Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (153)

Search Parameters:
Keywords = inorganic salt additives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1745 KiB  
Article
Balanced Fertilization of Winter Wheat with Potassium and Magnesium—An Effective Way to Manage Fertilizer Nitrogen Sustainably
by Agnieszka Andrzejewska, Katarzyna Przygocka-Cyna and Witold Grzebisz
Sustainability 2025, 17(15), 6705; https://doi.org/10.3390/su17156705 - 23 Jul 2025
Viewed by 422
Abstract
In agricultural practice, in addition to determining the nitrogen (Nf) dose, it is necessary to effectively control its effect on currently grown crops. Meeting these conditions requires not only the use of phosphorus (P) and potassium (K), but also nutrients such [...] Read more.
In agricultural practice, in addition to determining the nitrogen (Nf) dose, it is necessary to effectively control its effect on currently grown crops. Meeting these conditions requires not only the use of phosphorus (P) and potassium (K), but also nutrients such as magnesium (Mg) and sulfur (S). This hypothesis was verified in a single-factor field experiment with winter wheat (WW) carried out in the 2015/2016, 2016/2017, and 2017/2018 growing seasons. The experiment consisted of seven variants: absolute control (AC), NP, NPK-MOP (K as Muriate of Potash), NPK-MOP+Ki (Kieserite), NPK-KK (K as Korn–Kali), NPK-KK+Ki, and NPK-KK+Ki+ES (Epsom Salt). The use of K as MOP increased grain yield (GY) by 6.3% compared to NP. In the NPK-KK variant, GY was 13% (+0.84 t ha−1) higher compared to NP. Moreover, GYs in this fertilization variant (FV) were stable over the years (coefficient of variation, CV = 9.4%). In NPK-KK+Ki+ES, the yield increase was the highest and mounted to 17.2% compared to NP, but the variability over the years was also the highest (CV ≈ 20%). The amount of N in grain N (GN) increased progressively from 4% for NPK-MOP to 15% for NPK-KK and 25% for NPK-KK+Ki+ES in comparison to NP. The nitrogen harvest index was highly stable, achieving 72.6 ± 3.1%. All analyzed NUE indices showed a significant response to FVs. The PFP-Nf (partial factor productivity of Nf) indices increased on NPK-MOP by 5.8%, NPK-KK by 12.9%, and NPK-KK+Ki+ES by 17.9% compared to NP. The corresponding Nf recovery of Nf in wheat grain was 47.2%, 55.9%, and 64.4%, but its total recovery by wheat (grain + straw) was 67%, 74.5%, and 87.2%, respectively. In terms of the theoretical and practical value of the tested indexes, two indices, namely, NUP (nitrogen unit productivity) and NUA (nitrogen unit accumulation), proved to be the most useful. From the farmer’s production strategy, FV with K applied in the form of Korn–Kali proved to be the most stable option due to high and stable yield, regardless of weather conditions. The increase in the number of nutritional factors optimizing the action of nitrogen in winter wheat caused the phenomenon known as the “scissors effect”. This phenomenon manifested itself in a progressive increase in nitrogen unit productivity (NUP) combined with a regressive trend in unit nitrogen accumulation (NUA) in the grain versus the balance of soil available Mg (Mgb). The studies clearly showed that obtaining grain that met the milling requirements was recorded only for NUA above 22 kg N t−1 grain. This was possible only with the most intensive Mg treatment (NPK-KK+Ki and NPK-KK+Ki+ES). The study clearly showed that three of the six FVs fully met the three basic conditions for sustainable crop production: (i) stabilization and even an increase in grain yield; (ii) a decrease in the mass of inorganic N in the soil at harvest, potentially susceptible to leaching; and (iii) stabilization of the soil fertility of P, K, and Mg. Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

