Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = inorganic pyrophosphatase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6119 KiB  
Article
Phosphorus Functional Genes Control Rice Yield via Microbial Biomass Phosphorus and Plant Phosphorus Uptake in a Rice–Oilseed Rape Rotation System Compared with a Rice–Wheat Rotation System
by Qingyue Zhang, Weijia Yu, Min Li, Wenlong Cheng, Shengchang Huai, Yuwen Jin, Guihua Li, Ji Wu and Changai Lu
Agronomy 2025, 15(4), 866; https://doi.org/10.3390/agronomy15040866 - 30 Mar 2025
Viewed by 1392
Abstract
Crop rotation and microbial driving force significantly influence soil phosphorus (P) bioavailability and crop yield. However, differences in underlying microbial mechanisms in rotations remain unclear. We examined rice yield, P uptake, soil and microbial P contents, enzyme activity, and P functional genes over [...] Read more.
Crop rotation and microbial driving force significantly influence soil phosphorus (P) bioavailability and crop yield. However, differences in underlying microbial mechanisms in rotations remain unclear. We examined rice yield, P uptake, soil and microbial P contents, enzyme activity, and P functional genes over six years (2016–2022) to elucidate microbial mechanisms driving rice yield in rice–wheat (RW) and rice–oilseed rape (RO) rotations. RO significantly increased rice yield and plant P uptake by 9.17% and 20.70%, respectively, compared to RW. Soil total (TP) and available (AP) P contents were significantly lower (4.83% and 18.31%, respectively) under RO than RW, whereas microbial biomass phosphorus (MBP) and acid phosphatase activity (EP) were greater (39.40% and 128.45%, respectively). PICRUSt2 results revealed that RO increased phoA phoB (alkaline phosphatase), phnX (phosphonoacetaldehyde hydrolase [EC:3.11.1.1]), gcd (Quinoprotein glucose dehydrogenase [EC:1.1.5.2]), and ppaC (manganese-dependent inorganic pyrophosphatase) and decreased phnD (phosphonate transport system substrate-binding protein), ugpE (sn-glycerol 3-phosphate transport system permease protein), ugpA (sn-glycerol 3-phosphate transport system permease protein), and phnO ((aminoalkyl)phosphonate N-acetyltransferase [EC:2.3.1.280]) abundance. Random forest analysis showed that ppaC, phnD, gcd, and phnX were important for rice yield and plant P uptake. Partial least squares analysis revealed that RO indirectly increased rice yield by influencing MBP and affecting plant P uptake through P functional genes. Overall, RO improves rice yield and P bioavailability by altering P functional genes (ppaC, phnD, gcd, and phnX), providing new perspectives on crop–microorganism interactions and resource use efficiency. Full article
Show Figures

Figure 1

18 pages, 5105 KiB  
Article
Biochar Co-Applied with Lime Enhances Soil Phosphorus Availability via Microbial and Enzymatic Modulation of Paddy Soil
by Yang Zhang, Caidi Yang, Jun Wang and Shenggao Lu
Microorganisms 2025, 13(3), 582; https://doi.org/10.3390/microorganisms13030582 - 4 Mar 2025
Cited by 1 | Viewed by 954
Abstract
Soil microorganisms play a crucial role in improving soil phosphorus (P) availability. However, few studies have explored the changes in microbial community structure and their underlying mechanisms for improving soil P availability with the application of biochar and lime. Three kinds of biochar, [...] Read more.
Soil microorganisms play a crucial role in improving soil phosphorus (P) availability. However, few studies have explored the changes in microbial community structure and their underlying mechanisms for improving soil P availability with the application of biochar and lime. Three kinds of biochar, made from rice straw (SB), Chinese fir wood sawdust (WB), and pig manure (MB), alone and with lime (SBL, WBL, and MBL), were applied to paddy soil to reveal the biochemical mechanisms for enhancing soil P availability. High-throughput sequencing and real-time PCR were used to investigate soil microbial communities and P functional genes. The three biochars increased the soil’s available P in the order of MB > SB > WB. Biochar co-applied with lime increased the available P (Olsen-P by 169–209%) and inorganic P (Al-P by 53.4–161%, Fe-P by 96.3–198%, and Ca-P by 59.0–154%) more than biochar alone, compared to the control (CK). Both biochar alone and co-applied with lime increased the activities of alkaline phosphomonoesterase (ALP), phosphodiesterase (PD), and inorganic pyrophosphatase (IPP) by 369–806%, 28.4–67.3%, and 37.9–181%, respectively, while it decreased the activity of acidic phosphomonoesterase (ACP) by 15.1–44.0%, compared to CK. Biochar, both alone and co-applied with lime, reduced the copy number of phoC gene by 5.37–88.7%, while it increased the phoD, gcd, and pqqC genes by 51.3–533%, 62.1–275%, and 25.2–158%, respectively, compared to CK. A correlation analysis and partial least squares path modeling (PLS-PM) indicated that Olsen-P, Bray-1 P, and inorganic P were significantly positively correlated with the activities of ALP, PD, IPP, and the phoD gene. Biochar co-applied with lime increased the relative abundances of the phoD-harboring bacteria Proteobacteria, Firmicutes, and Acidobacteria, which promoted the transformation of P to the effective state. Meanwhile, the dominant species Anaerolinea, Ascomycota, Mucoromycota, and Chaetomium provided rich effective nutrients for the soil microorganisms by accelerating the decomposition of soil organic matter, thus promoting phosphatase activity. It could be inferred that the optimized microbial community structure improved phosphatase activity by increasing the phoD gene and available nutrients, thus promoting the soil P availability. Biochar co-applied with lime had a better effect on increasing the P availability and rice yields than biochar alone. Full article
Show Figures

