Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,046)

Search Parameters:
Keywords = input delays

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 666 KiB  
Article
Sensor Fault Detection and Reliable Control of Singular Stochastic Systems with Time-Varying Delays
by Yunling Shi, Haosen Yang, Gang Liu, Xiaolin He and Jajun Wang
Sensors 2025, 25(15), 4667; https://doi.org/10.3390/s25154667 - 28 Jul 2025
Abstract
In unmanned systems, especially in large-scale and complex ones, sensor and communication failures occur from time to time and are hard to avoid. Therefore, this paper studies the fault detection problem of a class of unknown nonlinear singular uncertain time-varying delay Markov jump [...] Read more.
In unmanned systems, especially in large-scale and complex ones, sensor and communication failures occur from time to time and are hard to avoid. Therefore, this paper studies the fault detection problem of a class of unknown nonlinear singular uncertain time-varying delay Markov jump systems (UNSUTVDMJSs). Firstly, the corresponding sliding mode controller (SMC) is designed by using the equivalent control principle, and the unknown nonlinearity is equivalently replaced by changing the system input. Then, a fault detection filter adapted to this system is designed, thereby obtaining the unknown nonlinear stochastic singular uncertain Augmented filter residual system (UNSSUAFRS) model. To obtain the sufficient conditions for the random admissibility of this augmented system, a weak infinitesimal generator was used to design the required Lyapunov-Krasovskii functional. With the help of the Lyapunov principle and H performance analysis method, the sufficient conditions for the random admissibility of UNSSUAFRS under the H performance index γ were derived. Finally, with the aid of the designed residual evaluation function and threshold, simulation analysis was conducted on the examples of DC servo motors and numerical calculation examples to verify the effectiveness and practicability of this fault detection filter. Full article
(This article belongs to the Special Issue Smart Sensing and Control for Autonomous Intelligent Unmanned Systems)
19 pages, 3636 KiB  
Article
Research on Wellbore Trajectory Prediction Based on a Pi-GRU Model
by Hanlin Liu, Yule Hu and Zhenkun Wu
Appl. Sci. 2025, 15(15), 8317; https://doi.org/10.3390/app15158317 - 26 Jul 2025
Viewed by 92
Abstract
Accurate wellbore trajectory prediction is of great significance for enhancing the efficiency and safety of directional drilling in coal mines. However, traditional mechanical analysis methods have high computational complexity, and the existing data-driven models cannot fully integrate non-sequential features such as stratum lithology. [...] Read more.
Accurate wellbore trajectory prediction is of great significance for enhancing the efficiency and safety of directional drilling in coal mines. However, traditional mechanical analysis methods have high computational complexity, and the existing data-driven models cannot fully integrate non-sequential features such as stratum lithology. To solve these problems, this study proposes a parallel input gated recurrent unit (Pi-GRU) model based on the TensorFlow framework. The GRU network captures the temporal dependencies of sequence data (such as dip angle and azimuth angle), while the BP neural network extracts deep correlations from non-sequence features (such as stratum lithology), thereby achieving multi-source data fusion modeling. Orthogonal experimental design was adopted to optimize the model hyperparameters, and the ablation experiment confirmed the necessity of the parallel architecture. The experimental results obtained based on the data of a certain coal mine in Shanxi Province show that the mean square errors (MSE) of the azimuth and dip angle angles of the Pi-GRU model are 0.06° and 0.01°, respectively. Compared with the emerging CNN-BiLSTM model, they are reduced by 66.67% and 76.92%, respectively. To evaluate the generalization performance of the model, we conducted cross-scenario validation on the dataset of the Dehong Coal Mine. The results showed that even under unknown geological conditions, the Pi-GRU model could still maintain high-precision predictions. The Pi-GRU model not only outperforms existing methods in terms of prediction accuracy, with an inference delay of only 0.21 milliseconds, but also requires much less computing power for training and inference than the maximum computing power of the Jetson TX2 hardware. This proves that the model has good practicability and deployability in the engineering field. It provides a new idea for real-time wellbore trajectory correction in intelligent drilling systems and shows strong application potential in engineering applications. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