21 pages, 30222 KiB  
Article
Stability Analysis of Polymer Flooding-Produced Liquid in Oilfields Based on Molecular Dynamics Simulation
by Qian Huang, Mingming Shen, Lingyan Mu, Yuan Tian, Huirong Huang and Xueyuan Long
Materials 2025, 18(10), 2349; https://doi.org/10.3390/ma18102349 - 18 May 2025
Viewed by 545
Abstract
The S oilfield has adopted polymer flooding technology, specifically using partially hydrolyzed polyacrylamide (HPAM), to enhance oil recovery. During the production process, the S oilfield has generated a substantial amount of stable polymer flooding-produced liquid, in which oil droplets are difficult to effectively [...] Read more.
The S oilfield has adopted polymer flooding technology, specifically using partially hydrolyzed polyacrylamide (HPAM), to enhance oil recovery. During the production process, the S oilfield has generated a substantial amount of stable polymer flooding-produced liquid, in which oil droplets are difficult to effectively coalesce, presenting significant challenges in demulsification. This article focuses on the produced fluids from S Oilfield as the research subject, developing a molecular dynamics model for the stability analysis of production liquid, including the molecular dynamics model of an oil–pure water system, an oil–mineralized water system and an oil–polymer–mineralized water system, using the principle of molecular dynamics and combining it with the basic molecular model for analyzing the stability of polymer flooding-production liquid. Through the molecular dynamics simulation of the stability analysis of the extracted liquid, the changing rules of the molecular diffusion coefficient, radial distribution function (RDF), interfacial interaction energy, and interfacial tension under the action of ions as well as polymers in water were investigated. The simulation results demonstrate that the presence of all three inorganic salt ions (Na+, Ca2+, and Mg2+) reduces the interfacial tension between oil and water and stabilizes the interface. Following the addition of polymer, the interfacial tension of the system decreases and the interfacial interaction energy increases significantly, indicating that the stability of the system is significantly enhanced by HPAM. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

19 pages, 3570 KiB  
Article
Effect of β-Cyclodextrin on the Aggregation Behavior of Sodium Deoxycholate and Sodium Cholate in Aqueous Solution
by Vesna Tepavčević, Zita Farkaš Agatić, Ana Pilipović, Gorana Puača and Mihalj Poša
Molecules 2025, 30(10), 2197; https://doi.org/10.3390/molecules30102197 - 17 May 2025
Cited by 1 | Viewed by 673
Abstract
This study investigated the influence of β-cyclodextrin (βCD) on the micellization behavior of two bile salt surfactants, sodium deoxycholate (NaDC) and sodium cholate (NaC), in aqueous solutions. Tensiometry, conductometric, and spectrofluorimetric techniques were employed to determine critical micelle concentrations (CMCs) in the presence [...] Read more.
This study investigated the influence of β-cyclodextrin (βCD) on the micellization behavior of two bile salt surfactants, sodium deoxycholate (NaDC) and sodium cholate (NaC), in aqueous solutions. Tensiometry, conductometric, and spectrofluorimetric techniques were employed to determine critical micelle concentrations (CMCs) in the presence of varying concentrations of βCD, as well as in the presence of inorganic salts (NaCl and CsCl). The results showed that βCD forms inclusion complexes with both bile salts, leading to an increase in their CMCs, consistent with a competitive interaction between micelle formation and complexation. The inclusion constants, determined graphically, revealed stronger complexation for NaDC than NaC, attributed to differences in hydrophobic surface area. Salt addition decreased the CMC of both surfactants, with CsCl having a more pronounced effect. However, salt presence also modulated the inclusion complex formation, suggesting specific ion effects influence the availability and behavior of βCD. These findings contribute to the understanding of bile salt–cyclodextrin interactions and their modulation by electrolytes, with implications for drug delivery and supramolecular chemistry. Full article
(This article belongs to the Special Issue Bioactive Compounds Encapsulation System: Design and Applications)
Show Figures

Figure 1

27 pages, 937 KiB  
Review
Use of Hydrogen Peroxide as Oxidizing Agent in Chalcopyrite Leaching: A Review
by Danny J. Flores, Teófilo A. Graber, Alejandro H. Angel-Castillo, Pía C. Hernández and María E. Taboada
Metals 2025, 15(5), 531; https://doi.org/10.3390/met15050531 - 8 May 2025
Cited by 2 | Viewed by 1116
Abstract
Leaching represents a significant challenge for the mining industry due to its slow and incomplete kinetics under ambient conditions (20 °C, 1 atm) and its increased prevalence in global ore deposits. In this context, the use of hydrogen peroxide (H2O2 [...] Read more.
Leaching represents a significant challenge for the mining industry due to its slow and incomplete kinetics under ambient conditions (20 °C, 1 atm) and its increased prevalence in global ore deposits. In this context, the use of hydrogen peroxide (H2O2) has proved to be a promising oxidizing agent for improving process efficiency. This article reviews the most recent breakthroughs in the use of H2O2 for chalcopyrite leaching, analyzing the experimental conditions that maximize copper extraction, including combinations with novel leachants such as organic systems, inorganic salts, and amino acids. In addition, the main challenges associated with the use of H2O2, such as its catalytic decomposition and thermal stability, are highlighted, along with strategies to overcome these limitations. Perspectives and challenges for its application are presented, emphasizing the need for hybrid and optimized approaches to integrate this oxidizing agent in sustainable hydrometallurgical processes. The objective of this paper is to make an exhaustive review of what has been published on chalcopyrite leaching in order to find ways to leach it in large quantities and in a simple way. Full article
Show Figures