Figure 1

18 pages, 4442 KiB  
Article
Engineering Inorganic Pyrophosphate Metabolism as a Strategy to Generate a Fluoride-Resistant Saccharomyces cerevisiae Strain
by José R. Perez-Castiñeira, Francisco J. Ávila-Oliva and Aurelio Serrano
Microorganisms 2025, 13(2), 226; https://doi.org/10.3390/microorganisms13020226 - 21 Jan 2025
Viewed by 2796
Abstract
Fluorine accounts for 0.3 g/kg of the Earth’s crust, being widely distributed in the environment as fluoride. The toxic effects of this anion in humans and other organisms have been known for a long time. Fluoride has been reported to alter several cellular [...] Read more.
Fluorine accounts for 0.3 g/kg of the Earth’s crust, being widely distributed in the environment as fluoride. The toxic effects of this anion in humans and other organisms have been known for a long time. Fluoride has been reported to alter several cellular processes although the mechanisms involved are largely unknown. Inorganic pyrophosphatases (PPases) are ubiquitous enzymes that hydrolyze inorganic pyrophosphate (PPi), a metabolite generated from ATP. In Saccharomyces cerevisiae, the enzyme responsible for PPi hydrolysis in the cytosol (IPP1) is strongly inhibited by fluoride in vitro. The essentiality of IPP1 for growth has been previously demonstrated using YPC3, a yeast mutant with conditional expression of the corresponding gene. Here, YPC3 was used to generate cells that tolerate high concentrations of fluoride by (a) the overexpression of IPP1 or its human ortholog, or (b) the substitution of IPP1 by the fluoride-insensitive PPase from Streptococcus mutans. The results obtained suggest that maintaining appropriate levels of PPase activity in the cytosol is essential for the adaptation of S. cerevisiae to high fluoride concentrations. The increase in fluoride tolerance allows YPC3 cells transformed with suitable plasmids to be selected on rich non-selective medium supplemented with this anion. Full article
(This article belongs to the Special Issue New Methods in Microbial Research, 4th Edition)
Show Figures

Figure 1

22 pages, 23356 KiB  
Article
Conformational Dynamics of Mitochondrial Inorganic Pyrophosphatase hPPA2 and Its Changes Caused by Pathogenic Mutations
by Ekaterina Bezpalaya, Svetlana Kurilova, Nataliya Vorobyeva and Elena Rodina
Life 2025, 15(1), 100; https://doi.org/10.3390/life15010100 - 15 Jan 2025
Cited by 1 | Viewed by 932
Abstract
Inorganic pyrophosphatases, or PPases, are ubiquitous enzymes whose activity is necessary for a large number of biosynthetic reactions. The catalytic function of PPases is dependent on certain conformational changes that have been previously characterized based on the comparison of the crystal structures of [...] Read more.
Inorganic pyrophosphatases, or PPases, are ubiquitous enzymes whose activity is necessary for a large number of biosynthetic reactions. The catalytic function of PPases is dependent on certain conformational changes that have been previously characterized based on the comparison of the crystal structures of various complexes. The current work describes the conformational dynamics of a structural model of human mitochondrial pyrophosphatase hPPA2 using molecular dynamics simulation, all-atom principal component analysis, and coarse-grained normal mode analysis. In addition to the wild-type enzyme, four mutant variants of hPPA2 were characterized that correspond to the natural pathogenic variants causing severe mitochondrial dysfunction and cardio pathologies. As a result, we identified the global type of flexible motion that seems to be shared by other dimeric PPases. This motion is discussed in terms of the allosteric behavior of the protein. Analysis of the observed conformational dynamics revealed the formation of a binding site for anionic ligands in the active site that could be relevant to enzyme catalysis. Based on the comparison of the wild-type and mutant PPases dynamics, we suggest the possible molecular mechanisms of the functional incompetence of hPPA2 caused by mutations. The results of this work allow for deeper insight into the structural basis of PPase function and the possible effects of pathogenic mutations on the protein structure and function. Full article
(This article belongs to the Special Issue Applications of Molecular Dynamics to Biological Systems)
Show Figures