24 pages, 2797 KiB  
Article
Multi-Objective Optimization of Transonic Variable Camber Airfoil with Leading- and Trailing-Edge Deflections Using Kriging Surrogate Model
by Wei Wang, He Feng, Shenao Cui and Zhandong Li
Aerospace 2025, 12(8), 659; https://doi.org/10.3390/aerospace12080659 - 24 Jul 2025
Viewed by 162
Abstract
To investigate the aerodynamic characteristics and multi-objective optimization of the variable camber airfoils, the influence of leading- and trailing-edge deflections on aerodynamic performance is conducted. A novel prediction model is presented using the Kriging surrogate model, with leading and trailing edge deflection angles [...] Read more.
To investigate the aerodynamic characteristics and multi-objective optimization of the variable camber airfoils, the influence of leading- and trailing-edge deflections on aerodynamic performance is conducted. A novel prediction model is presented using the Kriging surrogate model, with leading and trailing edge deflection angles as inputs and lift coefficients and drag coefficients as outputs. The Non-dominated Sorting Genetic Algorithm II (NSGA II) multi-objective optimization technique is applied to ascertain the ideal deflection parameters. The results show that upward deflection of the leading edge raises the lift, whereas downward deflection increases the value of the critical angle of attack. The deflection of the trailing edge increases the value of the critical angle of attack, while the downward deflection can enhance the lift coefficient. Appropriate upward deflections of both leading and trailing edges can delay the critical Mach number, while downward deflections of both the leading and trailing edges can enhance the value of the critical Mach number. The discrepancies between the Kriging model prediction and the CFD simulation are less than 2%. Compared to the basic airfoil, the aerodynamic performance of the optimized airfoil has been improved, with the lift coefficient increasing by 7.55% and 7.37% and the lift-to-drag ratio rising by 6.97% and 10.27% at two Mach numbers, respectively. The efficiency and reliability of this method have been verified. Full article
21 pages, 21323 KiB  
Article
C Band 360° Triangular Phase Shift Detector for Precise Vertical Landing RF System
by Víctor Araña-Pulido, B. Pablo Dorta-Naranjo, Francisco Cabrera-Almeida and Eugenio Jiménez-Yguácel
Appl. Sci. 2025, 15(15), 8236; https://doi.org/10.3390/app15158236 - 24 Jul 2025
Viewed by 83
Abstract
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point [...] Read more.
This paper presents a novel design for precise vertical landing of drones based on the detection of three phase shifts in the range of ±180°. The design has three inputs to which the signal transmitted from an oscillator located at the landing point arrives with different delays. The circuit increases the aerial tracking volume relative to that achieved by detectors with theoretical unambiguous detection ranges of ±90°. The phase shift measurement circuit uses an analog phase detector (mixer), detecting a maximum range of ±90°and a double multiplication of the input signals, in phase and phase-shifted, without the need to fulfill the quadrature condition. The calibration procedure, phase detector curve modeling, and calculation of the input signal phase shift are significantly simplified by the use of an automatic gain control on each branch, dwhich keeps input amplitudes to the analog phase detectors constant. A simple program to determine phase shifts and guidance instructions is proposed, which could be integrated into the same flight control platform, thus avoiding the need to add additional processing components. A prototype has been manufactured in C band to explain the details of the procedure design. The circuit uses commercial circuits and microstrip technology, avoiding the crossing of lines by means of switches, which allows the design topology to be extrapolated to much higher frequencies. Calibration and measurements at 5.3 GHz show a dynamic range greater than 50 dB and a non-ambiguous detection range of ±180°. These specifications would allow one to track the drone during the landing maneuver in an inverted cone formed by a surface with an 11 m radius at 10 m high and the landing point, when 4 cm between RF inputs is considered. The errors of the phase shifts used in the landing maneuver are less than ±3°, which translates into 1.7% losses over the detector theoretical range in the worst case. The circuit has a frequency bandwidth of 4.8 GHz to 5.6 GHz, considering a 3 dB variation in the input power when the AGC is limiting the output signal to 0 dBm at the circuit reference point of each branch. In addition, the evolution of phases in the landing maneuver is shown by means of a small simulation program in which the drone trajectory is inside and outside the tracking range of ±180°. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

