Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = inhalable pharmaceutical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1790 KiB  
Article
Development of Co-Amorphous Systems for Inhalation Therapy—Part 1: From Model Prediction to Clinical Success
by Eleonore Fröhlich, Aurora Bordoni, Nila Mohsenzada, Stefan Mitsche, Hartmuth Schröttner and Sarah Zellnitz-Neugebauer
Pharmaceutics 2025, 17(7), 922; https://doi.org/10.3390/pharmaceutics17070922 - 16 Jul 2025
Viewed by 418
Abstract
Background/Objectives: The integration of machine learning (ML) and artificial intelligence (AI) has revolutionized the pharmaceutical industry by improving drug discovery, development and manufacturing processes. Based on literature data, an ML model was developed by our group to predict the formation of binary [...] Read more.
Background/Objectives: The integration of machine learning (ML) and artificial intelligence (AI) has revolutionized the pharmaceutical industry by improving drug discovery, development and manufacturing processes. Based on literature data, an ML model was developed by our group to predict the formation of binary co-amorphous systems (COAMSs) for inhalation therapy. The model’s ability to develop a dry powder formulation with the necessary properties for a predicted co-amorphous combination was evaluated. Methods: An extended experimental validation of the ML model by co-milling and X-ray diffraction analysis for 18 API-API (active pharmaceutical ingredient) combinations is presented. Additionally, one COAMS of rifampicin (RIF) and ethambutol (ETH), two first-line tuberculosis (TB) drugs are developed further for inhalation therapy. Results: The ML model has shown an accuracy of 79% in predicting suitable combinations for 35 APIs used in inhalation therapy; experimental accuracy was demonstrated to be 72%. The study confirmed the successful development of stable COAMSs of RIF-ETH either via spray-drying or co-milling. In particular, the milled COAMSs showed better aerosolization properties (higher ED and FPF with lower standard deviation). Further, RIF-ETH COAMSs show much more reproducible results in terms of drug quantity dissolved over time. Conclusions: ML has been shown to be a suitable tool to predict COAMSs that can be developed for TB treatment by inhalation to save time and cost during the experimental screening phase. Full article
(This article belongs to the Special Issue New Platform for Tuberculosis Treatment)
Show Figures

Graphical abstract

23 pages, 1856 KiB  
Article
Comparative Evaluation of Gelatin and HPMC Inhalation Capsule Shells Exposed to Simulated Humidity Conditions
by Sabrina Magramane, Nikolett Kállai-Szabó, Dóra Farkas, Károly Süvegh, Romána Zelkó and István Antal
Pharmaceutics 2025, 17(7), 877; https://doi.org/10.3390/pharmaceutics17070877 - 3 Jul 2025
Viewed by 641
Abstract
Background/Objectives: This study investigates the impact of high humidity (25 °C, 75% relative humidity) on gelatin and hydroxypropyl methylcellulose (HPMC) capsules used in dry powder inhalers (DPIs), focusing on moisture dynamics, structural responses, and mechanical performance, with an emphasis on understanding how [...] Read more.
Background/Objectives: This study investigates the impact of high humidity (25 °C, 75% relative humidity) on gelatin and hydroxypropyl methylcellulose (HPMC) capsules used in dry powder inhalers (DPIs), focusing on moisture dynamics, structural responses, and mechanical performance, with an emphasis on understanding how different capsule types respond to prolonged exposure to humid conditions. Methods: Capsules were exposed to controlled humidity conditions, and moisture uptake was measured via thermal analysis. Visual observations of silica bead color changes were performed to assess moisture absorption, while surface wettability was measured using the sessile drop method. Hardness testing, mechanical deformation, and puncture tests were performed to evaluate structural and mechanical changes. Positron annihilation lifetime spectroscopy (PALS) was used to analyze free volume expansion. Results: HPMC capsules exhibited rapid moisture uptake, attributed to their lower equilibrium moisture content and ability to rearrange dynamically, preventing brittleness. In contrast, gelatin capsules showed slower moisture absorption but reached higher equilibrium levels, resulting in plasticization and softening. Mechanical testing showed that HPMC capsules retained structural integrity with minimal deformation, while gelatin capsules became softer and exhibited reduced puncture resistance. Structural analysis revealed greater free volume expansion in HPMC capsules, consistent with their amorphous nature, compared with gelatin’s semi-crystalline matrix. Conclusions: HPMC capsules demonstrated superior humidity resilience, making them more suitable for protecting moisture-sensitive active pharmaceutical ingredients (APIs) in DPI formulations. These findings underline the importance of appropriate storage conditions, as outlined in the Summary of Product Characteristics, to ensure optimal capsule performance throughout patient use. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

