Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = inhomogeneous broadening

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2328 KiB  
Review
The g-Strained EPR Line Shape of Transition-Ion Complexes and Metalloproteins: Four Decades of Misunderstanding and Its Consequences
by Wilfred R. Hagen
Molecules 2025, 30(15), 3299; https://doi.org/10.3390/molecules30153299 - 6 Aug 2025
Abstract
Analysis of the EPR of dilute transition-ion complexes and metalloproteins in random phases, such as frozen solutions, powders, glasses, and gels, requires a model for the spectral ‘powder’ shape. Such a model comprises a description of the line shape and the linewidth of [...] Read more.
Analysis of the EPR of dilute transition-ion complexes and metalloproteins in random phases, such as frozen solutions, powders, glasses, and gels, requires a model for the spectral ‘powder’ shape. Such a model comprises a description of the line shape and the linewidth of individual molecules as well as a notion of their physical origin. Spectral features sharpen up with decreasing temperature until the limit of constant linewidth of inhomogeneous broadening. At and below this temperature limit, each molecule has a linewidth that slightly differs from those of its congeners, and which is not related in a simple way to lifetime broadening. Choice of the model not only affects precise assignment of g-values, but also concentration determination (‘spin counting’), and therefore, calculation of stoichiometries in multi-center complexes. Forty years ago, the theoretically and experimentally well-founded statistical theory of g-strain was developed as a prime model for EPR powder patterns. In the intervening years until today, this model was universally ignored in favor of models that are incompatible with physical reality, resulting in many mistakes in EPR spectral interpretation. The purpose of this review is to outline the differences between the models, to reveal where analyses went astray, and thus to turn a very long standstill in EPR powder shape understanding into a new start towards proper methodology. Full article
Show Figures

Graphical abstract

9 pages, 2679 KiB  
Article
Forced Atom Interferometers in Optical Harmonic Potentials
by Mingjie Xin, Wui Seng Leong, Zilong Chen and Shau-Yu Lan
Atoms 2025, 13(4), 30; https://doi.org/10.3390/atoms13040030 - 3 Apr 2025
Viewed by 592
Abstract
We present a study of Doppler-sensitive light-pulse atom interferometers operating within optical dipole potentials, where atomic trajectories are manipulated using momentum transfer from light pulses and optical forces from the trap. Efficient methods are introduced to minimize the inhomogeneous broadening of oscillation frequencies [...] Read more.
We present a study of Doppler-sensitive light-pulse atom interferometers operating within optical dipole potentials, where atomic trajectories are manipulated using momentum transfer from light pulses and optical forces from the trap. Efficient methods are introduced to minimize the inhomogeneous broadening of oscillation frequencies in atoms confined within a three-dimensional optical lattice trap. These techniques enable the preparation of various quantum states, including vacuum, thermal, and squeezed states, for atom interferometry. Additionally, we demonstrate a two-dimensional atom interferometer using a single optical dipole trap, where transverse motion is activated by offsetting the trap position. Our work provides insights into controlling the mechanical motion of neutral atoms in optical harmonic potentials and contributes to advancing applications in quantum sensing and quantum computing. Full article
(This article belongs to the Special Issue Advances in and Prospects for Matter Wave Interferometry)
Show Figures

