Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature
Abstract
:1. Introduction
2. Metal Oxides Semiconductors (MOSs)
3. Metal Organic Frameworks (MOFs)
4. 2D Materials
4.1. Graphene and Derivatives Based Gas Sensors
4.2. Graphitic Carbon Nitride-Based Gas Sensors
4.3. 2D Metal Chalcogenides-Based Gas Sensors
4.3.1. 2D Transition Metal Dichalcogenide (TMDs)
4.3.2. 2D Metal Monochalcogenides
4.4. MXene Based Gas Sensors
5. Polymers
Polyaniline (PANI)-Based Gas Sensors
6. Gasistor
7. Discussion and Future Perspectives
- -
- morphology design and synthesis of ultra-porous nanostructures;
- -
- design of suitable heterojunctions between two dissimilar materials or homojunctions between different crystalline phases of the same material;
- -
- doping;
- -
- defect engineering.
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boroujerdi, R.; Abdelkader, A.; Paul, R. State of the art in alcohol sensing with 2D materials. Nano-Micro Lett. 2020, 12, 33. [Google Scholar] [CrossRef]
- Alsaigh, R.A.; Rahman, S.; Alfaifi, F.S.; Al-Gawati, M.A.; Shallaa, R.; Alzaid, F.; Alanazi, A.F.; Albrithen, H.; Alzahrani, K.E.; Assaifan, A.K. Detection of volatile alcohol vapors using PMMA-coated micromechanical sensors: Experimental and quantum chemical DFT analysis. Chemosensors 2022, 10, 452. [Google Scholar] [CrossRef]
- Gallego Martinez, E.E.; Matias, I.R.; Melendi-Espina, S.; Hernaez, M.; Ruiz Zamarreno, C. Lossy mode resonance based 1-butanol sensor in the mid-infrared region. Sens. Actuators B Chem. 2023, 388, 133845. [Google Scholar] [CrossRef]
- Song, G.; Qin, T.; Liu, H.; Xu, G.B.; Pan, Y.Y.; Xiong, F.X.; Chen, Z.D. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 2010, 67, 227–231. [Google Scholar] [CrossRef]
- Luo, S.; Wang, R.; Wang, L.; Qu, H.; Zheng, L. Breath alchol sensor based on hydrogel-gated graphene field-effect transistors. Biosens. Bioelectron. 2022, 210, 114319. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, L.; Wang, J.; Zhuang, R.; Mu, P.; Wang, J.; Yan, W. Advances in functional guest materials for resistive gas sensors. RCS Adv. 2022, 12, 24614. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Myung, N.V.; Tran, T.T. 1D metal oxide semiconductor materials for chemiresistive gas sensors: A review. Adv. Electron. Mater. 2021, 7, 2100271. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, M.; Comini, E. One-dimensional nanostructured oxide chemoresistive sensors. Langmuir 2020, 36, 6326–6344. [Google Scholar] [CrossRef] [PubMed]
- Dharmalingam, G.; Sivasubramaniam, R.; Parthiban, S. Quantification of ethanol by metal-oxide-based resistive sensors: A review. J. Electron. Mater. 2020, 49, 3009–3024. [Google Scholar] [CrossRef]
- Thu, D.T.; Liu, Z.H.; Lee, Y.C.; Kuo, T.W.; Sung, W.L.; Chu, Y.C.; Chuen, Y.L.; Fang, W. A miniaturized CMOS-MEMS amperometric gas sensor for rapid ethanol detection. IEEE Sens. J. 2023, 23, 8128–8137. [Google Scholar] [CrossRef]
- Baron, R.; Saffell, J. Amperometric gas sensors as a low cost emerging tecnology platform for air quality monitoring applications: A review. ACS Sens. 2017, 2, 1553–1566. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, G.; Hung, K.M.; Cho, J.; Choi, M.; O’Coileain, C.; Duesberg, G.S.; Ren, X.K.; Chang, C.R.; Wu, H.C. Field effect transistor gas sensors based on mechanically exfoliated Van der Waals materials. ACS Appl. Mater. Interfaces 2023, 15, 17335–17343. [Google Scholar] [CrossRef]