Figure 1

21 pages, 9220 KiB  
Review
Structural and Functional Integration of Tissue-Nonspecific Alkaline Phosphatase Within the Alkaline Phosphatase Superfamily: Evolutionary Insights and Functional Implications
by Iliass Imam, Gilles Jean Philippe Rautureau, Sébastien Violot, Eva Drevet Mulard, David Magne and Lionel Ballut
Metabolites 2024, 14(12), 659; https://doi.org/10.3390/metabo14120659 - 25 Nov 2024
Cited by 2 | Viewed by 1372
Abstract
Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly [...] Read more.
Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions. For instance, TNAP hydrolyzes inorganic pyrophosphate (PPi) to allow skeletal and dental mineralization. Additionally, TNAP hydrolyzes pyridoxal phosphate to allow cellular pyridoxal uptake, and stimulate vitamin B6-dependent reactions. Furthermore, TNAP has been identified as a key enzyme in non-shivering adaptive thermogenesis, by dephosphorylating phosphocreatine in the mitochondrial creatine futile cycle. This latter recent discovery and others suggest that the list of substrates and functions of TNAP may be much longer than previously thought. In the present review, we sought to examine TNAP within the alkaline phosphatase (AP) superfamily, comparing its sequence, structure, and evolutionary trajectory. The AP superfamily, characterized by a conserved central folding motif of a mixed beta-sheet flanked by alpha-helices, includes six subfamilies: AP, arylsulfatases (ARS), ectonucleotide pyrophosphatases/phosphodiesterases (ENPP), phosphoglycerate mutases (PGM), phosphonoacetate hydrolases, and phosphopentomutases. Interestingly, TNAP and several ENPP family members appear to participate in the same metabolic pathways and functions. For instance, extra-skeletal mineralization in vertebrates is inhibited by ENPP1-mediated ATP hydrolysis into the mineralization inhibitor PPi, which is hydrolyzed by TNAP expressed in the skeleton. Better understanding how TNAP and other AP family members differ structurally will be very useful to clarify their complementary functions. Structurally, TNAP shares the conserved catalytic core with other AP superfamily members but has unique features affecting substrate specificity and activity. The review also aims to highlight the importance of oligomerization in enzyme stability and function, and the role of conserved metal ion coordination, particularly magnesium, in APs. By exploring the structural and functional diversity within the AP superfamily, and discussing to which extent its members exert redundant, complementary, or specific functions, this review illuminates the evolutionary pressures shaping these enzymes and their broad physiological roles, offering insights into TNAP’s multifunctionality and its implications for health and disease. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

