Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = inner-site crystallization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6633 KiB  
Article
Nioboixiolite-(□),(Nb0.8□0.2)4+O2, a New Mineral Species from the Bayan Obo World-Class REE-Fe-Nb Deposit, Inner Mongolia, China
by Yike Li, Changhui Ke, Denghong Wang, Zidong Peng, Yonggang Zhao, Ruiping Li, Zhenyu Chen, Guowu Li, Hong Yu, Li Zhang, Bin Guo and Yupu Gao
Minerals 2025, 15(1), 88; https://doi.org/10.3390/min15010088 - 17 Jan 2025
Cited by 3 | Viewed by 794
Abstract
Nioboixiolite-(□) is a new mineral found in a carbonatite sill from the Bayan Obo mine, Baotou City, Inner Mongolia, China. It occurs as anhedral to subhedral grains (100 to 500 μm in diameter) that are disseminated in carbonatite rock composed of dolomite, calcite, [...] Read more.
Nioboixiolite-(□) is a new mineral found in a carbonatite sill from the Bayan Obo mine, Baotou City, Inner Mongolia, China. It occurs as anhedral to subhedral grains (100 to 500 μm in diameter) that are disseminated in carbonatite rock composed of dolomite, calcite, magnetite, apatite, biotite, actionlike, zircon, and columbite-(Fe). Most of these grains are highly serrated, with numerous inclusions of columbite-(Fe). The mineral is gray to deep black in color; is opaque, with a semi-metallic luster; has a black streak; and is brittle, with an uneven conchoidal splintery. The Mohs hardness is 6–6½, and the calculated density is 6.05 g/cm3. The reflection color is gray with a blue tone, and there is no double reflection color. The measured reflectivity of nioboixiolite-(□) is about 10.6%~12.1%, close to that of ixiolite (11%–13%). Nioboixiolite-(□) is non-fluorescent under 254 nm (short-wave) and 366 nm (long-wave) ultraviolet light. The average chemical analysis results (wt.%) of twelve electron microprobe analyses are F 0.01, MnO 0.12, MgO 0.15, BaO 0.62, PbO 0.91, SrO 1.49, CaO 2.76, Al2O3 0.01, TREE2O3 1.58, Fe2O3 3.57, ThO2 0.11, SiO2 1.69, TiO2 3.68, Ta2O5 13.95, Nb2O5 47.04, and UO3 21.56, with a total of 99.25. The simplified formula is [Nb5+, Ta5+,Ti4+, Fe3+,□,]O2. X-ray diffraction data show that nioboixiolite-(□) is orthorhombic, belonging to the space group Pbcn (#60). The refined unit cell parameters are a = 4.7071(5) Å, b = 5.7097(7) Å, c = 5.1111(6) Å, V = 138.31(3), and β = 90(1) °Å3 with Z = 4. In the crystal structure of nioboixiolite-(□), all cations occupy a single M1 site. In these minerals, edge-sharing M1O6 octahedra form chains along the c direction. In this direction, the chains are connected with each other via common vertices of the octahedra. The strongest measured X-ray powder diffraction lines are [d in Å, (I/I0), (hkl)]: 3.662(20) (110), 2.975(100) (111), 2.501(20) (021), 1.770(20) (122), 1.458(20) (023). A type specimen was deposited in the Geological Museum of China with catalogue number M16118, No. 15, Yangrou Hutong, Xisi, Beijing 100031, People’s Republic of China. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Figure 1