19 pages, 20720 KiB  
Article
Anti-Anxiety Effects of Essential Oil Microemulsion in Chronic Unpredictable Mild Stress-Induced Rats: Preparation, Characterization, and Mechanisms
by Wenxia Tang, Pan Jiang, Ke Hu, Duo Mei, Qinghao Jiao, Yan Li, Yanping Deng, Jun Wang, Ran Gao, Xin Chen and Jie Yu
Molecules 2025, 30(12), 2652; https://doi.org/10.3390/molecules30122652 - 19 Jun 2025
Viewed by 541
Abstract
Anxiety disorders, as common neurological diseases in clinical practice, often coexist with depression. Epidemiological surveys indicate that approximately 85% of patients with depression exhibit significant anxiety symptoms. This comorbid state not only exacerbates clinical symptoms but also leads to treatment resistance and prolonged [...] Read more.
Anxiety disorders, as common neurological diseases in clinical practice, often coexist with depression. Epidemiological surveys indicate that approximately 85% of patients with depression exhibit significant anxiety symptoms. This comorbid state not only exacerbates clinical symptoms but also leads to treatment resistance and prolonged disease duration. This study innovatively developed a compound aromatic plant essential oil (EO) formulation with remarkable anxiolytic and antidepressant effects and systematically elucidated its mechanism of action. The study found that the essential oil formulation, administered via inhalation, could significantly improve behavioral abnormalities in animals subjected to the chronic unpredictable mild stress (CUMS) model, specifically manifesting as (1) the reversal of stress-induced weight gain retardation; (2) a significant increase in sucrose preference; (3) an increase in the total distance of spontaneous activity; and (4) the prolongation of exploration time in the open arms of the elevated plus maze. Neuropathological examinations confirmed that the formulation could effectively protect the structural integrity of hippocampal neurons and alleviate CUMS-induced neural damage. In terms of mechanism of action, the study revealed that the formulation regulates the neurotransmitter system through multiple targets: (1) the upregulation of serotonin (5-HT) and γ-aminobutyric acid (GABA) levels; (2) the downregulation of glutamate (GLU) concentration; and (3) key targets identified via network pharmacological analysis, such as ESR1, STAT3, and PPARG. These findings provide molecular-level evidence for understanding the neuromodulatory effects of aromatic essential oils. Pharmaceutical formulation studies showed that the oil-in-water (O/W) type compound essential oil microemulsion, prepared using microemulsification technology, has a uniform particle size and excellent stability, maintaining stable physicochemical properties at room temperature for an extended period, thus laying a foundation for its clinical application. This study not only validates the practical value of traditional medicine but also provides new ideas for the development of novel anxiolytic and antidepressant drugs, achieving an organic integration of traditional experience and modern technology. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

18 pages, 11145 KiB  
Article
Mechanistic Analysis of Fluid Dynamics and Multifactorial Impact Mechanisms in Inhaled Pharmaceutical Deposition for Chronic Respiratory Diseases
by Fuli Hu, Songhua Ma and Tianliang Hu
Bioengineering 2025, 12(6), 643; https://doi.org/10.3390/bioengineering12060643 - 12 Jun 2025
Cited by 1 | Viewed by 449
Abstract
The clinical efficacy of inhalation therapy in chronic respiratory diseases is fundamentally constrained by particle deposition patterns. This study employs computational fluid dynamics (CFD) and response surface methodology (RSM) to elucidate the mechanistic interplay of deposition determinants through multifactorial sensitivity mapping. The study [...] Read more.
The clinical efficacy of inhalation therapy in chronic respiratory diseases is fundamentally constrained by particle deposition patterns. This study employs computational fluid dynamics (CFD) and response surface methodology (RSM) to elucidate the mechanistic interplay of deposition determinants through multifactorial sensitivity mapping. The study comprises two key components: (i) the development of an accurate three-dimensional respiratory airway model spanning from the oral cavity to the fifth-generation bronchi and (ii) the integration of a Box–Behnken Design (BBD) experimental framework with computational fluid dynamics simulations. Furthermore, we developed a multifactorial regression model to analyze the synergistic interactions among deposition determinants. The study demonstrated a positive correlation between breath-holding time and drug deposition efficiency, revealing a hierarchical order of critical parameters: peak flow rate > breath-holding time > particle diameter. These findings have important implications for optimizing respiratory drug delivery strategies in clinical settings. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