- Singh, A.K.; Chowdhury, N.K.; Roy, S.C.; Bhowmik, B. Review of thin film transistor gas sensors: Comparison with resistive and capacitive sensors. J. Electron. Mater. 2022, 51, 1974–2003. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, Y.; Zhang, J.; Liu, B.; Ma, X.; Wang, Y. Highly sensitive gas sensing platforms based on field effect transistor-A review. Anal. Chim. Acta 2021, 1172, 338575. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, X.; Hao, X.; Niu, B.; Li, C. Metal-organic frameworks materials for capacitive gas sensors. Adv. Mater. Technol. 2021, 6, 2100127. [Google Scholar] [CrossRef]
- McGinn, C.K.; Lamport, Z.A.; Kymissis, I. Review of gravimetric sensing of volatile organic compounds. ACS Sens. 2020, 5, 1514–1534. [Google Scholar] [CrossRef]
- Gardner, E.L.W.; Gardner, J.W.; Udrea, F. Micromachined thermal gas sensors—A review. Sensors 2023, 23, 681. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Hossen, R.; Walid, M.A.A.; Alvi, S.T.; Al-Amin, M.; Sen, S.; Azad, M.M. Design of quasi-shaped spectroscopy based optical sensor for the detection of alcohol. Sens. Bio-Sens. Res. 2023, 41, 100527. [Google Scholar] [CrossRef]
- Zhan, K.; Qin, P.; Jiang, Y.; Chen, Y.; Heinke, L. Optical sensor array of metal-organic-framework-based inverse opal films for the detection and identification of various alcohols. Sens. Actuators B Chem. 2023, 393, 134271. [Google Scholar] [CrossRef]
- Jibon, R.H.; Khodaei, A.; Priya, P.P.; Rashed, A.N.Z.; Ahammad, S.H.; Hossain, M.A. ZEONEW based hollow rectangular core photonic crystal fiber (PCF) sensor design and numerical investigation for alcohol detection of variant classes. Opt. Quantum. Electron. 2023, 55, 977. [Google Scholar] [CrossRef]
- Shinde, P.V.; Rout, C.S. Magnetic gas sensing: Working principles and recent developments. Nanoscale Adv. 2021, 3, 1551. [Google Scholar] [CrossRef] [PubMed]
- Vidis, M.; Plecenik, T.; Mosko, M.; Tomasec, S.; Roch, T.; Satrapinskyy, L.; Grancic, B.; Plencenik, A. Gasistor: A memristor based gas-triggered switch and gas sensor with memory. Appl. Phys. Lett. 2019, 115, 093504. [Google Scholar] [CrossRef]
- Sivaperuman, K.; Thomas, A.; Thangavel, R.; Thirumalaisamy, L.; Palanivel, S.; Pitchaimuthu, S.; Ahsan, N.; Okada, Y. Binary and ternary metal oxide semiconductor thin films for effective gas sensing applications: A comprehensive review and future prospects. Prog. Mater. Sci. 2024, 142, 101222. [Google Scholar] [CrossRef]
- Xavier, R.; Sivaperuman, K. Review on the of physical vapor deposition on imminent chemiresistive metal oxide gas sensors and their future scope. Mater. Today Commun. 2024, 38, 107831. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Zhang, B.; Wang, G.; Shi, F.; Wang, Y.; Zhang, Z. Conductometric sensor of hierarchical Bi2MoxW1-x O6 microcages in sensing three gases NH3, isopropanol and ethanol. Sens. Actuators B Chem. 2023, 392, 134084. [Google Scholar] [CrossRef]
- Ab Kadir, R.; Li, Z.; Sadek, A.Z.; Rani, R.A.; Zoolfakar, A.S.; Field, M.R.; Ou, J.Z.; Chrimes, A.F.; Kalantar-Zadeh, K. Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J. Phys. Chem. C 2014, 118, 3129–3139. [Google Scholar] [CrossRef]