Figure 1

23 pages, 5469 KiB  
Article
Shutter-Synchronized Molecular Beam Epitaxy for Wafer-Scale Homogeneous GaAs and Telecom Wavelength Quantum Emitter Growth
by Elias Kersting, Hans-Georg Babin, Nikolai Spitzer, Jun-Yong Yan, Feng Liu, Andreas D. Wieck and Arne Ludwig
Nanomaterials 2025, 15(3), 157; https://doi.org/10.3390/nano15030157 - 21 Jan 2025
Viewed by 1783
Abstract
Quantum dot (QD)-based single-photon emitter devices today are based on self-assembled random position nucleated QDs emitting at random wavelengths. Deterministic QD growth in position and emitter wavelength would be highly appreciated for industry-scale high-yield device manufacturing from wafers. Local droplet etching during molecular [...] Read more.
Quantum dot (QD)-based single-photon emitter devices today are based on self-assembled random position nucleated QDs emitting at random wavelengths. Deterministic QD growth in position and emitter wavelength would be highly appreciated for industry-scale high-yield device manufacturing from wafers. Local droplet etching during molecular beam epitaxy is an all in situ method that allows excellent density control and predetermines the nucleation site of quantum dots. This method can produce strain-free GaAs QDs with excellent photonic and spin properties. Here, we focus on the emitter wavelength homogeneity. By wafer rotation-synchronized shutter opening time and adapted growth parameters, we grow QDs with a narrow peak emission wavelength homogeneity with no more than 1.2 nm shifts on a 45 mm diameter area and a narrow inhomogeneous ensemble broadening of only 2 nm at 4 K. The emission wavelength of these strain-free GaAs QDs is <800 nm, attractive for quantum optics experiments and quantum memory applications. We can use a similar random local droplet nucleation, nanohole drilling, and now, InAs infilling to produce QDs emitting in the telecommunication optical fiber transparency window around 1.3 µm, the so-called O-band. For this approach, we demonstrate good wavelength homogeneity and excellent density homogeneity beyond the possibilities of standard Stranski–Krastanov self-assembly. We discuss our methodology, structural and optical properties, and limitations set by our current setup capabilities. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

9 pages, 2069 KiB  
Communication
Enhanced Performance of High-Power InAs/GaAs Quantum Dot Lasers Through Indium Flushing
by Deyan Dai, Hanqing Liu, Xiangjun Shang, Shizhuo Tan, Qiaozhi Zhang, Chengao Yang, Dongwei Jiang, Xiangbin Su, Haiqiao Ni and Zhichuan Niu
Photonics 2025, 12(1), 62; https://doi.org/10.3390/photonics12010062 - 13 Jan 2025
Viewed by 1185
Abstract
InAs/GaAs quantum dots (QDs) appear promising for optoelectronic applications. However, the inhomogeneous broadening caused by natural strain and the non-uniform size distribution deteriorates the device performance based on multi-stacked QD layers. In this study, In-flush was incorporated during the epitaxy, and the photoluminescence [...] Read more.
InAs/GaAs quantum dots (QDs) appear promising for optoelectronic applications. However, the inhomogeneous broadening caused by natural strain and the non-uniform size distribution deteriorates the device performance based on multi-stacked QD layers. In this study, In-flush was incorporated during the epitaxy, and the photoluminescence (PL) linewidth was significantly narrowed to 26.1 meV for the flushed sample and maintained to 27.3 meV for the unflushed sample. The flushed sample shows better device performance in threshold current (0.229 to 0.334 A at 15 °C), power (1.142 to 1.113 W at 15 °C), and characteristic temperature (51 to 39 K in the range of 55~80 °C) compared with the unflushed sample. Full article
Show Figures

Figure 1

13 pages, 2563 KiB  
Article
Fluorescence Properties of Novel Multiresonant Indolocarbazole Derivatives for Deep-Blue OLEDs from Multiscale Computer Modelling
by Nikita O. Dubinets and Andrey Yu. Sosorev
Molecules 2025, 30(2), 255; https://doi.org/10.3390/molecules30020255 - 10 Jan 2025
Cited by 1 | Viewed by 1001
Abstract
Multiresonant fluorophores are a novel class of organic luminophores with a narrow emission spectrum. They can yield organic light-emitting devices, e.g., OLEDs, with high colour purity. In this study, we applied DFT and multiscale modelling to predict the electronic and optical properties of [...] Read more.
Multiresonant fluorophores are a novel class of organic luminophores with a narrow emission spectrum. They can yield organic light-emitting devices, e.g., OLEDs, with high colour purity. In this study, we applied DFT and multiscale modelling to predict the electronic and optical properties of several novel derivatives of indolocarbazole pSFIAc, which had recently shown a high potential in deep-blue OLEDs. We found that the addition of phenyls to a certain position of the pSFIAc core can considerably increase the fluorescent rate, leaving other properties (HOMO, LUMO, lowest excited singlet and lowest triplet states’ energies) virtually unaffected. This can improve the efficiency and stability of deep-blue organic light-emitting devices; the suggested phenyl-substituted indolocarbazoles have been shown to be compatible with two popular anthracene-based hosts. On the contrary, the addition of phenyls to another positions of the core is detrimental for optoelectronic properties. QM/MM and QM/EFP calculations yielded negligible inhomogeneous broadening of the emission spectrum of the studied luminophores when embedded as dopants in anthracene-based hosts, predicting high colour purity of the corresponding devices. On the basis of the obtained results, we selected one novel multiresonant indolocarbazole derivative that is most promising for organic light-emitting devices. We anticipate the revealed structure-property relationships will facilitate the rational design of efficient materials for organic (opto)electronics. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