13 pages, 1428 KiB  
Review
Scientifically Supported Best Practices in Leachable Screening Studies for Pharmaceutical and Parenteral Drug Products
by Arvind Singh Gusain, Subhash Chandra, Isaac Moura Araújo, João Paulo Martins de Lima and Henrique Douglas Melo Coutinho
Future Pharmacol. 2025, 5(2), 18; https://doi.org/10.3390/futurepharmacol5020018 - 12 Apr 2025
Viewed by 1438
Abstract
Purpose: Pharmaceutical parenteral drug products (PDPs) and orally inhaled nasal drug products (OINDPs) are critical medications for patient care, for which the route of administration is intravenous or oral/nasal inhalation, and the drug products directly infuse into the bloodstream or lungs, but they [...] Read more.
Purpose: Pharmaceutical parenteral drug products (PDPs) and orally inhaled nasal drug products (OINDPs) are critical medications for patient care, for which the route of administration is intravenous or oral/nasal inhalation, and the drug products directly infuse into the bloodstream or lungs, but they are categorized as high-risk for leachables. Method: These external foreign chemical substances (leachables) may adversely affect and alter patient safety. Results: These primary container closure systems and manufacturing process equipment mainly comprise rubber elastomers, polypropylene, resin, ink, adhesives, glass, or plastic material. To establish the ID of detected compounds and their quantity in the finished parenteral drug formulation and then to assess the formulation for toxicological safety, broad-scope non-specific analytical screening methods are required that are capable of screening out and quantifying the predicted/unpredicted leachable compounds at the levels that pose anticipated toxicological concerns for human patients. Before the selection of the final primary packaging system for the parenteral drug product, their extractable screening profile/knowledge is required to minimize leachable compounds in the finished drug product formulation and to develop and manufacture a safe product for human patients. The adverse effect or toxicity of leachables proportionally increases with an increase in the dose of the drug product or the duration of therapy because the volume of the drug product administered to a patient in a larger quantity is directly proportional to the concentration of the detected leachable. Conclusion: This document outlines the detailed process/scientific approach for conducting an organic leachable screening profile for parenteral drug products with respect to the chemical nature of leachables, i.e., polarity, propensity, volatility, and techniques. Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2025)
Show Figures

Figure 1

11 pages, 2759 KiB  
Article
A Novel Method for Preparing Uniform Micro-Sized Dry Powder Formulations, Including Aggregation-Controlled VHH
by Tatsuru Moritani, Hidekazu Masaki, Ryo Yonehara, Takeru Suzuki, Hidenao Arai, Masayuki Tsuchiya and Naoto Nemoto
Antibodies 2025, 14(2), 29; https://doi.org/10.3390/antib14020029 - 31 Mar 2025
Viewed by 1281
Abstract
Background: The preparation of antibodies in powder form without changing their physicochemical properties may enable their use in new drug delivery system therapies or non-refrigerated storage. The variable domain of heavy-chain antibodies (VHHs) is more suited for this purpose than that of conventional [...] Read more.
Background: The preparation of antibodies in powder form without changing their physicochemical properties may enable their use in new drug delivery system therapies or non-refrigerated storage. The variable domain of heavy-chain antibodies (VHHs) is more suited for this purpose than that of conventional antibodies because of VHHs’ high thermal stability and ability to refold. Methods: In this report, the fine droplet drying (FDD) process was selected as the powderization technique because of its favorable features, such as mild drying conditions and the generation of uniform particle sizes. The aggregation, binding, particle, and in vitro inhalation properties of the prepared VHH powders (VHHps) were evaluated. Results: The amount of aggregated VHHs present in the VHHps depended on the flow temperature during the FDD process, with higher temperatures yielding a higher aggregation ratio. In contrast, no significant difference in binding activity was observed between each VHHp preparation and the native VHHs. However, this process degraded VHHs or inactivated their function, and ultimately, only about 30% of the original VHHs were functional, whereas the remaining VHHs that were not degraded showed little loss of functionality, even after storage at room temperature for more than two years. Analysis of the VHHp samples revealed that the particles were uniformly spherical with a single-micron size. The VHHps showed fine inhalation properties in the inhalation property test. Conclusions: These findings suggest that the FDD process affords various VHH powder formulations, including pharmaceutical formulations. Full article
Show Figures