Figure 1

13 pages, 2023 KiB  
Article
Effects of Inorganic Salts on Curdlan Production and Structural Properties
by Xinyi Zhu, Bowei Yao, Siyang Yue, Zhongyi Chang, Xuexia Yang and Hongliang Gao
Gels 2025, 11(5), 313; https://doi.org/10.3390/gels11050313 - 23 Apr 2025
Viewed by 404
Abstract
This research investigates the influence of inorganic salts on curdlan production, gel strength, molecular weight (Mw), and texture properties, to provide insights into optimizing fermentation conditions. Five different inorganic salts were individually incorporated into the fermentation medium to assess their impact. The results [...] Read more.
This research investigates the influence of inorganic salts on curdlan production, gel strength, molecular weight (Mw), and texture properties, to provide insights into optimizing fermentation conditions. Five different inorganic salts were individually incorporated into the fermentation medium to assess their impact. The results showed that FeCl3 significantly reduced curdlan yield, Mw, and gel quality, indicating its unsuitability for curdlan fermentation. FeSO4 at 0.01% enhanced yield, gel strength, and texture properties, such as springiness and chewiness, though higher concentrations had adverse effects. MnCl2 exhibited limited impact on yield, with low concentrations notably decreasing gel strength, hardness, springiness, and chewiness. CoCl2 was the most effective additive, with a concentration of 0.002% achieving optimal results for yield, Mw, gel strength, and texture, though higher levels diminished these benefits. ZnCl2 at 0.04% improved gel strength, chewiness, and Mw but had minimal effect on other properties. A correlation (R2 = 0.5064) was observed between Mw and gel strength, indicating Mw’s critical role in curdlan’s mechanical properties. Overall, CoCl2 and FeSO4 at specific concentrations demonstrated potential for enhancing curdlan quality and offered practical insights for tailoring fermentation processes to achieve desired properties in industrial applications. Full article
(This article belongs to the Special Issue State-of-the-Art Gel Research in China)
Show Figures