16 pages, 3045 KiB  
Article
Efficient Phosphate Adsorption from Groundwater by Mn-FeOOHs
by Mengxue Li, Guanghui Sun, Ziyang Chu, Jing Wang and Yu Qiu
Water 2024, 16(16), 2294; https://doi.org/10.3390/w16162294 - 14 Aug 2024
Cited by 1 | Viewed by 1164
Abstract
Manganese co-precipitated with goethite (Mn-FeOOH) is ubiquitous within (sub-)surface environments, which are considered one of the most important sinks for phosphorus pollution management. Accordingly, various mole ratios of Mn-FeOOHs are synthesized and characterized by XRD, FE-SEM, FTIR, BET, XPS, hysteresis loop, acid–base titration [...] Read more.
Manganese co-precipitated with goethite (Mn-FeOOH) is ubiquitous within (sub-)surface environments, which are considered one of the most important sinks for phosphorus pollution management. Accordingly, various mole ratios of Mn-FeOOHs are synthesized and characterized by XRD, FE-SEM, FTIR, BET, XPS, hysteresis loop, acid–base titration and zero potential. According to XRD and FESEM images, the substitution of Mn causes subtle alterations in the microstructure and crystal structure of goethite, and the morphology of Mn-FeOOHs is transformed from needle-shaped goethite to a short-rod-shaped rough surface with increasing Mn substitution. Based on the analysis of BET and acid–base titration, the substitution of Mn into goethite significantly improved the surface area, pore volume, surface properties and active sites of goethite, thereby establishing a theoretical basis for effective subsequent adsorption. Batch experiment results show that the removal rate of phosphate decreases with the increasing solution pH, indicating that acidic groundwater conditions are more conducive to the removal of phosphate. In addition, the adsorption of phosphate on Mn-FeOOHs is independent of ionic strength, indicating that the inner-sphere surface complexation predominated their adsorption behaviors. The isotherm experiment results showed that Mn-G15 exhibits the strongest adsorption capacity for phosphate at pH 5.5 and T = 318 K, with a maximum adsorption capacity of 87.18 mg/g. These findings highlighted the effect of Mn content on the fixation of phosphate onto Mn-FeOOHs from (sub-)surface environments in pollution management. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

12 pages, 5585 KiB  
Article
FIB-SEM Study of Archaeological Human Petrous Bones: 3D Structures and Diagenesis
by Jamal Ibrahim, Eugenia Mintz, Lior Regev, Dalit Regev, Ilan Gronau, Steve Weiner and Elisabetta Boaretto
Minerals 2024, 14(7), 729; https://doi.org/10.3390/min14070729 - 21 Jul 2024
Viewed by 1496
Abstract
The petrous bone generally preserves ancient DNA better than other fossil bones. One reason for this is that the inner layer of the petrous bone of pigs and humans contains about three times as many osteocytes as other bones, and hence more DNA. [...] Read more.
The petrous bone generally preserves ancient DNA better than other fossil bones. One reason for this is that the inner layer of the petrous bone of pigs and humans contains about three times as many osteocytes as other bones, and hence more DNA. A FIB-SEM study of modern pig petrous bones showed that the 3D structure of the thin inner layer is typical of woven bone that forms in the fetus, whereas the thicker outer layer has a lamellar structure. The lamellar structure is common in mammalian bones. Here we study human petrous bones that are about 2500 years old, obtained from three Phoenician sites in Sicily, Italy. A detailed FIB-SEM study of two of these bones, one well preserved and the other poorly preserved, shows that the 3D bone type structure of the human petrous inner layer is woven bone, and the outer layer is lamellar bone. These are the same bone type structures found in pig petrous bones. Furthermore, by comparing nine differently preserved petrous bones from the same archaeological region and age, we show that their collagen contents vary widely, implying that organic material can be significantly altered during diagenesis. The mineral crystals are better preserved and hence less crystalline in the inner layers compared to the outer layers. We therefore infer that the best-preserved DNA in fossil petrous bones should be found in the thin inner layers immediately adjacent to the otic cavity where much more DNA is initially present and the mineral phase tends to be better preserved. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