Figure 1

15 pages, 1545 KiB  
Review
Dupilumab for Chronic Obstructive Pulmonary Disease: A Systematic Review
by Julia Young, Taylor Spisany, Corey M. Guidry, Jisoo Hong, Jessica Le, Edward El Rassi and Paul M. Boylan
Biologics 2025, 5(1), 5; https://doi.org/10.3390/biologics5010005 - 20 Feb 2025
Viewed by 2583
Abstract
Background/Objectives: Dupilumab was recently approved to treat eosinophilic phenotypes of chronic obstructive pulmonary disease (COPD). This systematic review aimed to collect and appraise the efficacy and safety of dupilumab to treat patients with COPD. Methods: Databases searched included Ovid Medline, Embase, [...] Read more.
Background/Objectives: Dupilumab was recently approved to treat eosinophilic phenotypes of chronic obstructive pulmonary disease (COPD). This systematic review aimed to collect and appraise the efficacy and safety of dupilumab to treat patients with COPD. Methods: Databases searched included Ovid Medline, Embase, Web of Science, Directory of Open Access Journals, and International Pharmaceutical Abstracts. Experimental and observational studies, including case reports/series, were eligible for inclusion. Reports were independently screened, appraised, and extracted by three investigators; disagreements were resolved through discussion and agreement. Quality appraisal was conducted using the Cochrane Risk of Bias Tool 2.0, Newcastle–Ottawa Scale, and JBI Checklist for experimental, observational, and case studies, respectively. Results: A total of 307 unique reports were identified, of which 17 were included in this systematic review. The majority (n = 11, 64.7%) of reports presented evidence from the BOREAS and NOTUS trials, the landmark trials serving as the basis for dupilumab’s approval to treat refractory eosinophilic COPD. The results from this systematic review found that dupilumab reduced exacerbations of COPD in patients treated with inhaled triple therapy and it was well tolerated. Conclusions: When added to inhaled triple therapy, dupilumab may decrease patients’ risk for acute exacerbations of COPD. Additional research is necessary to substantiate these findings for broader generalizability, including populations with non-eosinophilic COPD phenotypes. Full article
(This article belongs to the Section Monoclonal Antibodies)
Show Figures

Figure 1

26 pages, 873 KiB  
Review
Optimization of Carrier-Based Dry Powder Inhaler Performance: A Review
by Tanu Mehta, Saeed Najafian, Komalkumar Patel, Justin Lacombe and Bodhisattwa Chaudhuri
Pharmaceutics 2025, 17(1), 96; https://doi.org/10.3390/pharmaceutics17010096 - 13 Jan 2025
Cited by 5 | Viewed by 2051
Abstract
Dry powder inhalers (DPI’s) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, [...] Read more.
Dry powder inhalers (DPI’s) are becoming increasingly popular due to growing interest in pulmonary drug delivery and their performance is the net result of a series of processes carried out during the formulation development and manufacturing process such as excipient selection, blending, milling, filling, and spray drying. To reach the small airways of the deep lung, the active pharmaceutical ingredients (API) particles need to have an aerodynamic diameter of 1–5 μm to avoid impaction and particle sedimentation in the upper respiratory tract, and due to this small particle size, the powder becomes highly cohesive resulting in poor flow. Therefore, API is usually blended with a coarse carrier to improve flowability, and due to its large size, it is more fluidizable than the micronized drug. Carrier-based DPI formulations usually consist of micronized drugs, a coarse carrier, and additional components, such as micronized lactose and force control agents, including magnesium stearate or leucine. Additionally, the manufacturing process of DPIs relies heavily on powder processing technologies, such as the micronization of API, blending, and powder filling. The aerosol performance of a DPI is significantly affected by the selection of formulation components and the processing of the formulation and, therefore, it is crucial to evaluate these parameters. This review will discuss different factors influencing the aerosol performance of carrier-based DPIs, including formulation components, device considerations, and manufacturing parameters. Additionally, novel technologies pertaining to the optimization of DPI performance are also discussed. Full article
(This article belongs to the Special Issue Novel Dry Powder Formulation and Delivery Systems)
Show Figures