Figure 1

16 pages, 2302 KiB  
Article
Investigation of the Factors and Mechanisms Affecting the Foaming of Triethylene Glycol in Natural Gas Purification
by Hongyi Liang, Qian Huang, Xin Li, Quan Wu, Han Yan, Jiang Meng and Xueyuan Long
Processes 2025, 13(5), 1261; https://doi.org/10.3390/pr13051261 - 22 Apr 2025
Cited by 1 | Viewed by 637
Abstract
With increasing natural gas processing demands, triethylene glycol (TEG) in dehydration systems becomes contaminated by gas-carried impurities, leading to problematic foaming, degradation, and significant glycol losses that compromise operational economics, pipeline integrity, and product quality. To systematically investigate impurity effects, we conducted comprehensive [...] Read more.
With increasing natural gas processing demands, triethylene glycol (TEG) in dehydration systems becomes contaminated by gas-carried impurities, leading to problematic foaming, degradation, and significant glycol losses that compromise operational economics, pipeline integrity, and product quality. To systematically investigate impurity effects, we conducted comprehensive single-factor TEG regeneration experiments simulating field conditions. Through precise measurements of foaming height, defoaming time, and interfacial tension, we established clear correlations between impurity types and TEG foaming characteristics. Our results demonstrate a distinct hierarchy of foaming influence: chemical additives > solid impurities > water-soluble inorganic salts > MDEA > hydrogen sulfide > hydrocarbons. Chemical additives showed the most pronounced effect on surface tension, reducing it to 31.1 mN/m at 1500 mg/L. Water-soluble inorganic salts affected foaming through combined decomposition and crystalline morphology effects, ranked as MgCl2 > NaHCO3 > KCl > NaCl > Na2SO4 > CaCl2 (MgCl2 achieving 33.8 mN/m at 2000 mg/L). Solid impurity impacts correlated strongly with particle morphology (CaCO3 > Fe2O3 > CaSO4 > ZnO > CuO > Al2O3 > FeS), stabilizing at 1.5 mg/L. Hydrocarbons showed negligible influence, while hydrogen sulfide and MDEA caused only minor surface tension reductions with limited foaming effects. Based on these findings, we propose targeted mitigation strategies for industrial implementation. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 4035 KiB  
Article
Realizing Environmentally Scalable Pre-Lithiation via Protective Coating of LiSi Alloys to Promote High-Energy-Density Lithium-Ion Batteries
by Yinan Liu, Wei Jiang, Congcong Zhang, Pingshan Jia, Zhiyuan Zhang, Yun Zheng, Kunye Yan, Jun Wang, Yunxian Qian, Junpo Guo, Rong Chen, Yike Huang, Yingying Shen, Lifen Long, Bang Zheng and Huaiyu Shao
Inorganics 2025, 13(4), 115; https://doi.org/10.3390/inorganics13040115 - 6 Apr 2025
Cited by 1 | Viewed by 924
Abstract
Pre-lithiation using Li–Si alloy-type additives is a promising technical approach to address the drawbacks of Si-based anodes, such as a low initial Coulombic efficiency (ICE) and inevitable capacity decay during cycling. However, its commercial application is limited by the air sensitivity of the [...] Read more.
Pre-lithiation using Li–Si alloy-type additives is a promising technical approach to address the drawbacks of Si-based anodes, such as a low initial Coulombic efficiency (ICE) and inevitable capacity decay during cycling. However, its commercial application is limited by the air sensitivity of the highly reactive Li–Si alloys, which demands improved environmental stability. In this work, a protective membrane is constructed on Li13Si4 alloys using low-surface-energy paraffin and highly conductive carbon nanotubes through liquid-phase deposition, exhibiting enhanced hydrophobicity and improved Li+/e conductivity. The Li13Si4@Paraffin/carbon nanotubes (Li13Si4@P-CNTs) composite achieves a high pre-lithiation capacity of 970 mAh g−1 and superb environmental stability, retaining 92.2% capacity after exposure to ambient air with 45% relative humidity. DFT calculations and in situ XRD measurements reveal that the paraffin-dominated coating membrane, featuring weak dipole–dipole interactions with water molecules, effectively reduces the moisture-induced oxidation kinetics of Li13Si4@P-CNTs in air. Electrochemical kinetic analysis and XPS depth profiling reveal the enhancement in charge transfer dynamics and surface Li+ transport kinetics (SEI rich in inorganic lithium salts) in P-SiO@C pre-lithiated by Li13Si4@P-CNTs pre-lithiation additives. Benefitting from pre-lithiation via Li13Si4@P-CNTs, the pre-lithiated SiO@C(P-SiO@C) delivers high ICE (103.7%), stable cycling performance (981 mAh g−1 at 200 cycles) and superior rate performance (474.5 mAh g−1 at 3C) in a half-cell system. The LFP||P-Gr pouch-type full cell exhibits a capacity retention of 83.2% (2500 cycles) and an energy density of 381 Wh kg−1 after 2500 cycles. The Li13Si4@P-CNTs additives provide valuable design concepts for the development of pre-lithiation materials. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Energy Storage Devices)
Show Figures