30 pages, 8590 KiB  
Article
The Biological Crystals in Chamid Bivalve Shells: Diversity in Morphology and Crystal Arrangement Pattern
by Sebastian Hoerl, Erika Griesshaber, Antonio G. Checa and Wolfgang W. Schmahl
Crystals 2024, 14(7), 649; https://doi.org/10.3390/cryst14070649 - 15 Jul 2024
Cited by 5 | Viewed by 1417
Abstract
Chamid bivalves are marine organisms that live in high-energy environments and are cemented to hard substrates. To avoid shell damage, the organisms form thick, densely ornamented shells. Shell material consists of aragonite, and the ornamentation may be either aragonitic or calcitic. The latter [...] Read more.
Chamid bivalves are marine organisms that live in high-energy environments and are cemented to hard substrates. To avoid shell damage, the organisms form thick, densely ornamented shells. Shell material consists of aragonite, and the ornamentation may be either aragonitic or calcitic. The latter can be developed as scaly spines, rows of blades, or comarginal, radial arched lamellae. We investigated biological crystal morphology and mode of assembly of Chama arcana and Chama gryphoides shells. Structural characteristics were obtained from electron backscatter diffraction (EBSD) measurements, complemented with laser confocal and BSE imaging. We found a wide range of crystal morphologies and sizes, ranging from irregularly shaped calcite and/or aragonite prisms to tiny and thin aragonite laths. We observed four different modes of crystal assembly patterns: 1. strongly interlocked dendritic calcite units forming the ornamentation blades; 2. aragonite laths arranged to lamellae forming the outer shell layer, the layer adjacent to the calcite; 3. aragonite laths arranged into blocks comprising inner shell layers or aragonitic ornamentations; and 4. shell portions consisting of aragonite prisms, structured in size and crystal orientation, at muscle attachment sites. These four different types of crystal arrangements were observed for the shells of the investigated chamid species; however, they had slightly different strengths of structuring and slight variations in crystal organisation. Additionally, we observed unique microstructural features in Chama shells: We report ornamentation crystals resembling idiomorphic calcite and novel, twinned entities found at the changeover between the aragonitic layers. We highlight and discuss these differences and anomalies in this contribution. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

11 pages, 1973 KiB  
Article
Understanding the Thermodynamics of Magnesium Binding to RNA Structural Motifs
by J. A. Cowan
Life 2024, 14(6), 765; https://doi.org/10.3390/life14060765 - 16 Jun 2024
Cited by 2 | Viewed by 2135
Abstract
Divalent magnesium ions (Mg2+) serve a vital role in defining the structural and catalytic chemistry of a wide array of RNA molecules. The body of structural information on RNA motifs continues to expand and, in turn, the functional importance of Mg [...] Read more.
Divalent magnesium ions (Mg2+) serve a vital role in defining the structural and catalytic chemistry of a wide array of RNA molecules. The body of structural information on RNA motifs continues to expand and, in turn, the functional importance of Mg2+ is revealed. A combination of prior work on the structural characterization of magnesium binding ligands with inner- and outer-sphere coordination modes, with recorded experimental binding energies for inner- and outer-sphere contacts, demonstrates the relative affinity and thermodynamic hierarchy for these sites. In turn, these can be correlated with cellular concentrations of free available magnesium ions, allowing the prioritization of populating important functional sites and a correlation with physiological function. This paper summarizes some of the key results of that analysis and provides predictive rules for the affinity and role of newly identified Mg binding sites on complex RNA structures. The influence of crystal packing on magnesium binding to RNA motifs, relative to their solution form, is addressed and caveats made. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