Figure 1

18 pages, 7657 KiB  
Article
Optimization and Evaluation of Cannabis-Based Magistral Formulations: A Path to Personalized Therapy
by Bożena Grimling, Magdalena Fast, Magdalena Okoniewska, Artur Owczarek and Bożena Karolewicz
Pharmaceuticals 2025, 18(1), 73; https://doi.org/10.3390/ph18010073 - 9 Jan 2025
Viewed by 1862
Abstract
Introduction: The official implementation of pharmaceutical-grade cannabis raw materials for medicinal use has permitted doctors to prescribe and pharmacists to prepare cannabis-based formulations. The objective of the pharmaceutical development and manufacturing process optimization work was to propose a suppository formulation containing doses of [...] Read more.
Introduction: The official implementation of pharmaceutical-grade cannabis raw materials for medicinal use has permitted doctors to prescribe and pharmacists to prepare cannabis-based formulations. The objective of the pharmaceutical development and manufacturing process optimization work was to propose a suppository formulation containing doses of 25 mg and 50 mg of tetra-hydrocannabinol (∆-9-THC) as an alternative to existing inhalable or orally administered formulations. The formulation could be used for rectal or vaginal administration, thereby providing dosage control in the treatment of endometriosis and other conditions involving pain. In this study, two substrates from suppositories with standardized Cannabis extractum normatum (CEX) were used: cocoa butter and Witepsol® H15. Materials and Methods: The long-term stability of CEX was investigated over a period of up to 24 months. The concentrations of ∆-9-THC, cannabidiol (CBD), and cannabinol (CBN) were determined using an HPLC method. Furthermore, the water content of the extract, the ethanol residue, and the microbiological purity were determined. The pharmaceutical properties of CEX-incorporated suppositories, namely content uniformity, hardness, softening time, total deformation time, disintegration time, and the release profile of ∆-9-THC, CBD, and CBN, were evaluated in order to develop optimal preparation procedures for pharmacists. Results and Discussion: Following a 24-month stability study on CEX, no significant alterations in component content were observed beyond the specified requirements. The disintegration time, total deformation time, and hardness of the suppositories based on Witepsol® H15 with CEX were found to be longer and higher, respectively, than those of suppositories formulated with cocoa butter. In vitro studies demonstrated that suppositories prepared with Witepsol® H15 exhibited superior release of ∆-9-THC compared to those prepared with cocoa butter. Conclusions: We suggest that pharmacists making prescription drugs in a pharmacy setting in the form of medical marijuana suppositories will receive a better release profile of the drug by choosing Witepsol® H15 as a substrate. Full article
Show Figures

Graphical abstract

1 pages, 571 KiB  
Correction
Correction: Al Khatib et al. Inhaled Medicines for Targeting Non-Small Cell Lung Cancer. Pharmaceutics 2024, 15, 2777
by Arwa Omar Al Khatib, Mohamed El-Tanani and Hisham Al-Obaidi
Pharmaceutics 2024, 16(9), 1136; https://doi.org/10.3390/pharmaceutics16091136 - 28 Aug 2024
Viewed by 947
Abstract
In the original publication [...] Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

20 pages, 5753 KiB  
Article
A Critical Analysis of the CFD-DEM Simulation of Pharmaceutical Aerosols Deposition in Upper Intra-Thoracic Airways: Considerations on Aerosol Transport and Deposition
by Georgi H. Spasov, Riccardo Rossi, Andrea Vanossi, Ciro Cottini and Andrea Benassi
Pharmaceutics 2024, 16(9), 1119; https://doi.org/10.3390/pharmaceutics16091119 - 24 Aug 2024
Cited by 2 | Viewed by 1768
Abstract
The reliability and accuracy of numerical models and computer simulations to study aerosol deposition in the human respiratory system is investigated for a patient-specific tracheobronchial tree geometry. A computational fluid dynamics (CFD) model coupled with discrete elements methods (DEM) is used to predict [...] Read more.
The reliability and accuracy of numerical models and computer simulations to study aerosol deposition in the human respiratory system is investigated for a patient-specific tracheobronchial tree geometry. A computational fluid dynamics (CFD) model coupled with discrete elements methods (DEM) is used to predict the transport and deposition of the aerosol. The results are compared to experimental and numerical data available in the literature to study and quantify the impact of the modeling parameters and numerical assumptions. Even if the total deposition compares very well with the reference data, it is clear from the present work how local deposition results can depend significantly upon spatial discretization and boundary conditions adopted to represent the respiratory act. The modeling of turbulent fluctuations in the airflow is also found to impact the local deposition and, to a minor extent, the flow characteristics at the inlet of the computational domain. Using the CFD-DEM model, it was also possible to calculate the airflow and particles splitting at bifurcations, which were found to depart from the assumption of being equally distributed among branches adopted by some of the simplified deposition models. The results thus suggest the need for further studies towards improving the quantitative prediction of aerosol transport and deposition in the human airways. Full article
Show Figures