Graphical abstract

17 pages, 2634 KiB  
Article
Mechanisms of Low Temperature Thickening of Different Materials for Deepwater Water-Based Drilling Fluids
by Zhongyi Wang, Jinsheng Sun, Kaihe Lv, Xianbin Huang, Zhenhang Yuan and Yang Zhang
Gels 2024, 10(12), 789; https://doi.org/10.3390/gels10120789 - 2 Dec 2024
Viewed by 1167
Abstract
During deepwater drilling, the low mudline temperatures and narrow safe density window pose serious challenges to the safe and efficient performance of deepwater water-based drilling fluids. Low temperatures can lead to physical and chemical changes in the components of water-based drilling fluids and [...] Read more.
During deepwater drilling, the low mudline temperatures and narrow safe density window pose serious challenges to the safe and efficient performance of deepwater water-based drilling fluids. Low temperatures can lead to physical and chemical changes in the components of water-based drilling fluids and the behavior of low temperature gelation. As a coarse dispersion system, water-based drilling fluid has a complex composition of dispersed phase and dispersing medium. Further clarification of low temperature gelation would be helpful in developing technical approaches to enhance the flat rheology performance of deepwater water-based drilling fluids. In this paper, different components are separated in order to comprehensively analyze the gelation behavior of different materials in water-based drilling fluids at low temperatures. In the first place, the rheological and hydrodynamic radius alterations of inorganic salts, bentonite, and additives in aqueous solutions were examined at low temperatures. The effects of inorganic salts, bentonite, and additives on the purified water system were investigated at low (4 °C)–normal (25 °C)–high (75 °C) temperatures. The low temperature gelation of different materials in pure water systems are fully clarified. The mud containing 4% bentonite with weak low temperature gelation commonly used in deepwater water-based drilling fluids was selected as the basic test system. Inorganic salts, additives, and solid-phase materials were added to the mud containing 4% bentonite. The effects of the interactions between different materials and bentonite particles on the low temperature gelation behavior of mud were analyzed. The higher the bentonite dosage, the stronger the low temperature gelation behavior of mud. The higher the addition of inorganic salts, the more serious the low temperature gelation behavior of mud. Inorganic salts should be avoided as much as possible to add too much. The low temperature gelation behavior of mud with low-viscosity additives is weak. However, the viscosity of mud with high-viscosity additives has a small change in viscosity with increasing temperature. The low temperature gelation of mud with the addition of solid-phase particulate materials with reactive groups on the surface is strong, and the low temperature gelation with the addition of inert particles is weak. This paper elucidates the low temperature gelation mechanism of bentonite, inorganic salts, additives, and solid-phase materials in deepwater water-based drilling fluids. The conclusion can also be used to guide the construction of a drilling fluid system, which is of great significance for the research and development of deepwater water-based drilling fluid additives and the safe and efficient performance of deepwater drilling fluids. Full article
(This article belongs to the Special Issue Gels in the Oil Field)
Show Figures

Figure 1

24 pages, 3096 KiB  
Article
The Effect of Biochar Particle Size on the Leaching of Organic Molecules and Macro- and Microelements
by Sarka Sovova, Ludmila Mravcova, Jaromir Porizka, Leona Kubikova and Michal Kalina
Agronomy 2024, 14(10), 2346; https://doi.org/10.3390/agronomy14102346 - 11 Oct 2024
Viewed by 1497
Abstract
Biochar is a carbon-rich material that has recently received attention due to its increasing agronomical potential. The agricultural utilization of biochar relates to its potential to act in the soil as a soil conditioner; nevertheless, complex information on the direct dependence of biochar’s [...] Read more.
Biochar is a carbon-rich material that has recently received attention due to its increasing agronomical potential. The agricultural utilization of biochar relates to its potential to act in the soil as a soil conditioner; nevertheless, complex information on the direct dependence of biochar’s physical properties (texture, particle size) and corresponding leaching and availability of organic molecules (e.g., the polycyclic and heterocyclic organic compounds) and inorganic mineral salts (based on micro- and macroelements) is still inconsistent. Multi-elemental analysis by using inductively coupled plasma atomic emission spectroscopy (ICP-OES) was used to assess the information on the contents and availability of macro- and microelements in studied commercial biochar samples. The results showed a statistically significant indirect relation between an increase in the size fraction of biochar and the content of aqueous-extractable K and Na and the direct relation with the aqueous-extractable Ca, Mg, and P. Compared to the macroelements, the detected contents of aqueous-extractable microelements were almost three orders lower, and the dependence on fraction size was not consistent or statistically significant. In addition, gas chromatography (GC) coupled with mass spectroscopy (MS) was further used to reveal the concentrations of available polycyclic aromatic and heterocyclic compounds in biochar samples. The detected concentrations of these types of organic compounds were far below the certified limits, and a statistically significant indirect correlation with particle size was also observed for all the studied biochar samples. The proposed methodological concept could provide the necessary insights into the description of biochar mineral content and its connection to biochar texture, the physicochemical properties, and the potential of biochar to release nutrients into the soil. These findings could help in the further assessment of biochar as a soil conditioner in modern agriculture. Full article
Show Figures