17 pages, 8835 KiB  
Essay
Overexpression of the EuSIP5 Gene to Improve Drought Resistance in Tobacco
by Yueling Lin, Xi Chen, Degang Zhao and Chao Li
Horticulturae 2024, 10(9), 1010; https://doi.org/10.3390/horticulturae10091010 - 23 Sep 2024
Viewed by 1187
Abstract
Soluble inorganic pyrophosphatase (s-PPase), a pyrophosphate hydrolase, is crucial for various physiological processes including plant growth and development, metabolic functions, and responses to abiotic stresses. However, research on s-PPase in woody plants is limited. To investigate the potential role of soluble inorganic pyrophosphatase [...] Read more.
Soluble inorganic pyrophosphatase (s-PPase), a pyrophosphate hydrolase, is crucial for various physiological processes including plant growth and development, metabolic functions, and responses to abiotic stresses. However, research on s-PPase in woody plants is limited. To investigate the potential role of soluble inorganic pyrophosphatase in Eucommia ulmoides Oliver (E. ulmoides) in drought stress, the E. ulmoides soluble inorganic pyrophosphatase 5 (EuSIP5) cDNA sequence was amplified via RT-PCR. A bioinformatic analysis suggested that EuSIP5 may be an unstable amphipathic protein predominantly localized in the cytoplasm. In E. ulmoides, the highest expression of the EuSIP5 gene was detected in the leaves and pericarp of male plants from April to October, and in the leaves in July and September. Under drought conditions, the expression of EuSIP5 in E. ulmoides leaves was significantly greater than that in the control. An overexpression vector containing EuSIP5 was constructed and introduced into Nicotiana tabacum L. cv. Xanthi (N. tabacum L.). Compared with that in wild-type (WT) plants, wilting in N. tabacum L. EuSIP5-overexpressing (OE) plants was delayed by 4 days under drought stress. Additionally, the expression levels of the drought-related genes DET2, CYP85A1, P5CS, ERF1, F-box, and NCED1 were elevated in the leaves of transgenic N. tabacum L. Moreover, the activities of the protective enzymes peroxidase, superoxide dismutase, and catalase were significantly greater, whereas the malondialdehyde content was lower in the transgenic plants than in the WT plants. These findings suggest that the introduction of the EuSIP5 gene into N. tabacum L. enhances drought-related gene expression, increases antioxidant capacity, and reduces oxidative stress damage, thereby improving drought resistance. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

15 pages, 2865 KiB  
Article
Effect of Near-Freezing Temperature Storage on the Quality and Organic Acid Metabolism of Apple Fruit
by Chang Shu, Bangdi Liu, Handong Zhao, Kuanbo Cui and Weibo Jiang
Agriculture 2024, 14(7), 1057; https://doi.org/10.3390/agriculture14071057 - 30 Jun 2024
Cited by 4 | Viewed by 1827
Abstract
Organic acids play critical roles in fruit physiological metabolism and sensory quality. However, the conventional storage of apple fruit at 0 ± 0.1 °C cannot maintain fruit acidity efficiently. This study investigated near-freezing temperature (NFT) storage for ‘Golden Delicious’ apples, and the quality [...] Read more.
Organic acids play critical roles in fruit physiological metabolism and sensory quality. However, the conventional storage of apple fruit at 0 ± 0.1 °C cannot maintain fruit acidity efficiently. This study investigated near-freezing temperature (NFT) storage for ‘Golden Delicious’ apples, and the quality parameters, organic acid content, and malate metabolism were studied. The results indicate that NFT storage at −1.7 ± 0.1 °C effectively maintained the postharvest quality of apple fruit when compared to traditional storage at 0 ± 0.1 °C. Fruit that underwent NFT storage showed a better appearance and lower respiratory rate, ethylene production, weight loss, and malondialdehyde (MDA) content but higher firmness and soluble solids content. Further, fruit after NFT storage contained higher titratable acid (18.75%), malate (51.61%), citrate (36.59%), and succinate (2.12%) content when compared to the control after 250 days. This was achieved by maintaining higher cytosolic NAD-dependent malate dehydrogenase (cyNAD-MDH), phosphoenolpyruvate carboxylase (PEPC), vacuolar H+-ATPase (V-ATPase), and vacuolar inorganic pyrophosphatase (V-PPase) activities that promote malate biosynthesis and accumulation while inhibiting enzyme activity that is responsible for malate decomposition, including phosphoenolpyruvate carboxylase kinase (PEPCK) as well as the cytosolic NAD phosphate-dependent malic enzyme (cyNADP-ME). Further, storage at NFTs maintained a higher expression of malate biosynthesis-related genes (MdcyNAD-MDH and MdPEPC) and transport-related genes (MdVHA and MdVHP) while suppressing malate consumption-related genes (MdcyME and MdPEPCK). The results demonstrate that NFT storage could be an effective application for apple fruit, which maintains postharvest quality and alleviates organic acid degradation. Full article
(This article belongs to the Special Issue Analysis of Agricultural Food Physicochemical and Sensory Properties)
Show Figures