Figure 1

24 pages, 1458 KiB  
Review
Nanoparticles and Airway Epithelial Cells: Exploring the Impacts and Methodologies in Toxicity Assessment
by Claire E. Lee and Fariba Rezaee
Int. J. Mol. Sci. 2024, 25(14), 7885; https://doi.org/10.3390/ijms25147885 - 18 Jul 2024
Viewed by 2477
Abstract
The production of nanoparticles has recently surged due to their varied applications in the biomedical, pharmaceutical, textile, and electronic sectors. However, this rapid increase in nanoparticle manufacturing has raised concerns about environmental pollution, particularly its potential adverse effects on human health. Among the [...] Read more.
The production of nanoparticles has recently surged due to their varied applications in the biomedical, pharmaceutical, textile, and electronic sectors. However, this rapid increase in nanoparticle manufacturing has raised concerns about environmental pollution, particularly its potential adverse effects on human health. Among the various concerns, inhalation exposure to nanoparticles poses significant risks, especially affecting the respiratory system. Airway epithelial cells play a crucial role as the primary defense against inhaled particulate matter and pathogens. Studies have shown that nanoparticles can disrupt the airway epithelial barrier, triggering inflammatory responses, generating reactive oxygen species, and compromising cell viability. However, our understanding of how different types of nanoparticles specifically impact the airway epithelial barrier remains limited. Both in vitro cell culture and in vivo murine models are commonly utilized to investigate nanoparticle-induced cellular responses and barrier dysfunction. This review discusses the methodologies frequently employed to assess nanoparticle toxicity and barrier disruption. Furthermore, we analyze and compare the distinct effects of various nanoparticle types on the airway epithelial barrier. By elucidating the diverse responses elicited by different nanoparticles, we aim to provide insights that can guide future research endeavors in assessing and mitigating the potential risks associated with nanoparticle exposure. Full article
(This article belongs to the Special Issue Molecular Research of Epithelial Function and Barrier Dysfunction)
Show Figures

Figure 1

37 pages, 5482 KiB  
Review
Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature
by Anna Maria Laera and Michele Penza
Chemosensors 2024, 12(5), 78; https://doi.org/10.3390/chemosensors12050078 - 7 May 2024
Cited by 4 | Viewed by 3019
Abstract
The development of efficient sensors able to detect alcoholic compounds has great relevance in many fields including medicine, pharmaceuticals, food and beverages, safety, and security. In addition, the measurements of alcohols in air are significant for environmental protection because volatile alcohols can have [...] Read more.
The development of efficient sensors able to detect alcoholic compounds has great relevance in many fields including medicine, pharmaceuticals, food and beverages, safety, and security. In addition, the measurements of alcohols in air are significant for environmental protection because volatile alcohols can have harmful effects on human health not only through ingestion, but also through inhalation or skin absorption. The analysis of alcohols in breath is a further expanding area, being employed for disease diagnoses. The analyses performed by using chromatography, mass-spectrometry, nuclear magnetic resonance, ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, or Raman spectroscopy often require complex sampling and procedures. As a consequence, many research groups have focused their efforts on the development of efficient portable sensors to replace conventional methods and bulky equipment. The ability to operate at room temperature is a key factor in designing portable light devices suitable for in situ real-time monitoring. In the present review, we provide a survey of the recent literature on the most efficient chemiresistive materials for alcohol sensing at room temperature. Remarkable gas-sensing performances have mainly been obtained by using metal oxides semiconductors (MOSs), metal organic frameworks (MOFs), 2D materials, and polymers. Among 2D materials, we mainly consider graphene-based materials, graphitic carbon nitride, transition metal chalcogenides, and MXenes. We discuss scientific advances and innovations published in the span of the last five years, focusing on sensing mechanisms. Full article
Show Figures