Figure 1

16 pages, 3170 KiB  
Article
Comparative Physiological and Gene Expression Analyses Provide Insights into Ion Transports and Osmotic Adjustment of Sweet Sorghum under Salt Stress
by Jie Kang, Xiao-Long Wang, Shi-Jie Yan, Huan Guo and Yan-Nong Cui
Agronomy 2024, 14(8), 1849; https://doi.org/10.3390/agronomy14081849 - 21 Aug 2024
Cited by 1 | Viewed by 932
Abstract
Sweet sorghum is an important sugar crop and forage with a strong tolerance to soil salinity. We have previously analyzed the ion accumulation traits and transcriptome of a sweet sorghum cultivar under NaCl treatments. However, the mechanisms underlying Na+, K+ [...] Read more.
Sweet sorghum is an important sugar crop and forage with a strong tolerance to soil salinity. We have previously analyzed the ion accumulation traits and transcriptome of a sweet sorghum cultivar under NaCl treatments. However, the mechanisms underlying Na+, K+, Cl, and NO3 transports and the osmotic adjustment of sweet sorghum under salt stresses need further investigations. In this study, the growth, photosynthesis, inorganic ion and organic solute contents, and leaf osmotic adjustment ability of the sweet sorghum cultivars “Lvjuren” and “Fengtian” under NaCl treatments were determined; meanwhile, the expressions of key genes associated with the Na+, K+, Cl, and NO3 transport were analyzed using the qRT-PCR method. The results showed that NaCl treatments more severely inhibited the growth and photosynthesis of “Lvjuren” than those of “Fengtian”. After NaCl treatments, “Fengtian” could more efficiently restrict the overaccumulation of Na+ and Cl in leaf blades than “Lvjuren” by withholding large amounts of Na+ in the roots or reserving high quantities of Cl in the leaf sheaths, which could be attributed to the upregulated expressions of SbNHX2, SbHKT1;4, SbHKT1;5, SbCLCc, and SbCLCg or the downregulated expression of SbNPF6.4. “Fengtian” exhibited significantly lower leaf osmotic potential but higher leaf water potential and turgor pressure under NaCl treatments, suggesting that the former possessed a stronger osmotic ability than the latter. The contents of K+, NO3, soluble sugar, and betaine in leaf blades, as well as the contributions of these osmolytes to the leaf osmotic potential, in “Fengtian” were significantly higher than those in “Lvjuren”. In addition, the upregulated expressions of SbAKT1, SbHAK5, SbSKOR, SbNPF3.1, SbNPF6.3, and SbNPF7.3 should be responsible for maintaining K+ and NO3 homeostasis under NaCl treatment. These results lay a foundation for uncovering the salt tolerance mechanisms of sweet sorghum and large-scale cultivation of this species in saline areas. Full article
(This article belongs to the Special Issue Advances in Stress Biology of Forage and Turfgrass)
Show Figures

Figure 1

29 pages, 3209 KiB  
Review
Reverse Polarity-Based Soil Electrokinetic Remediation: A Comprehensive Review of the Published Data during the Past 31 Years (1993–2023)
by Ahmed Abou-Shady and Heba El-Araby
ChemEngineering 2024, 8(4), 82; https://doi.org/10.3390/chemengineering8040082 - 15 Aug 2024
Cited by 10 | Viewed by 2416
Abstract
Soil restoration by exploiting the principles and basics of electrokinetic (EK) has been extended to involve several categories, such as electrokinetic remediation in soil (SEKR), soil consolidation, the prevention of soil pollution, reclaiming salt-affected soil, the dewatering/dryness of wet soils, water reuse, seed [...] Read more.
Soil restoration by exploiting the principles and basics of electrokinetic (EK) has been extended to involve several categories, such as electrokinetic remediation in soil (SEKR), soil consolidation, the prevention of soil pollution, reclaiming salt-affected soil, the dewatering/dryness of wet soils, water reuse, seed germination, sedimentation, etc. As an extension of our recently published review articles on the soil electrokinetic (SEK) process intensification/optimization, the present review illustrates the effect of a reverse-polarity mode (RPM) on the efficiency of the SEK. Based on several searches of six database search engines, we did not find any relevant reviews focused on SEK improvements using the RPM. The influences of the RPM are described by various features, including (a) pollutant removal (organic, inorganic, and mixed pollutants) and (b) integration with other processes (phyto/bioremediation and Fenton oxidation), geosynthetics (consolidation, stabilization, and sedimentation), SEK operation conditions, and soil properties. Most of the RPM studies have focused on the remediation of organic pollutants. Several benefits can be gained from applying the RPM, such as (a) controlling the soil’s temperature, pH, and moisture values at desirable levels, (b) reducing a large number of chemical additives, (c) high remediation efficiency, (d) maintaining the indigenous fungal community’s appropriate diversity and abundance, (e) a stable and higher electric current, (f) enhancing microbial growth, etc. However, the hindrances to applying the RPM are (a) reducing the electroosmosis flow, (b) relatively high energy consumption, (c) reducing the diversity of soil microbes with a prolonged experiment period, (d) providing oxygen for a microbial community that may not be desirable for anaerobic bacteria, etc. Finally, the RPM is considered an important process for improving the performance of the SEK, according to experimental endeavors. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