12 pages, 323 KiB  
Article
On One Approach to Obtaining Estimates of the Rate of Convergence to the Limiting Regime of Markov Chains
by Yacov Satin, Rostislav Razumchik, Alexander Zeifman and Ilya Usov
Mathematics 2024, 12(17), 2763; https://doi.org/10.3390/math12172763 - 6 Sep 2024
Viewed by 1024
Abstract
We revisit the problem of the computation of the limiting characteristics of (in)homogeneous continuous-time Markov chains with the finite state space. In general, it can be performed only numerically. The common rule of thumb is to interrupt calculations after quite some time, hoping [...] Read more.
We revisit the problem of the computation of the limiting characteristics of (in)homogeneous continuous-time Markov chains with the finite state space. In general, it can be performed only numerically. The common rule of thumb is to interrupt calculations after quite some time, hoping that the values at some distant time interval will represent the sought-after solution. Convergence or ergodicity bounds, when available, can be used to answer such questions more accurately; i.e., they can indicate how to choose the position and the length of that distant time interval. The logarithmic norm method is a general technique that may allow one to obtain such bounds. Although it can handle continuous-time Markov chains with both finite and countable state spaces, its downside is the need to guess the proper similarity transformations, which may not exist. In this paper, we introduce a new technique, which broadens the scope of the logarithmic norm method. This is achieved by firstly splitting the generator of a Markov chain and then merging the convergence bounds of each block into a single bound. The proof of concept is illustrated by simple examples of the queueing theory. Full article
Show Figures

Figure 1

13 pages, 3840 KiB  
Article
Novel Plasmonic Metamaterials Based on Metal Nano-Hemispheres and Metal-Dielectric Composites
by Rei Niguma, Tetsuya Matsuyama, Kenji Wada and Koichi Okamoto
Photonics 2024, 11(4), 356; https://doi.org/10.3390/photonics11040356 - 12 Apr 2024
Cited by 4 | Viewed by 1956
Abstract
We introduce a groundbreaking plasmonic metamaterial, the Nano-Hemisphere on Hyperbolic Metamaterial (NHoHMM), which involves the fabrication of Ag nano-hemispheres on a multilayered Ag/SiO2 structure, achieved solely through sputtering and heat treatment. Finite Difference Time Domain (FDTD) simulations unveil the intriguing slow propagation [...] Read more.
We introduce a groundbreaking plasmonic metamaterial, the Nano-Hemisphere on Hyperbolic Metamaterial (NHoHMM), which involves the fabrication of Ag nano-hemispheres on a multilayered Ag/SiO2 structure, achieved solely through sputtering and heat treatment. Finite Difference Time Domain (FDTD) simulations unveil the intriguing slow propagation of the localized electric field, where light travels at only 1/40th of its usual speed within this structure. These simulations reveal distinctive sharp absorption peaks in the visible spectrum, attributed to surface plasmon resonance. In practical experiments, the NHoHMM structure, characterized by random Ag nano-hemispheres, exhibits broad absorption peaks spanning the visible range, rendering it a versatile broadband optical absorber. For comparison, the optical properties of the Ag nano-hemispheres on a nanocermet (NHoNC) structure were analyzed through simultaneous sputtering of Ag and SiO2 followed by heat treatment. Simulations employing effective medium theory and the transfer matrix method demonstrate variable optical properties dependent on the Ag filling ratio in the nanocermet structure. The results obtained differ from the spectra of the NHoHMM structure; thus, it is concluded that in the NHoHMM structure, the calculated multi-peaks are broadened due to the inhomogeneity of the nano-hemispherical structure’s size, rather than the metal/dielectric multilayer structure being altered by the heat treatment. Full article
(This article belongs to the Special Issue Micro-Nano Optical Devices)
Show Figures