- Chung, C.K.; Ku, C.A. An effective resistive-type alcohol vapor sensor using one-step facile nanoporous anodic alumina. Micromachines 2023, 14, 1330. [Google Scholar] [CrossRef]
- Tiwary, P.; Mahapatra, R.; Chakraborty, A.K. ZnO nanobristles prepared by one-step thermal decomposition of zinc nitrate as ultra-high response ethanol sensor at room temperature. J. Mater. Sci. Mater. Electron. 2019, 30, 5464–5469. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Y.; Meng, D.; Wang, K.; Wang, C. A novel room temperature ethanol gas sensor based on 3D hierarchical flower-like TiO2 microstructures. Mater. Lett. 2020, 277, 128372. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Mater. Sci. 2021, 3, 390–403. [Google Scholar] [CrossRef]
- Jayababu, N.; Poloju, M.; Shruthi, J.; Reddy, M.V.R. Semi shield driven p-n heterostructures and their role in enhancing the room temperature ethanol gas sensing performance of NiO/SnO2 nanocomposites. Ceram. Int. 2019, 45, 15134–15142. [Google Scholar] [CrossRef]
- Hezarjaribi, S.T.; Nasirian, S. An enhanced fast ethanol sensor based on zinc oxide/nickel oxide nanocomposite in dynamic situations. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4072–4081. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.G.; Xi, R.; Zhang, L.; Zhang, S.H.; Wang, L.J.; Pan, G.B. In situ synthesis of flower-like ZnO on GaN using electrodeposition and its application as ethanol gas sensor at room temperature. Sens. Actuators B Chem. 2019, 292, 270–276. [Google Scholar] [CrossRef]
- Jayababu, N.; Poloju, M.; Shruthi, J.; Reddy, M.V.R. NiO decorated CeO2 nanostructures as room temperature isopropanol gas sensors. RSC Adv. 2019, 9, 13765–13775. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Osorio, D.; Hidalgo-Falla, P.; Peres, H.E.M.; Goncalves, J.M.; Araki, K.; Garcia-Segura, S.; Picasso, G. Silver hehances hematite nanoparticles based ethanol sensor response and selectivity at room temperature. Sensors 2021, 21, 440. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, B.; Dutta, K.; Bhattacharyya, P. An efficiet room temperature ethanol sensor device based on p-n homojunction of TiO2 nanostructures. IEEE Trans. Electron. Devices 2019, 66, 1063–1068. [Google Scholar] [CrossRef]
- Nascimento, E.P.; Firmino, H.C.T.; Santos, A.M.C.; Sales, H.B.; Silva, V.D.; Macedo, D.A.; Neves, G.A.; Medeiros, E.S.; Menezes, R.R. Facile synthesis of hollow F-doped SnO2 nanofibers and their efficiency in ethanol sensing. J. Am. Ceram. Soc. 2021, 104, 1297–1308. [Google Scholar] [CrossRef]
- Wu, L.; Shi, X.; Du, H.; An, Q.; Li, Z.; Xu, H.; Ran, H. Ce-doped LaCoO3 film as a promising gas sensor for ethanol. AIP Adv. 2021, 11, 055305. [Google Scholar] [CrossRef]
- Bui, H.; Shin, J.H. Perovskite materials for sensing applications: Recent advances and challenges. Microchem. J. 2023, 191, 108924. [Google Scholar] [CrossRef]
- Wang, J.; Chen, R.; Xiang, L.; Komarneni, S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram. Int. 2018, 44, 7357. [Google Scholar] [CrossRef]
- Al-Hashem, M.; Akbar, S.; Morris, P. Role of oxygen vacancies in nanostructured metal-oxide gas sensors: A review. Sens. Actuators B Chem. 2019, 301, 126845. [Google Scholar] [CrossRef]