Figure 1

16 pages, 2480 KiB  
Article
Synovial Membrane Is a Major Producer of Extracellular Inorganic Pyrophosphate in Response to Hypoxia
by Émilie Velot, Sylvie Sébillaud and Arnaud Bianchi
Pharmaceuticals 2024, 17(6), 738; https://doi.org/10.3390/ph17060738 - 5 Jun 2024
Cited by 1 | Viewed by 1223
Abstract
Calcium pyrophosphate dehydrate (CPPD) crystals are found in the synovial fluid of patients with articular chondrocalcinosis or sometimes with osteoarthritis. In inflammatory conditions, the synovial membrane (SM) is subjected to transient hypoxia, especially during movement. CPPD formation is supported by an increase in [...] Read more.
Calcium pyrophosphate dehydrate (CPPD) crystals are found in the synovial fluid of patients with articular chondrocalcinosis or sometimes with osteoarthritis. In inflammatory conditions, the synovial membrane (SM) is subjected to transient hypoxia, especially during movement. CPPD formation is supported by an increase in extracellular inorganic pyrophosphate (ePPi) levels, which are mainly controlled by the transporter Ank and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). We demonstrated previously that transforming growth factor (TGF)-β1 increased ePPi production by inducing Ank and Enpp1 expression in chondrocytes. As the TGF-β1 level raises in synovial fluid under hypoxic conditions, we investigated whether hypoxia may transform SM as a major source of ePPi production. Synovial fibroblasts and SM explants were exposed to 10 ng/mL of TGF-β1 in normoxic or hypoxic (5% O2) culture conditions. Ank and Enpp1 expression were assessed by quantitative PCR, Western blot and immunohistochemistry. ePPi was quantified in culture supernatants. RNA silencing was used to define the respective roles of Ank and Enpp1 in TGF-β1-induced ePPi generation. The molecular mechanisms involved in hypoxia were investigated using an Ank promoter reporter plasmid for transactivation studies, as well as gene overexpression and RNA silencing, the respective role of hypoxia-induced factor (HIF)-1 and HIF-2. Our results showed that TGF-β1 increased Ank, Enpp1, and therefore ePPi production in synovial fibroblasts and SM explants. Ank was the major contributor in ePPi production compared to ENPP1. Hypoxia increased ePPi levels on its own and enhanced the stimulating effect of TGF-β1. Hypoxic conditions enhanced Ank promoter transactivation in an HIF-1-dependent/HIF-2-independent fashion. We demonstrated that under hypoxia, SM is an important contributor to ePPi production in the joint through the induction of Enpp1 and Ank. These findings are of interest as a rationale for the beneficial effect of anti-inflammatory drugs on SM in crystal depositions. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

19 pages, 3383 KiB  
Article
Specific Mutations Reverse Regulatory Effects of Adenosine Phosphates and Increase Their Binding Stoichiometry in CBS Domain-Containing Pyrophosphatase
by Viktor A. Anashkin, Elena A. Kirillova, Victor N. Orlov and Alexander A. Baykov
Int. J. Mol. Sci. 2024, 25(11), 5768; https://doi.org/10.3390/ijms25115768 - 25 May 2024
Viewed by 1476
Abstract
Regulatory cystathionine β-synthase (CBS) domains are widespread in proteins; however, difficulty in structure determination prevents a comprehensive understanding of the underlying regulation mechanism. Tetrameric microbial inorganic pyrophosphatase containing such domains (CBS-PPase) is allosterically inhibited by AMP and ADP and activated by ATP and [...] Read more.
Regulatory cystathionine β-synthase (CBS) domains are widespread in proteins; however, difficulty in structure determination prevents a comprehensive understanding of the underlying regulation mechanism. Tetrameric microbial inorganic pyrophosphatase containing such domains (CBS-PPase) is allosterically inhibited by AMP and ADP and activated by ATP and cell alarmones diadenosine polyphosphates. Each CBS-PPase subunit contains a pair of CBS domains but binds cooperatively to only one molecule of the mono-adenosine derivatives. We used site-directed mutagenesis of Desulfitobacterium hafniense CBS-PPase to identify the key elements determining the direction of the effect (activation or inhibition) and the “half-of-the-sites” ligand binding stoichiometry. Seven amino acid residues were selected in the CBS1 domain, based on the available X-ray structure of the regulatory domains, and substituted by alanine and other residues. The interaction of 11 CBS-PPase variants with the regulating ligands was characterized by activity measurements and isothermal titration calorimetry. Lys100 replacement reversed the effect of ADP from inhibition to activation, whereas Lys95 and Gly118 replacements made ADP an activator at low concentrations but an inhibitor at high concentrations. Replacement of these residues for alanine increased the stoichiometry of mono-adenosine phosphate binding by twofold. These findings identified several key protein residues and suggested a “two non-interacting pairs of interacting regulatory sites” concept in CBS-PPase regulation. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