Figure 1

13 pages, 2949 KiB  
Article
Structure, Microstructure and Magnetocaloric/Thermomagnetic Properties at the Early Sintering of MnFe(P,Si,B) Compounds
by Tvrgvn Qianbai, Hargen Yibole and Francois Guillou
Metals 2024, 14(4), 385; https://doi.org/10.3390/met14040385 - 26 Mar 2024
Viewed by 1565
Abstract
Minimizing the sintering time while ensuring high performances is an important optimization step for the preparation of magnetocaloric or thermomagnetic materials produced by powder metallurgy. Here, we study the influence of sintering time on the properties of a Mn0.95Fe1P [...] Read more.
Minimizing the sintering time while ensuring high performances is an important optimization step for the preparation of magnetocaloric or thermomagnetic materials produced by powder metallurgy. Here, we study the influence of sintering time on the properties of a Mn0.95Fe1P0.56Si0.39B0.05 compound. In contrast to former reports investigating different annealing temperatures during heat treatments of several hours or days, we pay special attention to the earliest stages of sintering. After ball-milling and powder compaction, 2 min sintering at 1100 °C is found sufficient to form the desired Fe2P-type phase. Increasing the sintering time leads to a sharper first-order magnetic transition, a stronger latent heat, and usually to a larger isothermal entropy change, though not in all cases. As demonstrated by DSC or magnetization measurements, these parameters present dissimilar time evolutions, highlighting the existence of various underlying mechanisms. Chemical inhomogeneities are likely responsible for broadened transitions for the shortest sinterings. The development of strong latent heat requires longer sinterings than those for sharpening the magnetic transition. The microstructure may play a role as the average grain size progressively increases with the sintering time from 3.5 μm (2 min) to 30.1 μm (100 h). This systematic study has practical consequences for optimizing the preparation of MnFe(P,Si,B) compounds, but also raises intriguing questions on the influence of the microstructure and of the chemical homogeneity on magnetocaloric or thermomagnetic performances. Full article
(This article belongs to the Special Issue Feature Papers in Metallic Functional Materials)
Show Figures

Figure 1

12 pages, 3200 KiB  
Article
Growth, Structure, and Spectroscopic Properties of a Disordered Nd:SrLaGaO4 Laser Crystal
by Shanshan Fang, Ling Liang, Wei Wang, Yiyang Lin, Yijian Sun, Guoliang Gong, Chaoyang Tu and Herui Wen
Crystals 2024, 14(2), 174; https://doi.org/10.3390/cryst14020174 - 9 Feb 2024
Cited by 4 | Viewed by 1660
Abstract
A disordered Nd:SrLaGaO4 (Nd:SLG) laser crystal was successfully grown via the Czochralski (CZ) technique. The crystal structure, refractive index, polarized absorption spectra, and stimulated emission spectra were measured. The spectroscopic properties were studied intensively with the Judd–Ofelt (J-O) theory. The maximum absorption [...] Read more.
A disordered Nd:SrLaGaO4 (Nd:SLG) laser crystal was successfully grown via the Czochralski (CZ) technique. The crystal structure, refractive index, polarized absorption spectra, and stimulated emission spectra were measured. The spectroscopic properties were studied intensively with the Judd–Ofelt (J-O) theory. The maximum absorption cross sections of π- and σ-polarization at 806 nm were calculated to be 3.73 × 10−20 and 4.05 × 10−20 cm2, corresponding to FWHMs of 6.00 and 6.10 nm, respectively. The maximum emission cross sections of π- and σ-polarization at 1076 nm were 3.97 × 10−20 and 4.12 × 10−20 cm2, with FWHMs of 30.21 and 19.44 nm, respectively. The decay life of the Nd3+:4F3/2 energy level was fitted to be 0.152 ms, and the fluorescence quantum efficiency was 72.72%. The inhomogeneous broadening in spectra benefiting from the disordered structure indicates the Nd:SLG crystal is a promising gain medium for ultrafast laser and tunable laser generations in the near infrared region. Full article
(This article belongs to the Special Issue Photoelectric Functional Crystals)
Show Figures