Figure 1

20 pages, 4214 KiB  
Review
Plant and Arthropod IgE-Binding Papain-like Cysteine Proteases: Multiple Contributions to Allergenicity
by Ivana Giangrieco, Maria Antonietta Ciardiello, Maurizio Tamburrini, Lisa Tuppo, Adriano Mari and Claudia Alessandri
Foods 2024, 13(5), 790; https://doi.org/10.3390/foods13050790 - 4 Mar 2024
Cited by 3 | Viewed by 3747
Abstract
Papain-like cysteine proteases are widespread and can be detected in all domains of life. They share structural and enzymatic properties with the group’s namesake member, papain. They show a broad range of protein substrates and are involved in several biological processes. These proteases [...] Read more.
Papain-like cysteine proteases are widespread and can be detected in all domains of life. They share structural and enzymatic properties with the group’s namesake member, papain. They show a broad range of protein substrates and are involved in several biological processes. These proteases are widely exploited for food, pharmaceutical, chemical and cosmetic biotechnological applications. However, some of them are known to cause allergic reactions. In this context, the objective of this review is to report an overview of some general properties of papain-like cysteine proteases and to highlight their contributions to allergy reactions observed in humans. For instance, the literature shows that their proteolytic activity can cause an increase in tissue permeability, which favours the crossing of allergens through the skin, intestinal and respiratory barriers. The observation that allergy to PLCPs is mostly detected for inhaled proteins is in line with the reports describing mite homologs, such as Der p 1 and Der f 1, as major allergens showing a frequent correlation between sensitisation and clinical allergic reactions. In contrast, the plant food homologs are often digested in the gastrointestinal tract. Therefore, they only rarely can cause allergic reactions in humans. Accordingly, they are reported mainly as a cause of occupational diseases. Full article
(This article belongs to the Special Issue Allergenic Properties and Molecular Characteristics of Food Allergens)
Show Figures

Figure 1

12 pages, 1228 KiB  
Article
The Impact of Australian Bushfires on Asthma Medicine Prescription Dispensing
by Zhihua Zhu, Mark Naunton, Reza Mortazavi and Mary Bushell
Healthcare 2024, 12(4), 428; https://doi.org/10.3390/healthcare12040428 - 7 Feb 2024
Cited by 1 | Viewed by 2955
Abstract
Background: Air pollution can cause numerous health problems and increase the need for medicines to treat and prevent asthma in affected areas. There is limited evidence about the association between airborne particles with a diameter of 2.5 micrometres or smaller (PM2.5) [...] Read more.
Background: Air pollution can cause numerous health problems and increase the need for medicines to treat and prevent asthma in affected areas. There is limited evidence about the association between airborne particles with a diameter of 2.5 micrometres or smaller (PM2.5) and asthma medicine usage. This study examined the potential association between the levels of PM2.5 and the supply of prescription asthma medicines in the Australian Capital Territory (ACT), Australia, during the severe bushfire season between November 2019–January 2020. Methods: Daily data was obtained from an ACT air quality monitoring station from November 2019 to January 2020 (study period) and November 2018 to January 2019 (control period, no bushfire). The number and types of government-funded asthma medicine prescriptions were obtained from the Services Australia (government) website by searching under ‘Pharmaceutical Benefits Scheme Item Reports’ and using relevant item codes during the study and control periods. Results: The medians for PM2.5 levels for the study period were significantly higher than those for the control period (p < 0.001). There were increases in the number of dispensed prescriptions of short-acting beta-2 agonists (SABA), inhaled corticosteroids, and long-acting beta-2 agonists combined with inhaled corticosteroids. The greatest difference was seen with the inhaled corticosteroids: a 138% increase. Conclusions: The increase in the number of dispensed asthma prescriptions during the bushfire season should be used to inform the stock holdings of these medicines in preparation for future events to ensure access to lifesaving asthma medicines. Full article
(This article belongs to the Special Issue The 10th Anniversary of Healthcare—Medication Management)
Show Figures

Figure 1

Back to TopTop