18 pages, 1750 KiB  
Article
Delayed Feedback Chaos Control on a Cournot Game with Relative Profit Maximization
by Kosmas Papadopoulos, Georges Sarafopoulos and Evangelos Ioannidis
Mathematics 2025, 13(15), 2328; https://doi.org/10.3390/math13152328 - 22 Jul 2025
Viewed by 139
Abstract
This article concerns a Cournot duopoly game with homogeneous expectations. The cost functions of the two players are assumed to be asymmetric to capture possible asymmetries in firms’ technologies or firms’ input costs. Large values of the speed of adjustment of the players [...] Read more.
This article concerns a Cournot duopoly game with homogeneous expectations. The cost functions of the two players are assumed to be asymmetric to capture possible asymmetries in firms’ technologies or firms’ input costs. Large values of the speed of adjustment of the players destabilize the Nash Equilibrium (N.E.) and cause the appearance of a chaotic trajectory in the Discrete Dynamical System (D.D.S.). The scope of this article is to control the chaotic dynamics that appear outside the stability field, assuming asymmetric cost functions of the two players. Specifically, one player uses linear costs, while the other uses nonlinear costs (quadratic or cubic). The cubic cost functions are widely used in the Economic Dispatch Problem. The delayed feedback control method is applied by introducing a new control parameter at the D.D.S. It is shown that larger values of the control parameter keep the N.E. locally asymptotically stable even for higher values of the speed of adjustment. Full article
(This article belongs to the Special Issue Latest Advances in Mathematical Economics)
Show Figures

Figure 1

21 pages, 4145 KiB  
Article
Advances in Illumination of Lengthy Road Tunnels by Means of Innovative Vaulting and Sustainable Control of Flicker Perturbations
by Joseph Cabeza-Lainez and Antonio Peña-García
Sustainability 2025, 17(15), 6680; https://doi.org/10.3390/su17156680 - 22 Jul 2025
Viewed by 239
Abstract
Traditional approaches in tunnel lighting have been directed toward the installation of appropriate luminaires in the intermediate and transitional sections with the simple objective of diminishing the effect of delayed visual accommodation during daylight hours. Such efforts run in parallel with the target [...] Read more.
Traditional approaches in tunnel lighting have been directed toward the installation of appropriate luminaires in the intermediate and transitional sections with the simple objective of diminishing the effect of delayed visual accommodation during daylight hours. Such efforts run in parallel with the target of keeping the huge electrical use at the lowest level. Nevertheless, inadequate attention has been conceded to the interior areas, whose noticeable longitude in several instances, and subsequently the duration of occupancy of the users, can produce discomfort in the majority of the tunnel or underground passageway. It is in this region where the flicker effect presents a more remarkable impact. Although such effect is in fact uncomfortable, the strategies to eliminate it efficiently have not been developed in depth and the result is still deserving, especially in terms of sustainability. The reasons for this neglect, as well as some particularities and solutions, are exposed and discussed in the present article. Specifically, it is proved that the use of sunlight can be an adequate initiative and a positive energy input into design and retrofit tunnels capable of hampering or totally avoiding such unwanted effect. The innovative tunnel geometry explained in this manuscript is not cylindrical, and it is not based in revolution forms. Thus, it prevents the appearance of such unnerving visual effects, which compromise sustainability and endanger security. We are in the position to explain how the vector field generated by the normal to the points of the novel surface displayed remains non-parallel, ensuring appropriate diffusivity and, consequently, an even distribution of radiated energy. In the same manner, the notion of the tunnel is extended from a linear system to a veritable network of galleries, which can traverse in space bi- or even three-dimensionally. Accordingly, we will offer diverse instances of junctions and splices that further enhance the permeability into the terrain, augmenting the resilience capabilities of this disruptive technology. With all the former, a net reduction of costs reaching 25% can be easily expected with revenues. Full article
Show Figures

