was more effective in promoting the soluble DF [...] Read more.
The effects of cellulase–xylanase synergistic treatment combined with twin-screw extrusion on the physicochemical, functional, and in vitro fermentation characteristics of buckwheat bran dietary fiber (BBDF) were investigated. Compared to single enzymatic hydrolysis, the synergetic modification was more effective in promoting the soluble DF (SDF) ratio (increased from 10.68% to 32.67%), functional properties, and prebiotic activities of BBDF and decreasing the insoluble DF (IDF) content. Under 0.6% (w/w) cellulase and xylanase with mild extrusion conditions (40–80 °C), the modified BBDF exhibited the highest capacities for glucose and cholesterol adsorption. FTIR and XRD experiments indicated that the enzymatic extrusion destroyed the intermolecular interactions of BBDF. Furthermore, enzymatically extruded BBDFs showed 2.2-fold higher short-chain fatty acid (SCFA) yields during in vitro fecal fermentation (total SCFAs: 87.8 mM vs. 40.0 mM in control), with butyrate production reaching 2.5 mM (+76.3%), among which the mildly extruded BBDFs exhibited superior prebiotic effects. Full article
Show Figures

Graphical abstract

16 pages, 1812 KiB  
Article
Composition and Technological Properties of Modified Lingonberry (Vaccinium vitis-idaea L.) Pomace
by Simona Šimkutė, Loreta Bašinskienė, Michail Syrpas and Dalia Čižeikienė
Appl. Sci. 2025, 15(7), 3661; https://doi.org/10.3390/app15073661 - 26 Mar 2025
Cited by 1 | Viewed by 495
Abstract
Lingonberry pomace (LP) is a by-product rich in valuable bioactive compounds and can be used in the food industry after various treatments and property characterization. This study aimed to evaluate the impact of commercially available enzymes (Viscozyme® L, Pectinex® Ultra Tropical, [...] Read more.
Lingonberry pomace (LP) is a by-product rich in valuable bioactive compounds and can be used in the food industry after various treatments and property characterization. This study aimed to evaluate the impact of commercially available enzymes (Viscozyme® L, Pectinex® Ultra Tropical, and Celluclast® 1.5 L) and supercritical carbon dioxide (SFE-CO2) extraction technology on the chemical composition and technological properties of treated LP products. The Megazyme kit was used to determine the soluble dietary fiber (SDS) and insoluble dietary fiber (IDF) contents, while the changes in mono-, disaccharide, and oligosaccharides were analyzed by applying high-pressure liquid chromatography with a refractive index detector. The analyzed properties were as follows: the water swelling capacity (WSC), water retention capacity (WRC), water solubility index (WSI), oil retention capacity (ORC), bulk density (BD), and emulsion stability of modified LP. The tested LP contained 8.49 g/100 g of SDF and 65.36 g/100 g of IDF (in dry matter). The partial separation of lipophilic substances during SFE-CO2 extraction did not significantly affect the enzymatic hydrolysis efficiency. The amount of oligosaccharides in the LP increased using enzymes with pectinolytic activity (Viscozyme® L and Pectinex® Ultra Tropical), while cellulolytic enzymes (Celluclast® 1.5 L) increased the amount of SDF and improved the IDF/SDF ratio. Enzymatic hydrolysis increased the SI, WRC, and ORC of LP powder. Emulsions with LP hydrolyzed with Pectinex® Ultra Tropical demonstrated the highest stability during storage. This study demonstrates that the modification of LP powders provides diverse technological properties, which could expand the application of such products for further food production. Full article
Show Figures

Figure 1

15 pages, 4227 KiB  
Article
Biofermentation of Wheat Bran by Monascus anka and Production of High Value-Added Dietary Fiber
by Xuefeng Wu, Siqi He, Hongyi Xu, Hui Zhang, Jing Cai, Min Zhang, Dongdong Mu, Zhenhong Li, Xingjiang Li and Lanhua Liu
Fermentation 2025, 11(3), 157; https://doi.org/10.3390/fermentation11030157 - 20 Mar 2025
Viewed by 683
Abstract
In this study, wheat bran was used to prepare dietary fiber by Monascus anka in liquid fermentation. The structural and functional characteristics of wheat bran dietary fiber were analyzed. Scanning electron microscopy and X-ray diffraction analysis indicated that the insoluble dietary fiber matrix [...] Read more.
In this study, wheat bran was used to prepare dietary fiber by Monascus anka in liquid fermentation. The structural and functional characteristics of wheat bran dietary fiber were analyzed. Scanning electron microscopy and X-ray diffraction analysis indicated that the insoluble dietary fiber matrix was disrupted during the liquid fermentation. Infrared spectroscopy and differential scanning calorimetry analysis demonstrated that intramolecular hydrogen bonds were broken and the oligosaccharides increased. The soluble dietary fiber content increased from 10.7 g/100 g to 16.5 g/100 g, which contributed to improvements in the water-holding capacity, oil-holding capacity, and swelling capacity of wheat bran dietary fiber. UV–Vis spectroscopy analysis demonstrated that the M. anka wheat bran fermentation broth (MWFB) mainly contained yellow pigments (236.6 μ mL−1). HPLC-MS spectrometry further showed MWFB contained three known Monascus pigments: monasine (observed. m/z 359.1853 [M+H]+), ankaflavin (observed. m/z 387.2151 [M+H]+), and monascorubrin (observed. m/z 382.2007 [M+H]+). In conclusion, M. anka can make the most use of wheat bran and improve the structure and function of dietary fiber, thereby expanding its application potential in functional food additives, gut microbiota modulation, and low-calorie baked goods. Full article
(This article belongs to the Special Issue Applied Microorganisms and Industrial/Food Enzymes, 2nd Edition)
Show Figures

Figure 1

Back to TopTop