Figure 1

22 pages, 5502 KiB  
Article
Optimization Design of the Elbow Inlet Channel of a Pipeline Pump Based on the SCSO-BP Neural Network
by Libin Zhang, Yin Luo, Zhenhua Shen, Daoxing Ye and Zihan Li
Water 2024, 16(1), 74; https://doi.org/10.3390/w16010074 - 24 Dec 2023
Cited by 7 | Viewed by 1663
Abstract
A vertical pipeline pump is a type of single-stage, single-suction centrifugal pump with a curved elbow input. The inhomogeneous flow of the impeller inlet coexists with the unique elbow inlet channel, making it simple to generate the inlet vortical secondary flow. This paper [...] Read more.
A vertical pipeline pump is a type of single-stage, single-suction centrifugal pump with a curved elbow input. The inhomogeneous flow of the impeller inlet coexists with the unique elbow inlet channel, making it simple to generate the inlet vortical secondary flow. This paper aimed to optimize elbow inlet channel performance using a backpropagation (BP) neural network enhanced by the Sand Cat Swarm algorithm. The elbow flow channel’s midline and cross section shapes were fitted with a spline curve, and the parametric model of the curve was then constructed. Nine initial variables were filtered down to four optimization variables using the partial factor two-level (P2) and Plackett-Burman (P-B) experimental designs and multivariate analysis of variance. The sample space was generated by 50 groups of experiment samples, and the Sand Cat Swarm algorithm to optimize the BP (SCSO-BP) neural network and the approximation model of four variables were built. A genetic algorithm (GA) was applied to determine the optimal parameters among the approximate models in the sample space, and the ideal parameter combination of the elbow inlet channel was achieved. The findings demonstrated a strong agreement between the experimental and numerical simulation results. With reduced error fluctuation in inaccuracy and a more consistent fluctuation range, the approximate prediction model based on the optimized Sand Cat Swarm algorithm performed better. The optimized inlet model minimized the impact loss on the inlet wall, improved the velocity distribution uniformity of the inlet impeller, increased the pump efficiency by about 5% and the head by about 7.48% near the design flow, and broadened the efficient region of the pump. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery)
Show Figures

Figure 1

10 pages, 2252 KiB  
Article
Continuous-Wave and Mode-Locked Operation of an In-Band Pumped Tm,Ho,Lu:CaGdAlO4 Laser
by Huangjun Zeng, Wenze Xue, Robert T. Murray, Weidong Chen, Zhongben Pan, Li Wang, Chen Cui, Pavel Loiko, Xavier Mateos, Uwe Griebner and Valentin Petrov
Appl. Sci. 2023, 13(23), 12927; https://doi.org/10.3390/app132312927 - 3 Dec 2023
Cited by 2 | Viewed by 1735
Abstract
We investigate in-band pumping of a Tm,Ho,Lu:CaGdAlO4 laser using a Raman-shifted Er-fiber laser (1678 nm), in the continuous-wave (CW) and mode-locked (ML) regimes. A maximum output power of 524 mW is obtained in the CW regime with a 5% output coupler at [...] Read more.
We investigate in-band pumping of a Tm,Ho,Lu:CaGdAlO4 laser using a Raman-shifted Er-fiber laser (1678 nm), in the continuous-wave (CW) and mode-locked (ML) regimes. A maximum output power of 524 mW is obtained in the CW regime with a 5% output coupler at an absorbed pump power of 2.04 W, corresponding to a slope efficiency of 27.9%. A maximum CW wavelength tuning range of 160 nm at the zero level, from 1984 to 2144 nm, is obtained with a 0.2% output coupler. In the ML regime, pumping with 5.5 W (unpolarized), the average output power (0.2% output coupler) reaches 148 mW at a repetition rate of ~96 MHz. The output spectrum is centered at 2071.5 nm with a FWHM of 21.5 nm (σ-polarization). The pulse duration amounts to 218 fs (time-bandwidth product equal to 0.327). Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