63 pages, 7584 KiB  
Review
A Review of Ionic Liquids and Their Composites with Nanoparticles for Electrochemical Applications
by José Pereira, Reinaldo Souza and Ana Moita
Inorganics 2024, 12(7), 186; https://doi.org/10.3390/inorganics12070186 - 3 Jul 2024
Cited by 10 | Viewed by 4621
Abstract
The current study focuses on reviewing the actual progress of the use of ionic liquids and derivatives in several electrochemical application. Ionic liquids can be prepared at room temperature conditions and by including a solution that can be a salt in water, or [...] Read more.
The current study focuses on reviewing the actual progress of the use of ionic liquids and derivatives in several electrochemical application. Ionic liquids can be prepared at room temperature conditions and by including a solution that can be a salt in water, or a base or acid, and are composed of organic cations and many charge-delocalized organic or inorganic anions. The electrochemical properties, including the ionic and electronic conductivities of these innovative fluids and hybrids, are addressed in depth, together with their key influencing parameters including type, fraction, functionalization of the nanoparticles, and operating temperature, as well as the incorporation of surfactants or additives. Also, the present review assesses the recent applications of ionic liquids and corresponding hybrids with the addition of nanoparticles in diverse electrochemical equipment and processes, together with a critical evaluation of the related feasibility concerns in different applications. Those ranging from the metal-ion batteries, in which ionic liquids possess a prominent role as electrolytes and reference electrodes passing through the dye of sensitized solar cells and fuel cells, to finishing processes like the ones related with low-grade heat harvesting and supercapacitors. Moreover, the overview of the scientific articles on the theme resulted in the comparatively brief examination of the benefits closely linked with the use of ionic fluids and corresponding hybrids, such as improved ionic conductivity, thermal and electrochemical stabilities, and tunability, in comparison with the traditional solvents, electrolytes, and electrodes. Finally, this work analyzes the fundamental limitations of such novel fluids such as their corrosivity potential, elevated dynamic viscosity, and leakage risk, and highlights the essential prospects for the research and exploration of ionic liquids and derivatives in various electrochemical devices and procedures. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Energy Storage Devices)
Show Figures

Figure 1

11 pages, 3030 KiB  
Article
Vapor-Driven Crosslinked Hydroxypropyl-β-Cyclodextrin Electrospun Nanofibrous Membranes for Ultrafast Dye Removal
by Xinmiao Xu, Yi Zhang, Yong Chen and Yu Liu
Chemistry 2024, 6(4), 506-516; https://doi.org/10.3390/chemistry6040029 - 25 Jun 2024
Viewed by 1283
Abstract
Traditional separation membranes used for dye removal often suffer from a trade-off between separation efficiency and water permeability. Herein, we propose a facile approach to prepare cyclodextrin-based high-flux nanofiber membranes by electrospinning and vapor-driven crosslinking processes. The application of glutaraldehyde vapor for crosslinking [...] Read more.
Traditional separation membranes used for dye removal often suffer from a trade-off between separation efficiency and water permeability. Herein, we propose a facile approach to prepare cyclodextrin-based high-flux nanofiber membranes by electrospinning and vapor-driven crosslinking processes. The application of glutaraldehyde vapor for crosslinking hydroxypropyl-β-cyclodextrin (HP-β-CD)/polyvinyl alcohol (PVA)/laponite electrospun membranes can build interconnected structures and lead to the formation of a porous hierarchical layer. In addition, the incorporation of inorganic salt, laponite, can alter the crosslinking process, resulting in membranes with improved hydrophilicity and highly maintained electrospun nanofibrous morphology, which contributes to an ultrafast water flux of 1.0 × 105 Lh−1m−2bar−1. Due to the synergetic effect of strong host–guest interaction and electrostatic interaction, the membranes exhibit suitable rejection toward anionic dyes with a high removal efficiency of >99% within a short time and achieve accurate separation for cationic against anionic dyes, accompanied by suitable recyclability with >97% separation efficiency after at least four separation–regenerations. The prepared membranes with remarkable separation efficiency and ultrafast permeation properties might be a promising candidate for high-performance membranes in water treatment. Full article
(This article belongs to the Section Supramolecular Chemistry)
Show Figures