15 pages, 9734 KiB  
Article
Microstructure and Chlorine Ion Corrosion Performance in Bronze Earring Relics
by Zhiqiang Song and Ojiyed Tegus
Materials 2024, 17(8), 1734; https://doi.org/10.3390/ma17081734 - 10 Apr 2024
Cited by 4 | Viewed by 1191
Abstract
Chlorine ions play an important role in the corrosion of bronzeware. This study employs techniques such as XRD, OM, SEM, EBSD, and electrochemical testing to analyze the microstructure, crystal structure, chemical composition, and corrosion performance of bronze earrings unearthed at the Xindianzi site [...] Read more.
Chlorine ions play an important role in the corrosion of bronzeware. This study employs techniques such as XRD, OM, SEM, EBSD, and electrochemical testing to analyze the microstructure, crystal structure, chemical composition, and corrosion performance of bronze earrings unearthed at the Xindianzi site in Inner Mongolia. The results indicate the presence of work-hardened structures, including twinning and equiaxed crystals, on the earrings’ surface. With an increase in chloride ion concentration in NaCl solutions from 10−3 mol/L to 1 mol/L, the corrosion current density of the bronze earrings increased from 2.372 × 10−7 A/cm2 to 9.051 × 10−7 A/cm2, demonstrating that the alloy’s corrosion rate escalates with chloride ion concentration. A 3-day immersion test in 0.5% NaCl solution showed the formation of a passivation layer of metal oxides on the earrings’ surface. These findings underscore the significance of the impact chloride ions have on the corrosion of copper alloys, suggesting that activating the alloy’s reactive responses can accelerate the corrosion process and provide essential insights into the corrosion mechanisms of bronze artifacts in chloride-containing environments. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Behavior of Metal Materials (2nd Edition))
Show Figures

Figure 1

6 pages, 2458 KiB  
Short Note
N,N′-Bis(3-ethoxy-2-hydroxybenzylidene)-phenylene-1,3-diamine Methanol Solvate
by Dariusz Osypiuk, Agata Bartyzel and Beata Cristóvão
Molbank 2023, 2023(3), M1688; https://doi.org/10.3390/M1688 - 5 Jul 2023
Viewed by 1517
Abstract
A crystal structure and thermal characterization of a multisite Schiff base containing N2O2-inner and O4-outer coordination sites are reported. The title compound was characterized by X-ray structure analysis, 1H-NMR, 13C-NMR and ATR-FTIR spectroscopy, TG/DSC and [...] Read more.
A crystal structure and thermal characterization of a multisite Schiff base containing N2O2-inner and O4-outer coordination sites are reported. The title compound was characterized by X-ray structure analysis, 1H-NMR, 13C-NMR and ATR-FTIR spectroscopy, TG/DSC and TG-FTIR techniques. The compound crystallizes as a methanol solvate in the triclinic system, space group P1¯. The stable at room temperature compound, during heating in the air, first loses a methanol molecule. At higher temperature, the sample decomposition is associated with a strong exothermic effect and the emission of large amounts of carbon dioxide, carbon monoxide and ammonia. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Figure 1

14 pages, 3872 KiB  
Article
High-Voltage FDS of Thermally Aged XLPE Cable and Its Correlation with Physicochemical Properties
by Haoyue Wang, Maolun Sun, Kaijie Zhao, Xiaowei Wang, Qilong Xu, Wei Wang and Chengrong Li
Polymers 2022, 14(17), 3519; https://doi.org/10.3390/polym14173519 - 27 Aug 2022
Cited by 17 | Viewed by 2915
Abstract
This paper aims to investigate the influence of thermal aging on a crosslinked polyethylene (XLPE) cable, and the relationships between the macroscopical high-voltage dielectric and the microscopical physicochemical properties are also elucidated. To better simulate thermal aging under working condition, the medium-voltage-level cable [...] Read more.
This paper aims to investigate the influence of thermal aging on a crosslinked polyethylene (XLPE) cable, and the relationships between the macroscopical high-voltage dielectric and the microscopical physicochemical properties are also elucidated. To better simulate thermal aging under working condition, the medium-voltage-level cable is subjected to accelerated inner thermal aging for different aging times. Then, high-voltage frequency domain spectroscopy (FDS) (cable sample) and analyses of microscopic physical and chemical properties (sampling from the cable), including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and elongation at the break (EAB), are conducted at different cable aging stages. The dielectric test results show that after a certain aging time, the high-voltage FDS curves of the cable have layered characteristics, and this phenomenon is more obvious as the aging degree increases. Moreover, the slope and the integral of the high-voltage FDS curves rise with aging time. The mechanism is deduced by the physicochemical results that thermo-oxidative aging results in increasing polar groups and dislocation defects in the crystal region, which leads to the above phenomenon. On the one hand, the appearance of polar groups increases the density of the dipole. On the other hand, the destruction of the crystal region increases the probability and amplitude of dipole reversal. In addition, the breaking of molecular bonds and the increase in the amorphous phase also reduce the rigidity of the XLPE molecular main chain. The above factors lead to obvious delamination and larger dielectric parameters of the thermally aged cable. Finally, according to the experimental results, an on-site diagnosis method of cable insulation thermal aging based on high-voltage FDS is discussed. Full article
(This article belongs to the Special Issue Aging of Polymer Materials)
Show Figures