Figure 1

23 pages, 1150 KiB  
Article
ECHO: Enhancing Linux Kernel Fuzzing via Call Stack-Aware Crash Deduplication
by Shuoyu Tao, Baoju Zhang and Qiang Zhang
Electronics 2025, 14(14), 2914; https://doi.org/10.3390/electronics14142914 - 21 Jul 2025
Viewed by 162
Abstract
Fuzz testing plays a key role in improving Linux kernel security, but large-scale fuzzing often generates a high number of crash reports, many of which are redundant. These duplicated reports burden triage efforts and delay the identification of truly impactful bugs. Syzkaller, a [...] Read more.
Fuzz testing plays a key role in improving Linux kernel security, but large-scale fuzzing often generates a high number of crash reports, many of which are redundant. These duplicated reports burden triage efforts and delay the identification of truly impactful bugs. Syzkaller, a widely used kernel fuzzer, clusters crashes using instruction pointers and sanitizer metadata. However, this heuristic may misgroup distinct issues or split similar ones caused by the same root cause. To address this, we present ECHO, a lightweight call stack-based deduplication tool that analyzes structural similarity among kernel stack traces. By computing the longest common subsequence (LCS) between normalized call stacks, ECHO groups semantically related crashes and improves post-fuzzing analysis. We integrate ECHO into the Syzkaller fuzzing workflow and use it to prioritize inputs that trigger deeper, previously untested kernel paths. Evaluated across multiple Linux kernel versions, ECHO improves average code coverage by 15.2% and discovers 20 previously unknown bugs, all reported to the Linux kernel community. Our results highlight that stack-aware crash grouping not only streamlines triage, but also enhances fuzzing efficiency by guiding seed selection toward unexplored execution paths. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

18 pages, 425 KiB  
Article
Stability of Stochastic Delayed Recurrent Neural Networks
by Hongying Xiao, Mingming Xu, Yuanyuan Zhang and Shengquan Weng
Mathematics 2025, 13(14), 2310; https://doi.org/10.3390/math13142310 - 19 Jul 2025
Viewed by 141
Abstract
This paper addresses the stability of stochastic delayed recurrent neural networks (SDRNNs), identifying challenges in existing scalar methods, which suffer from strong assumptions and limited applicability. Three key innovations are introduced: (1) weakening noise perturbation conditions by extending diagonal matrix assumptions to non-negative [...] Read more.
This paper addresses the stability of stochastic delayed recurrent neural networks (SDRNNs), identifying challenges in existing scalar methods, which suffer from strong assumptions and limited applicability. Three key innovations are introduced: (1) weakening noise perturbation conditions by extending diagonal matrix assumptions to non-negative definite matrices; (2) establishing criteria for both mean-square exponential stability and almost sure exponential stability in the absence of input; (3) directly handling complex structures like time-varying delays through matrix analysis. Compared with prior studies, this approach yields broader stability conclusions under weaker conditions, with numerical simulations validating the theoretical effectiveness. Full article
Show Figures

Figure 1

20 pages, 690 KiB  
Article
Wearable Sensor-Based Human Activity Recognition: Performance and Interpretability of Dynamic Neural Networks
by Dalius Navakauskas and Martynas Dumpis
Sensors 2025, 25(14), 4420; https://doi.org/10.3390/s25144420 - 16 Jul 2025
Viewed by 311
Abstract
Human Activity Recognition (HAR) using wearable sensor data is increasingly important in healthcare, rehabilitation, and smart monitoring. This study systematically compared three dynamic neural network architectures—Finite Impulse Response Neural Network (FIRNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)—to examine their suitability [...] Read more.
Human Activity Recognition (HAR) using wearable sensor data is increasingly important in healthcare, rehabilitation, and smart monitoring. This study systematically compared three dynamic neural network architectures—Finite Impulse Response Neural Network (FIRNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)—to examine their suitability and specificity for HAR tasks. A controlled experimental setup was applied, training 16,500 models across different delay lengths and hidden neuron counts. The investigation focused on classification accuracy, computational cost, and model interpretability. LSTM achieved the highest classification accuracy (98.76%), followed by GRU (97.33%) and FIRNN (95.74%), with FIRNN offering the lowest computational complexity. To improve model transparency, Layer-wise Relevance Propagation (LRP) was applied to both input and hidden layers. The results showed that gyroscope Y-axis data was consistently the most informative, while accelerometer Y-axis data was the least informative. LRP analysis also revealed that GRU distributed relevance more broadly across hidden units, while FIRNN relied more on a small subset. These findings highlight trade-offs between performance, complexity, and interpretability and provide practical guidance for applying explainable neural wearable sensor-based HAR. Full article
Show Figures