Figure 1

12 pages, 4650 KiB  
Article
Mg–Fe Layered Double Hydroxides/Polyacrylonitrile Nanofibers for Solar-Light Induced Peroxymonosulfate Elimination of Tetracycline Hydrochloride
by Hao Peng, Beilei Ye, Meiying Luo and Xiaogang Zheng
Water 2024, 16(10), 1345; https://doi.org/10.3390/w16101345 - 8 May 2024
Cited by 1 | Viewed by 1459
Abstract
The photo-induced peroxymonosulfate (photo-PMS) reaction is a promising route to eliminate antibiotics from waste water. To achieve excellent photo-PMS activity in Mg–Fe layered double hydroxides (LDHs) for tetracycline hydrochloride (TCH) degradation under simulative solar-light irradiation, Mg–Fe LDHs-loaded polyacrylonitrile (Mg–Fe/PAN) nanofibers were in-situ prepared [...] Read more.
The photo-induced peroxymonosulfate (photo-PMS) reaction is a promising route to eliminate antibiotics from waste water. To achieve excellent photo-PMS activity in Mg–Fe layered double hydroxides (LDHs) for tetracycline hydrochloride (TCH) degradation under simulative solar-light irradiation, Mg–Fe LDHs-loaded polyacrylonitrile (Mg–Fe/PAN) nanofibers were in-situ prepared via the hydrothermal route. For comparison to the photocatalysis and photo-PMS process, the Mg–Fe/PAN-assisted photo-PMS process exhibited a better elimination activity for TCH elimination. In addition, the photo-PMS activities of Mg–Fe/PAN composites were greatly affected by Mg–Fe LDHs content, TCH concentration, pH, and inorganic salts. Among these Mg–Fe/PAN composites, the optimal MgFe2/PAN with a Mg/Fe molar ratio of 1:2 and a nominal Mg–Fe LDHs content of 2.0 wt. % removed 81.31% TCH solution of 80 mg L−1 TCH within 120 min. This enhanced photo-PMS capacity of MgFe2/PAN was ascribed to the abundant active sites formed by functional groups and oxygen defects for efficient TCH species adsorption and photon capturing, and the tight interface between Mg–Fe LDHs nanoparticles and PAN nanofibers for the rapid separation and transfer of photoinduced e/h+ pairs. SO4•− and •O2 radicals were vital for the MgFe2/PAN-assisted photo-PMS reaction. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 3049 KiB  
Article
Numerical Simulation of the Mixing and Salt Washing Effects of a Static Mixer in an Electric Desalination Process
by Yuhang Liu, Mengmeng Gao, Zibin Huang, Hongfu Wang, Peiqing Yuan, Xinru Xu and Jingyi Yang
Processes 2024, 12(5), 883; https://doi.org/10.3390/pr12050883 - 27 Apr 2024
Cited by 4 | Viewed by 1120
Abstract
Electric desalination units in the crude oil refining process are becoming increasingly important with the growing trend towards heavy and poor crude oils. The oil–water mixing effect of the static mixer plays a crucial role in the electric desalination process. The present study [...] Read more.
Electric desalination units in the crude oil refining process are becoming increasingly important with the growing trend towards heavy and poor crude oils. The oil–water mixing effect of the static mixer plays a crucial role in the electric desalination process. The present study investigated the effect of various variables, such as mixer type, number of mixing elements, washing water consumption, and oil viscosity and density on the oil–water mixing efficiency of a static mixer. In addition, this study also analyzed the effect of these variables on the salt washing process that occurs during mixing using a kinetic equation for the dissolution of inorganic salts. The results showed that the number of mixing elements was the most significant variable, followed by the amount of washing water injected. The density of the crude oil had a negligible effect. Based on these results, the use of four mixing elements in the SMX static mixer was recommended. The injection of washing water should be controlled at about 8%, while ensuring that the interfacial tension between oil and water remains below 0.01 N/m. Under these conditions, the salt washing efficiency reached 46.3%. This study provides a theoretical basis for designing static mixers and optimizing their operation in electric desalination processes. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

Back to TopTop