Figure 1

14 pages, 1837 KiB  
Review
The Role of Matrix-Bound Extracellular Vesicles in the Regulation of Endochondral Bone Formation
by Barbara D. Boyan, Niels C. Asmussen, Zhao Lin and Zvi Schwartz
Cells 2022, 11(10), 1619; https://doi.org/10.3390/cells11101619 - 12 May 2022
Cited by 28 | Viewed by 3769
Abstract
Matrix vesicles are key players in the development of the growth plate during endochondral bone formation. They are involved in the turnover of the extracellular matrix and its mineralization, as well as being a vehicle for chondrocyte communication and regulation. These extracellular organelles [...] Read more.
Matrix vesicles are key players in the development of the growth plate during endochondral bone formation. They are involved in the turnover of the extracellular matrix and its mineralization, as well as being a vehicle for chondrocyte communication and regulation. These extracellular organelles are released by the cells and are anchored to the matrix via integrin binding to collagen. The exact function and makeup of the vesicles are dependent on the zone of the growth plate in which they are produced. Early studies defined their role as sites of initial calcium phosphate deposition based on the presence of crystals on the inner leaflet of the membrane and subsequent identification of enzymes, ion transporters, and phospholipid complexes involved in mineral formation. More recent studies have shown that they contain small RNAs, including microRNAs, that are distinct from the parent cell, raising the hypothesis that they are a distinct subset of exosomes. Matrix vesicles are produced under complex regulatory pathways, which include the action of steroid hormones. Once in the matrix, their maturation is mediated by the action of secreted hormones. How they convey information to cells, either through autocrine or paracrine actions, is now being elucidated. Full article
(This article belongs to the Special Issue Extracellular Vesicle-Associated Non-Coding RNAs)
Show Figures

Figure 1

15 pages, 2959 KiB  
Article
Si–OH Nest and Al Distribution of Silicalite-1 Core/Al-ZSM-5 Shell Zeolites for Methane Dehydroaromatization Reaction
by Do-Young Hong, Hyun Su Kim, Haoxiang Zhang, Su Kyung Kang, Elsa Tsegay Tikue and Pyung Soo Lee
Crystals 2021, 11(6), 647; https://doi.org/10.3390/cryst11060647 - 8 Jun 2021
Cited by 5 | Viewed by 3330
Abstract
Silicalite-1 core/Al-ZSM-5 shell zeolite crystals were prepared in various sizes for use as catalysts in methane dehydroaromatization (MDA), and the growth kinetics and corresponding physicochemical properties of this core–shell zeolite were investigated. Al-ZSM-5 was grown on silicalite-1 seeds at various Si/Al ratios. Core–shell [...] Read more.
Silicalite-1 core/Al-ZSM-5 shell zeolite crystals were prepared in various sizes for use as catalysts in methane dehydroaromatization (MDA), and the growth kinetics and corresponding physicochemical properties of this core–shell zeolite were investigated. Al-ZSM-5 was grown on silicalite-1 seeds at various Si/Al ratios. Core–shell catalysts of all size variations exhibited similar deactivation trends in the MDA reaction, with minor changes in aromatic yields despite clear differences in reaction channel lengths and acid-site properties. This outcome was shown to originate from the unique growth kinetics of the Al-ZSM-5 layer on silicalite-1 seeds, in which the Al species in the sol used in the synthesis were consumed quickly during the early aggregative growth period. This led to an interesting spatial distribution of Al in the Al-ZSM-5 layer, in that the inner layer was relatively Al-rich. This distribution is advantageous because it can inhibit coke deactivation, which often occurs at the catalyst surface during MDA. However, a substantial quantity of Si–OH nests, which inhibit the effective loading of Mo species at the acid sites of the crystals, were detected in the microstructural analysis of large crystals. Therefore, this study shows that silicalite-1 core/Al-ZSM-5 shell zeolites can be prepared for use as coke-resistant catalysts for the MDA reaction. Further work is required, however, to design a synthesis method which reduces the number of Si–OH nests formed. Full article
Show Figures