Figure 1

17 pages, 820 KiB  
Article
Optimized Hybrid Precoding for Wideband Terahertz Massive MIMO Systems with Angular Spread
by Ye Wang, Chuxin Chen, Ran Zhang and Yiqiao Mei
Electronics 2025, 14(14), 2830; https://doi.org/10.3390/electronics14142830 - 15 Jul 2025
Viewed by 210
Abstract
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz [...] Read more.
Terahertz (THz) communication is regarded as a promising technology for future 6G networks because of its advances in providing a bandwidth that is orders of magnitude wider than current wireless networks. However, the large bandwidth and the large number of antennas in THz massive multiple-input multiple-output (MIMO) systems induce a pronounced beam split effect, leading to a serious array gain loss. To mitigate the beam split effect, this paper considers a delay-phase precoding (DPP) architecture in which a true-time-delay (TTD) network is introduced between radio-frequency (RF) chains and phase shifters (PSs) in the standard hybrid precoding architecture. Then, we propose a fast Riemannian conjugate gradient optimization-based alternating minimization (FRCG-AltMin) algorithm to jointly optimize the digital precoding, analog precoding, and delay matrix, aiming to maximize the spectral efficiency. Different from the existing method, which solves an approximated version of the analog precoding design problem, we adopt an FRCG method to deal with the original problem directly. Simulation results demonstrate that our proposed algorithm can improve the spectral efficiency, and achieve superior performance over the existing algorithm for wideband THz massive MIMO systems with angular spread. Full article
Show Figures

Figure 1

34 pages, 3299 KiB  
Project Report
On Control Synthesis of Hydraulic Servomechanisms in Flight Controls Applications
by Ioan Ursu, Daniela Enciu and Adrian Toader
Actuators 2025, 14(7), 346; https://doi.org/10.3390/act14070346 - 14 Jul 2025
Viewed by 181
Abstract
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The [...] Read more.
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The first one outlines a classical theory, from the 1950s–1970s, of the analysis of nonlinear automatic systems and namely the issue of absolute stability. The uninformed public may be misled by the adjective “absolute”. This is not a “maximalist” solution of stability but rather highlights in the system of equations a nonlinear function that describes, for the case of hydraulic servomechanisms, the flow-control dependence in the distributor spool. This function is odd, and it is therefore located in quadrants 1 and 3. The decision regarding stability is made within the so-called Lurie problem and is materialized by a matrix inequality, called the Lefschetz condition, which must be satisfied by the parameters of the electrohydraulic servomechanism and also by the components of the control feedback vector. Another approach starts from a classical theorem of V. M. Popov, extended in a stochastic framework by T. Morozan and I. Ursu, which ends with the description of the local and global spool valve flow-control characteristics that ensure stability in the large with respect to bounded perturbations for the mechano-hydraulic servomechanism. We add that a conjecture regarding the more pronounced flexibility of mathematical models in relation to mathematical instruments (theories) was used. Furthermore, the second topic concerns, the importance of the impedance characteristic of the mechano-hydraulic servomechanism in preventing flutter of the flight controls is emphasized. Impedance, also called dynamic stiffness, is defined as the ratio, in a dynamic regime, between the output exerted force (at the actuator rod of the servomechanism) and the displacement induced by this force under the assumption of a blocked input. It is demonstrated in the paper that there are two forms of the impedance function: one that favors the appearance of flutter and another that allows for flutter damping. It is interesting to note that these theoretical considerations were established in the institute’s reports some time before their introduction in the Aviation Regulation AvP.970. However, it was precisely the absence of the impedance criterion in the regulation at the appropriate time that ultimately led, by chance or not, to a disaster: the crash of a prototype due to tailplane flutter. A third topic shows how an important problem in the theory of automatic systems of the 1970s–1980s, namely the robust synthesis of the servomechanism, is formulated, applied and solved in the case of an electrohydraulic servomechanism. In general, the solution of a robust servomechanism problem consists of two distinct components: a servo-compensator, in fact an internal model of the exogenous dynamics, and a stabilizing compensator. These components are adapted in the case of an electrohydraulic servomechanism. In addition to the classical case mentioned above, a synthesis problem of an anti-windup (anti-saturation) compensator is formulated and solved. The fourth topic, and the last one presented in detail, is the synthesis of a fuzzy supervised neurocontrol (FSNC) for the position tracking of an electrohydraulic servomechanism, with experimental validation, in the laboratory, of this control law. The neurocontrol module is designed using a single-layered perceptron architecture. Neurocontrol is in principle optimal, but it is not free from saturation. To this end, in order to counteract saturation, a Mamdani-type fuzzy logic was developed, which takes control when neurocontrol has saturated. It returns to neurocontrol when it returns to normal, respectively, when saturation is eliminated. What distinguishes this FSNC law is its simplicity and efficiency and especially the fact that against quite a few opponents in the field, it still works very well on quite complicated physical systems. Finally, a brief section reviews some recent works by the authors, in which current approaches to hydraulic servomechanisms are presented: the backstepping control synthesis technique, input delay treated with Lyapunov–Krasovskii functionals, and critical stability treated with Lyapunov–Malkin theory. Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
Show Figures