22 pages, 3266 KiB  
Article
Evaluation of Pyrophosphate-Driven Proton Pumps in Saccharomyces cerevisiae under Stress Conditions
by Krishnan Sreenivas, Leon Eisentraut, Daniel P. Brink, Viktor C. Persson, Magnus Carlquist, Marie F. Gorwa-Grauslund and Ed W. J. van Niel
Microorganisms 2024, 12(3), 625; https://doi.org/10.3390/microorganisms12030625 - 20 Mar 2024
Cited by 2 | Viewed by 1956
Abstract
In Saccharomyces cerevisiae, pH homeostasis is reliant on ATP due to the use of proton-translocating ATPase (H+-ATPase) which constitutes a major drain within cellular ATP supply. Here, an exogenous proton-translocating pyrophosphatase (H+-PPase) from Arabidopsis thaliana, which uses inorganic [...] Read more.
In Saccharomyces cerevisiae, pH homeostasis is reliant on ATP due to the use of proton-translocating ATPase (H+-ATPase) which constitutes a major drain within cellular ATP supply. Here, an exogenous proton-translocating pyrophosphatase (H+-PPase) from Arabidopsis thaliana, which uses inorganic pyrophosphate (PPi) rather than ATP, was evaluated for its effect on reducing the ATP burden. The H+-Ppase was localized to the vacuolar membrane or to the cell membrane, and their impact was studied under acetate stress at a low pH. Biosensors (pHluorin and mQueen-2m) were used to observe changes in intracellular pH (pHi) and ATP levels during growth on either glucose or xylose. A significant improvement of 35% in the growth rate at a pH of 3.7 and 6 g·L−1 acetic acid stress was observed in the vacuolar membrane H+-PPase strain compared to the parent strain. ATP levels were elevated in the same strain during anaerobic glucose and xylose fermentations. During anaerobic xylose fermentations, co-expression of pHluorin and a vacuolar membrane H+-PPase improved the growth characteristics by means of an improved growth rate (11.4%) and elongated logarithmic growth duration. Our study identified a potential method for improving productivity in the use of S. cerevisiae as a cell factory under the harsh conditions present in industry. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

27 pages, 2964 KiB  
Article
Resilience and Vulnerability to Stress-Induced Anhedonia: Unveiling Brain Gene Expression and Mitochondrial Dynamics in a Mouse Chronic Stress Depression Model
by Tatyana Strekalova, Evgeniy Svirin, Anna Gorlova, Elizaveta Sheveleva, Alisa Burova, Adel Khairetdinova, Kseniia Sitdikova, Elena Zakharova, Alexander M. Dudchenko, Aleksey Lyundup and Sergey Morozov
Biomolecules 2023, 13(12), 1782; https://doi.org/10.3390/biom13121782 - 12 Dec 2023
Cited by 6 | Viewed by 4120
Abstract
The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain [...] Read more.
The role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment. Here, following 2-week chronic mild stress (CMS) using predation, social defeat, and restraint, MDD-related behaviour and brain molecular markers have been investigated along with the hippocampus-dependent performance and emotionality in mice that received the IRS dicholine succinate (DS). In a sucrose test, mice were studied for the key feature of MDD, a decreased sensitivity to reward, called anhedonia. Based on this test, animals were assigned to anhedonic and resilient-to-stress-induced-anhedonia groups, using a previously established criterion of a decrease in sucrose preference below 65%. Such assignment was based on the fact that none of control, non-stressed animals displayed sucrose preference that would be smaller than this value. DS-treated stressed mice displayed ameliorated behaviours in a battery of assays: sucrose preference, coat state, the Y-maze, the marble test, tail suspension, and nest building. CMS-vulnerable mice exhibited overexpression of the inflammatory markers Il-1β, tnf, and Cox-1, as well as 5-htt and 5-ht2a-R, in various brain regions. The alterations in hippocampal gene expression were the closest to clinical findings and were studied further. DS-treated, stressed mice showed normalised hippocampal expression of the plasticity markers Camk4, Camk2, Pka, Adcy1, Creb-ar, Nmda-2r-ar, and Nmda-2r-s. DS-treated and non-treated stressed mice who were resilient or vulnerable to anhedonia were compared for hippocampal mitochondrial pathway regulation using Illumina profiling. Resilient mice revealed overexpression of the mitochondrial complexes NADH dehydrogenase, succinate dehydrogenase, cytochrome bc1, cytochrome c oxidase, F-type and V-type ATPases, and inorganic pyrophosphatase, which were decreased in anhedonic mice. DS partially normalised the expression of both ATPases. We conclude that hippocampal reduction in ATP synthesis is associated with anhedonia and pro-inflammatory brain changes that are ameliorated by DS. Full article
(This article belongs to the Collection Feature Papers in Section 'Molecular Medicine')
Show Figures