Figure 1

18 pages, 23835 KiB  
Article
Compositional Evolution of the Variscan Intra-Orogenic Extensional Magmatism in the Valencia del Ventoso Plutonic Complex, Ossa-Morena Zone (SW Iberia): A View from Amphibole Compositional Relationships
by Aitor Cambeses, José F. Molina, Irene Morales, Concepción Lázaro, Juan A. Moreno, Pilar Montero and Fernando Bea
Minerals 2021, 11(4), 431; https://doi.org/10.3390/min11040431 - 18 Apr 2021
Cited by 8 | Viewed by 3110
Abstract
The Ossa-Morena Zone (OMZ), SW Iberia, has numerous Lower Carboniferous compositionally zoned plutons that formed in a Variscan intra-orogenic extensional setting. This magmatism shows a wide compositional variation comprising alkaline, transitional, and calc-alkaline suites. The calc-alkaline suite was produced by hybridization of alkaline [...] Read more.
The Ossa-Morena Zone (OMZ), SW Iberia, has numerous Lower Carboniferous compositionally zoned plutons that formed in a Variscan intra-orogenic extensional setting. This magmatism shows a wide compositional variation comprising alkaline, transitional, and calc-alkaline suites. The calc-alkaline suite was produced by hybridization of alkaline magmas with felsic melts generated by crustal anatexis related to the intrusion of mafic magmas in the middle crust. In this work, we present a textural and mineralogical study of the Variscan Valencia del Ventoso main pluton from the OMZ to track the compositional evolution of magmas during hybridization using constraints from amphibole compositions and to determine the P-T conditions of emplacement using amphibole-based thermobarometry. This pluton exhibits reverse zoning with an inner facies containing alkaline dolerites, gabbros, and quartz diorites, an intermediate facies with transitional diorites, and an outer facies with calc-alkaline quartz diorites to monzogranites. Magmas from the intermediate and border facies crystallized under oxidizing conditions at relatively low temperatures (range: 640–760 °C) and ca. 280–300 MPa, implying near H2O-saturated conditions. These rock facies show mineralogical evidence of hybridization between alkaline to mildly alkalic and calc-alkaline magmas. The former is inferred from the occurrence of antecrysts of labradorite-andesine, high-Ti pargasite-hastingsite, and biotite with deficiency in tetrahedral-site occupancy, a distinctive feature of biotite from the inner facies alkaline dolerites. This contrasts with later crystallization from the calc-alkaline magma of andesine-oligoclase, low-Ti magnesiohornblende-edenite, and biotite with full tetrahedral-site occupancy. Constraints from amphibole-melt compositional relationships in antecrystic high-Ti amphibole suggest that the alkaline magmatic component could have a high- to ultra-K affinity. Full article
(This article belongs to the Special Issue Distribution of Major- and Trace-Elements in Igneous Minerals)
Show Figures