10 pages, 2522 KiB  
Article
Automated High-Order Shimming for Neuroimaging Studies
by Jia Xu, Baolian Yang, Douglas Kelley and Vincent A. Magnotta
Tomography 2023, 9(6), 2148-2157; https://doi.org/10.3390/tomography9060168 - 1 Dec 2023
Cited by 2 | Viewed by 2773
Abstract
B0 inhomogeneity presents a significant challenge in MRI and MR spectroscopy, particularly at high-field strengths, leading to image distortion, signal loss, and spectral broadening. Existing high-order shimming methods can alleviate these issues but often require time-consuming and subjective manual selection of regions [...] Read more.
B0 inhomogeneity presents a significant challenge in MRI and MR spectroscopy, particularly at high-field strengths, leading to image distortion, signal loss, and spectral broadening. Existing high-order shimming methods can alleviate these issues but often require time-consuming and subjective manual selection of regions of interest (ROIs). To address this, we proposed an automated high-order shimming (autoHOS) method, incorporating deep-learning-based brain extraction and image-based high-order shimming. This approach performs automated real-time brain extraction to define the ROI of the field map to be used in the shimming algorithm. The shimming performance of autoHOS was assessed through in vivo echo-planar imaging (EPI) and spectroscopic studies at both 3T and 7T field strengths. AutoHOS outperforms linear shimming and manual high-order shimming, enhancing both the image and spectral quality by reducing the EPI image distortion and narrowing the MRS spectral lineshapes. Therefore, autoHOS demonstrated a significant improvement in correcting B0 inhomogeneity while eliminating the need for additional user interaction. Full article
(This article belongs to the Section Brain Imaging)
Show Figures

Graphical abstract

14 pages, 2960 KiB  
Article
Single-Exciton Photoluminescence in a GaN Monolayer inside an AlN Nanocolumn
by Eugenii Evropeitsev, Dmitrii Nechaev, Valentin Jmerik, Yuriy Zadiranov, Marina Kulagina, Sergey Troshkov, Yulia Guseva, Daryia Berezina, Tatiana Shubina and Alexey Toropov
Nanomaterials 2023, 13(14), 2053; https://doi.org/10.3390/nano13142053 - 12 Jul 2023
Viewed by 1672
Abstract
GaN/AlN heterostructures with thicknesses of one monolayer (ML) are currently considered to be the most promising material for creating UVC light-emitting devices. A unique functional property of these atomically thin quantum wells (QWs) is their ability to maintain stable excitons, resulting in a [...] Read more.
GaN/AlN heterostructures with thicknesses of one monolayer (ML) are currently considered to be the most promising material for creating UVC light-emitting devices. A unique functional property of these atomically thin quantum wells (QWs) is their ability to maintain stable excitons, resulting in a particularly high radiation yield at room temperature. However, the intrinsic properties of these excitons are substantially masked by the inhomogeneous broadening caused, in particular, by fluctuations in the QWs’ thicknesses. In this work, to reduce this effect, we fabricated cylindrical nanocolumns of 50 to 5000 nm in diameter using GaN/AlN single QW heterostructures grown via molecular beam epitaxy while using photolithography with a combination of wet and reactive ion etching. Photoluminescence measurements in an ultrasmall QW region enclosed in a nanocolumn revealed that narrow lines of individual excitons were localized on potential fluctuations attributed to 2-3-monolayer-high GaN clusters, which appear in QWs with an average thickness of 1 ML. The kinetics of luminescence with increasing temperature is determined via the change in the population of localized exciton states. At low temperatures, spin-forbidden dark excitons with lifetimes of ~40 ns predominate, while at temperatures elevated above 120 K, the overlying bright exciton states with much faster recombination dynamics determine the emission. Full article
(This article belongs to the Special Issue (Al, Ga)N-Based Nanostructures for UV-C Optoelectronics)
Show Figures