Figure 1

16 pages, 3038 KiB  
Article
The Structure and Nucleotide-Binding Characteristics of Regulated Cystathionine β-Synthase Domain-Containing Pyrophosphatase without One Catalytic Domain
by Ilya M. Zamakhov, Viktor A. Anashkin, Andrey V. Moiseenko, Victor N. Orlov, Natalia N. Vorobyeva, Olga S. Sokolova and Alexander A. Baykov
Int. J. Mol. Sci. 2023, 24(24), 17160; https://doi.org/10.3390/ijms242417160 - 5 Dec 2023
Cited by 3 | Viewed by 1495
Abstract
Regulatory adenine nucleotide-binding cystathionine β-synthase (CBS) domains are widespread in proteins; however, information on the mechanism of their modulating effects on protein function is scarce. The difficulty in obtaining structural data for such proteins is ascribed to their unusual flexibility and propensity to [...] Read more.
Regulatory adenine nucleotide-binding cystathionine β-synthase (CBS) domains are widespread in proteins; however, information on the mechanism of their modulating effects on protein function is scarce. The difficulty in obtaining structural data for such proteins is ascribed to their unusual flexibility and propensity to form higher-order oligomeric structures. In this study, we deleted the most movable domain from the catalytic part of a CBS domain-containing bacterial inorganic pyrophosphatase (CBS-PPase) and characterized the deletion variant both structurally and functionally. The truncated CBS-PPase was inactive but retained the homotetrameric structure of the full-size enzyme and its ability to bind a fluorescent AMP analog (inhibitor) and diadenosine tetraphosphate (activator) with the same or greater affinity. The deletion stabilized the protein structure against thermal unfolding, suggesting that the deleted domain destabilizes the structure in the full-size protein. A “linear” 3D structure with an unusual type of domain swapping predicted for the truncated CBS-PPase by Alphafold2 was confirmed by single-particle electron microscopy. The results suggest a dual role for the CBS domains in CBS-PPase regulation: they allow for enzyme tetramerization, which impedes the motion of one catalytic domain, and bind adenine nucleotides to mitigate or aggravate this effect. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Biophysics in Russia)
Show Figures

Graphical abstract

25 pages, 3028 KiB  
Article
H+-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy Generation
by Evgeniya A. Malykh, Liubov I. Golubeva, Ekaterina S. Kovaleva, Mikhail S. Shupletsov, Elena V. Rodina, Sergey V. Mashko and Nataliya V. Stoynova
Microorganisms 2023, 11(2), 294; https://doi.org/10.3390/microorganisms11020294 - 23 Jan 2023
Cited by 4 | Viewed by 2434
Abstract
Inorganic pyrophosphatases (PPases) catalyze an essential reaction, namely, the hydrolysis of PPi, which is formed in large quantities as a side product of numerous cellular reactions. In the majority of living species, PPi hydrolysis is carried out by soluble cytoplasmic [...] Read more.
Inorganic pyrophosphatases (PPases) catalyze an essential reaction, namely, the hydrolysis of PPi, which is formed in large quantities as a side product of numerous cellular reactions. In the majority of living species, PPi hydrolysis is carried out by soluble cytoplasmic PPase (S-PPases) with the released energy dissipated in the form of heat. In Rhodospirillum rubrum, part of this energy can be conserved by proton-pumping pyrophosphatase (H+-PPaseRru) in the form of a proton electrochemical gradient for further ATP synthesis. Here, the codon-harmonized gene hppaRru encoding H+-PPaseRru was expressed in the Escherichia coli chromosome. We demonstrate, for the first time, that H+-PPaseRru complements the essential native S-PPase in E. coli cells. 13C-MFA confirmed that replacing native PPase to H+-PPaseRru leads to the re-distribution of carbon fluxes; a statistically significant 36% decrease in tricarboxylic acid (TCA) cycle fluxes was found compared with wild-type E. coli MG1655. Such a flux re-distribution can indicate the presence of an additional method for energy generation (e.g., ATP), which can be useful for the microbiological production of a number of compounds, the biosynthesis of which requires the consumption of ATP. Full article
Show Figures