Figure 1

15 pages, 5202 KiB  
Article
Power-Independent Microwave Photonic Instantaneous Frequency Measurement System
by Ruiqiong Wang and Yongjun Li
Sensors 2025, 25(14), 4382; https://doi.org/10.3390/s25144382 - 13 Jul 2025
Viewed by 300
Abstract
The ability to perform instantaneous frequency measurement (IFM) of unknown microwave signals holds significant importance across various application domains. This paper presents a power-independent microwave photonic IFM system. The proposed system implements frequency measurement through the construction of an amplitude comparison function (ACF) [...] Read more.
The ability to perform instantaneous frequency measurement (IFM) of unknown microwave signals holds significant importance across various application domains. This paper presents a power-independent microwave photonic IFM system. The proposed system implements frequency measurement through the construction of an amplitude comparison function (ACF) curve, achieved by introducing a frequency-dependent time delay via an optical tunable delay line (OTDL) for the signal under test (SUT). System simulation demonstrates the measurement capability across a wide bandwidth of 0.1–40 GHz with high precision, exhibiting frequency errors ranging from −0.03 to 0.04 GHz. The scheme also maintains consistent performance under varying input power levels. Key implementation aspects, including single-sideband modulation selection and system extension methods, are analyzed in detail to optimize measurement accuracy. Notably, the proposed architecture features a simple and compact design with excellent integration potential. These characteristics, combined with its wide operational bandwidth and high measurement precision, make this approach particularly suitable for demanding applications in electronic reconnaissance and communication. Full article
(This article belongs to the Special Issue Advanced Microwave Sensors and Their Applications in Measurement)
Show Figures