Figure 1

9 pages, 3601 KiB  
Article
Te Nanoneedles Induced Entanglement and Thermoelectric Improvement of SnSe
by Hyun Ju, Myeongjin Kim, Jinglei Yang and Jooheon Kim
Materials 2020, 13(11), 2523; https://doi.org/10.3390/ma13112523 - 1 Jun 2020
Cited by 5 | Viewed by 2334
Abstract
Chalcogenide-based materials have attracted widespread interest in high-performance thermoelectric research fields. A strategy for the application of two types of chalcogenide for improved thermoelectric performance is described herein. Tin selenide (SnSe) is used as a base material, and Te nanoneedles are crystallized in [...] Read more.
Chalcogenide-based materials have attracted widespread interest in high-performance thermoelectric research fields. A strategy for the application of two types of chalcogenide for improved thermoelectric performance is described herein. Tin selenide (SnSe) is used as a base material, and Te nanoneedles are crystallized in the SnSe, resulting in the generation of a composite structure of SnSe with Te nanoneedles. The thermoelectric properties with various reaction times are investigated to reveal the optimum conditions for enhanced thermoelectric performance. A reaction time of 4 h at 450 K generated a composite Te nanoneedles/SnSe sample with the maximum ZT value, 3.2 times larger than that of the pristine SnSe. This result is attributed to both the reduced thermal conductivity from the effective phonon scattering of heterointerfaces and the improved electrical conductivity value due to the introduction of Te nanoparticles. This strategy suggests an approach to generating high-performance practical thermoelectric materials. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

18 pages, 6367 KiB  
Article
Diagenetic Origin of Bipyramidal Quartz and Hydrothermal Aragonites within the Upper Triassic Saline Succession of the Iberian Basin: Implications for Interpreting the Burial–Thermal Evolution of the Basin
by María J. Herrero, Rafaela Marfil, Jose I. Escavy, Ihsan Al-Aasm and Michael Scherer
Minerals 2020, 10(2), 177; https://doi.org/10.3390/min10020177 - 15 Feb 2020
Cited by 4 | Viewed by 4441
Abstract
Within the Upper Triassic successions in the Iberian Basin (Spain), the occurrence of both idiomorphic bipyramidal quartz crystals as well as pseudohexagonal aragonite crystals are related to mudstone and evaporite bearing sequences. Bipyramidal-euhedral quartz crystals occur commonly at widespread locations and similar idiomorphic [...] Read more.
Within the Upper Triassic successions in the Iberian Basin (Spain), the occurrence of both idiomorphic bipyramidal quartz crystals as well as pseudohexagonal aragonite crystals are related to mudstone and evaporite bearing sequences. Bipyramidal-euhedral quartz crystals occur commonly at widespread locations and similar idiomorphic crystals have been described in other formations and ages from Europe, America, Pakistan, and Africa. Similarly, pseudohexagonal aragonite crystals are located at three main sites in the Iberian Range and are common constituents of deposits of this age in France, Italy, and Morocco. This study presents a detailed description of the geochemical and mineralogical characteristics of the bipyramidal quartz crystals to decipher their time of formation in relation to the diagenetic evolution of the sedimentary succession in which they formed. Petrographic and scanning electron microscopy (SEM) analyses permit the separation of an inner part of quartz crystals with abundant anhydrite and organic-rich inclusions. This inner part resulted from near-surface recrystallization (silicification) of an anhydrite nodule, at temperatures that were <40 °C. Raman spectra reveal the existence of moganite and polyhalite, which reinforces the evaporitic character of the original depositional environment. The external zone of the quartz contains no anhydrite or organic inclusions and no signs of evaporites in the Raman spectra, being interpreted as quartz overgrowths formed during burial, at temperatures between 80 to 90 °C. Meanwhile, the aragonite that appears in the same Keuper deposits was precipitated during the Callovian, resulting from the mixing of hydrothermal fluids with infiltrated waters of marine origin, at temperatures ranging between 160 and 260 °C based on fluids inclusion analyses. Although both pseudohexagonal aragonite crystals and bipyramidal quartz appear within the same succession, they formed at different phases of the diagenetic and tectonic evolution of the basin: bipyramidal quartz crystals formed in eo-to mesodiagenetic environments during a rifting period at Upper Triassic times, while aragonite formed 40 Ma later as a result of hydrothermal fluids circulating through normal faults. Full article
Show Figures

Figure 1

Back to TopTop