Figure 1

13 pages, 2025 KiB  
Article
Thermophilic Inorganic Pyrophosphatase Ton1914 from Thermococcus onnurineus NA1 Removes the Inhibitory Effect of Pyrophosphate
by Yajing Li, Xue Yang and Renjun Gao
Int. J. Mol. Sci. 2022, 23(21), 12735; https://doi.org/10.3390/ijms232112735 - 22 Oct 2022
Cited by 4 | Viewed by 2407
Abstract
Pyrophosphate (PPi) is a byproduct of over 120 biosynthetic reactions, and an overabundance of PPi can inhibit industrial synthesis. Pyrophosphatases (PPases) can effectively hydrolyze pyrophosphate to remove the inhibitory effect of pyrophosphate. In the present work, a thermophilic alkaline inorganic [...] Read more.
Pyrophosphate (PPi) is a byproduct of over 120 biosynthetic reactions, and an overabundance of PPi can inhibit industrial synthesis. Pyrophosphatases (PPases) can effectively hydrolyze pyrophosphate to remove the inhibitory effect of pyrophosphate. In the present work, a thermophilic alkaline inorganic pyrophosphatase from Thermococcus onnurineus NA1 was studied. The optimum pH and temperature of Ton1914 were 9.0 and 80 °C, respectively, and the half-life was 52 h at 70 °C and 2.5 h at 90 °C. Ton1914 showed excellent thermal stability, and its relative enzyme activity, when incubated in Tris-HCl 9.0 containing 1.6 mM Mg2+ at 90 °C for 5 h, was still 100%, which was much higher than the control, whose relative activity was only 37%. Real-time quantitative PCR (qPCR) results showed that the promotion of Ton1914 on long-chain DNA was more efficient than that on short-chain DNA when the same concentration of templates was supplemented. The yield of long-chain products was increased by 32–41%, while that of short-chain DNA was only improved by 9.5–15%. Ton1914 also increased the yields of UDP-glucose and UDP-galactose enzymatic synthesis from 40.1% to 84.8% and 20.9% to 35.4%, respectively. These findings suggested that Ton1914 has considerable potential for industrial applications. Full article
(This article belongs to the Special Issue Understanding and Utilization of Extreme Enzymes)
Show Figures

Figure 1

21 pages, 5270 KiB  
Article
A Lumenal Loop Associated with Catalytic Asymmetry in Plant Vacuolar H+-Translocating Pyrophosphatase
by Viktor A. Anashkin and Alexander A. Baykov
Int. J. Mol. Sci. 2021, 22(23), 12902; https://doi.org/10.3390/ijms222312902 - 29 Nov 2021
Cited by 5 | Viewed by 2040
Abstract
Membrane-integral inorganic pyrophosphatases (mPPases) couple pyrophosphate hydrolysis with H+ and Na+ pumping in plants and microbes. mPPases are homodimeric transporters with two catalytic sites facing the cytoplasm and demonstrating highly different substrate-binding affinities and activities. The structural aspects of the functional [...] Read more.
Membrane-integral inorganic pyrophosphatases (mPPases) couple pyrophosphate hydrolysis with H+ and Na+ pumping in plants and microbes. mPPases are homodimeric transporters with two catalytic sites facing the cytoplasm and demonstrating highly different substrate-binding affinities and activities. The structural aspects of the functional asymmetry are still poorly understood because the structure of the physiologically relevant dimer form with only one active site occupied by the substrate is unknown. We addressed this issue by molecular dynamics (MD) simulations of the H+-transporting mPPase of Vigna radiata, starting from its crystal structure containing a close substrate analog (imidodiphosphate, IDP) in both active sites. The MD simulations revealed pre-existing subunit asymmetry, which increased upon IDP binding to one subunit and persisted in the fully occupied dimer. The most significant asymmetrical change caused by IDP binding is a ‘rigid body’-like displacement of the lumenal loop connecting α-helices 2 and 3 in the partner subunit and opening its exit channel for water. This highly conserved 14–19-residue loop is found only in plant vacuolar mPPases and may have a regulatory function, such as pH sensing in the vacuole. Our data define the structural link between the loop and active sites and are consistent with the published structural and functional data. Full article
(This article belongs to the Collection Computational Studies of Biomolecules)
Show Figures

Figure 1

Back to TopTop