Figure 1

28 pages, 11429 KiB  
Article
Trajectory Tracking of Unmanned Surface Vessels Based on Robust Neural Networks and Adaptive Control
by Ziming Wang, Chunliang Qiu, Zaopeng Dong, Shaobo Cheng, Long Zheng and Shunhuai Chen
J. Mar. Sci. Eng. 2025, 13(7), 1341; https://doi.org/10.3390/jmse13071341 - 13 Jul 2025
Viewed by 224
Abstract
In this paper, a robust neural adaptive controller is proposed for the trajectory tracking control problem of unmanned surface vessels (USVs), considering model uncertainty, time-varying environmental disturbance, and actuator saturation. First, measurement errors in acceleration signals are eliminated through filtering techniques and a [...] Read more.
In this paper, a robust neural adaptive controller is proposed for the trajectory tracking control problem of unmanned surface vessels (USVs), considering model uncertainty, time-varying environmental disturbance, and actuator saturation. First, measurement errors in acceleration signals are eliminated through filtering techniques and a series of auxiliary variables, and after linearly parameterizing the USV dynamic model, a parameter adaptive update law is developed based on Lyapunov’s second method to estimate unknown dynamic parameters in the USV dynamics model. This parameter adaptive update law enables online identification of all USV dynamic parameters during trajectory tracking while ensuring convergence of the estimation errors. Second, a radial basis function neural network (RBF-NN) is employed to approximate unmodeled dynamics in the USV system, and on this basis, a robust damping term is designed based on neural damping technology to compensate for environmental disturbances and unmodeled dynamics. Subsequently, a trajectory tracking controller with parameter adaptation law and robust damping term is proposed using Lyapunov theory and adaptive control techniques. In addition, finite-time auxiliary variables are also added to the controller to handle the actuator saturation problem. Signal delay compensators are designed to compensate for input signal delays in the control system, thereby enhancing controller reliability. The proposed controller ensures robustness in trajectory tracking under model uncertainties and time-varying environmental disturbances. Finally, the convergence of each signal of the closed-loop system is proved based on Lyapunov theory. And the effectiveness of the control system is verified by numerical simulation experiments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 13140 KiB  
Article
Development and Characterization of Optimized Drug-Loaded Niosomes for Delivery of 5-FU and Irinotecan
by Kafilat O. Agbaje, Simeon K. Adesina and Amusa S. Adebayo
Pharmaceutics 2025, 17(7), 900; https://doi.org/10.3390/pharmaceutics17070900 - 11 Jul 2025
Viewed by 327
Abstract
Background/Objectives: 5-Fluorouracil (5-FU) and Irinotecan (IRT) are two of the most used chemotherapeutic agents in CRC treatment. However, achieving treatment goals has been hampered by poor drug delivery to tumor sites and associated toxicity from off-target binding to healthy cells. Though the [...] Read more.
Background/Objectives: 5-Fluorouracil (5-FU) and Irinotecan (IRT) are two of the most used chemotherapeutic agents in CRC treatment. However, achieving treatment goals has been hampered by poor drug delivery to tumor sites and associated toxicity from off-target binding to healthy cells. Though the synergism of 5-FU-IRT has provided incremental improvements in clinical outcomes, the short elimination half-life and off-target binding to healthy cells remain significant challenges. We postulated that nanoencapsulation of a combination of 5-FU and IRT in niosomes would prolong the drugs’ half-lives, while over-encapsulation lyophilized powder in Targit® oral capsules would passively the CRC microenvironment and avoid extensive systemic distribution. Methods: Ranges of formulation and process variables were input into design of experiment (DOE Fusion One) software, to generate screening experiments. Niosomes were prepared using the thin-film hydration method and characterized by size, the polydispersity index (PDI), morphology and intrastructure, and drug loading. Blank niosomes ranged in size from 215 nm to 257 nm. Results: After loading with the 5-FU-IRT combination, the niosomes averaged 251 ± 2.20 nm with a mean PDI of 0.293 ± 0.01. The surfactant-to-cholesterol ratio significantly influenced the niosome size and the PDI. The hydrophilic 5-FU exhibited superior loading compared to the lipophilic IRT molecules, which probably competed with other lipophilic niosome components in niosomes’ palisade layers. In vitro dissolution in biorelevant media showed delayed release until lower intestinal region (IRT) or colonic region (5-FU). Conclusions: Thus, co-nanoencapsulation of 5-FU/IRT in niosomes, lyophilization, and over-encapsulation of powder in colon-specific capsules could passively target the CRC cells in the colonic microenvironment. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

21 pages, 3739 KiB  
Article
A Novel Energy Control Digital Twin System with a Resource-Aware Optimal Forecasting Model Selection Scheme
by Jin-Woo Kwon, Anwar Rubab and Won-Tae Kim
Appl. Sci. 2025, 15(14), 7738; https://doi.org/10.3390/app15147738 - 10 Jul 2025
Viewed by 189
Abstract
As global energy demand intensifies across industrial, commercial, and residential domains, efficient and accurate energy management and control become crucial. Energy Digital Twins (EDTs), leveraging sensor measurement data and precise time-series forecasting models, offer promising monitoring, prediction, and optimization solutions for such services. [...] Read more.
As global energy demand intensifies across industrial, commercial, and residential domains, efficient and accurate energy management and control become crucial. Energy Digital Twins (EDTs), leveraging sensor measurement data and precise time-series forecasting models, offer promising monitoring, prediction, and optimization solutions for such services. Edge computing enables EDTs to deliver real-time management services placed closer to users. However, the existing energy management methodologies may fail to consider the limited resources of edge environments, which may cause service delays and reduced accuracy in management services. To solve this problem, we propose a novel energy control digital twin system with a resource-aware optimal forecasting mode selection scheme. The system dynamically selects optimal forecasting models by integrating statistical features of the input time series with available resources. It employs a two-stage approach: first, it identifies promising models through similarity detection in past time series; second, this initial recommendation is refined by considering the available computing resources to pinpoint the optimal forecasting model. This mechanism enhances adaptability and responsiveness in resource-constrained environments. Utilizing real-world LPG consumption data from 887 sensors, the proposed system achieves forecasting accuracy comparable to previous methods while reducing latency by up to 19 times in low-resource settings. Full article
(This article belongs to the Special Issue Digital Twin and IoT)
Show Figures

Figure 1

Back to TopTop