Figure 1

13 pages, 3077 KiB  
Communication
Inversion of Wind and Temperature from Low SNR FPI Interferograms
by Yafei Wei, Sheng-Yang Gu, Zhenlin Yang, Cong Huang, Na Li, Guoyuan Hu and Xiankang Dou
Remote Sens. 2023, 15(7), 1934; https://doi.org/10.3390/rs15071934 - 4 Apr 2023
Cited by 2 | Viewed by 1682
Abstract
The temperature and wind in the middle and upper atmosphere can be obtained by recording the Doppler shift and broadening of the airglow emission, which is reflected by the interference ring from a ground-based Fabry–Perot interferometer (FPI) system. FPI observations are highly susceptible [...] Read more.
The temperature and wind in the middle and upper atmosphere can be obtained by recording the Doppler shift and broadening of the airglow emission, which is reflected by the interference ring from a ground-based Fabry–Perot interferometer (FPI) system. FPI observations are highly susceptible to weather and the external environment, which seriously affect the signal-to-noise ratio (SNR) of FPI interferograms. An SNR can significantly increase errors in determining the center of the interferogram, leading to inaccurate wind and temperature inversions. The calculation shows that the wind inversion from the interferogram decreases and the temperature increases for larger central errors. In this paper, we propose the maximum standard deviation method (MSDM) with high accuracy and robustness to determine the interference ring center. The performance of the MSDM is better achieved by using more than 100 1D interferogram bins to determine the center of interferograms. The robustness of the MSDM is investigated by computing numerous simulated interferograms with white Gaussian noise and Poisson noise, and compared with the two algorithms of binarization and peak fitting, which are usually used to invert wind and temperature from the interference ring of FPI. The results show that MSDM has higher accuracy and robustness than the other two algorithms. We also simulate the distortion interferogram when the FPI may be illuminated by inhomogeneous background light, which can introduce additional errors in wind and temperature, and the MSDM still performs better. Finally, we invert the wind and temperature from the real airglow interferogram by the Kelan (38.7°N, 111.6°E) FPI, which shows that both the wind and temperature inverted by MSDM better agree well with the FPI product than the other two algorithms. Therefore, the MSDM helps to improve the accuracy and stability to invert the wind and temperature. Full article
Show Figures

Figure 1

18 pages, 6442 KiB  
Article
Bayesian-Based Hybrid Method for Rapid Optimization of NV Center Sensors
by Jiazhao Tian, Ressa S. Said, Fedor Jelezko, Jianming Cai and Liantuan Xiao
Sensors 2023, 23(6), 3244; https://doi.org/10.3390/s23063244 - 19 Mar 2023
Cited by 4 | Viewed by 2872
Abstract
NV centers are among the most promising platforms in the field of quantum sensing. Magnetometry based on NV centers, especially, has achieved concrete development in areas of biomedicine and medical diagnostics. Improving the sensitivity of NV center sensors under wide inhomogeneous broadening and [...] Read more.
NV centers are among the most promising platforms in the field of quantum sensing. Magnetometry based on NV centers, especially, has achieved concrete development in areas of biomedicine and medical diagnostics. Improving the sensitivity of NV center sensors under wide inhomogeneous broadening and fieldamplitude drift is a crucial issue of continuous concern that relies on the coherent control of NV centers with high average fidelity. Quantum optimal control (QOC) methods provide access to this target; nevertheless, the high time consumption of current methods due to the large number of needful sample points as well as the complexity of the parameter space has hindered their usability. In this paper, we propose the Bayesian estimation phase-modulated (B-PM) method to tackle this problem. In the case of the state transforming of an NV center ensemble, the B-PM method reduced the time consumption by more than 90% compared with the conventional standard Fourier basis (SFB) method while increasing the average fidelity from 0.894 to 0.905. In the AC magnetometry scenario, the optimized control pulse obtained with the B-PM method achieved an eight-fold extension of coherence time T2 compared with the rectangular π pulse. Similar application can be made in other sensing situations. As a general algorithm, the B-PM method can be further extended to the open- and closed-loop optimization of complex systems based on a variety of quantum platforms. Full article
(This article belongs to the Special Issue Important Achievements in Optical Measurements in China 2022–2023)
Show Figures

Figure 1

Back to TopTop