- Ul Abideen, Z.; Choi, J.G.; Yuwono, J.A.; Kiy, A.; Kumar, P.V.; Murugappan, K.; Lee, W.J.; Kluth, P.; Nisbet, D.R.; Tran-Phu, T.; et al. Oxygen vacancies engineering in thick semiconductor films via deep ultraviolet photoactivation for selective and sensitive gas sensing. Adv. Electron. Mater. 2023, 9, 2200905. [Google Scholar] [CrossRef]
- Tomic, M.; Fohlerova, Z.; Gracia, I.; Figueras, E.; Cane, C.; Vallejos, S. UV-light activated APTES modified WO3-x nanowires sensitive to ethanol and nitrogen dioxide. Sens. Actuators B Chem. 2021, 328, 129046. [Google Scholar] [CrossRef]
- Paun, C.; Motelica, L.; Ficai, D.; Ficai, A.; Andronescu, E. Metal-organic frameworks: Versatile platforms for biomedical applications. Materials 2023, 16, 6143. [Google Scholar] [CrossRef]
- Wang, H.; Pei, X.; Kalmutzki, M.J.; Yang, J.; Yaghi, O.M. Large cages of zeolitic imidazolate frameworks. Acc. Chem. Res. 2022, 55, 707–721. [Google Scholar] [CrossRef]
- Bose, R.; Ethiraj, J.; Sridhar, P.; Varghese, J.J.; Kaisare, N.S.; Selvam, P. Adsorption of hydrogen and carbon dioxide in zeolitic imidazolate framework structure with SOD topology: Experimental and modelling studies. Adsorption 2020, 26, 1027–1038. [Google Scholar] [CrossRef]
- Coudert, F.X. Molecular mechanism of swing effect in zeolitic imidazolate framework ZIF-8: Continuous deformation upon adsorption. Chem. Phys. Chem. 2017, 18, 2732–2738. [Google Scholar] [CrossRef]
- Quin, Y.; Xie, J.; Liu, S.; Bai, Y. Selective methanol-sensing of SnS-supported ultrathin ZIF-8 nanocomposite with core-shell heterostructure. Sens. Actuators B Chem. 2022, 368, 132230. [Google Scholar] [CrossRef]
- Qui, Y.; Wang, X.; Zang, J. Ultrasensitive ethanol sensor based on nano-Ag&ZIF-8 co-modified SiNWs with enhanced moisture resistance. Sens. Actuators B Chem. 2021, 340, 129959. [Google Scholar] [CrossRef]
- Meng, Z.; Stolz, R.M.; Mendecki, L.; Mirica, K.A. Electrically-transduced chemical sensors based on two- dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Zhong, H.; Huang, X.; Li, W.; Hambsch, M.; Zhang, P.; Wang, Z.; St. Petkov, P.; Heine, T.; et al. Surface-modified phthalocyanine-based two-dimensional conjugated metal–organic framework films for polarity-selective chemiresistive sensing. Angew. Chem. Int. Ed. 2021, 60, 18666–18672. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Kwon, H.; Kang, H.; Jang, J.E.; Kwon, H.J. Laser-induced and MOF-derived metal oxide/carbon composite for synergistically improved ethanol sensing at room temperature. Nano-Micro Lett. 2024, 16, 113. [Google Scholar] [CrossRef]
- Yao, B.; Cui, X.; Tian, X.; Xing, X.; Chen, T.; Wang, Y. SnO2 submicron porous cube derived from metal-organic framework for n-butanol sensing at room temperature. Ceram. Int. 2023, 49, 25477–25485. [Google Scholar] [CrossRef]
- Cui, X.; Tian, X.; Xing, X.; Chen, T.; Wang, Y. Au modified hollow cube Sn-MOF derivatives for highly sensitive, great selective, and stable detection of n-butanol at room temperature. Adv. Mater. Technol. 2023, 8, 2300572. [Google Scholar] [CrossRef]
- Mo, R.; Han, D.; Yang, C.; Tang, J.; Wang, F.; Li, C. MOF-derived porous Fe2O3 nanocubes combined with reduced graphene oxide for n-butanol room temperature gas sensing. Sens. Actuators B Chem. 2021, 330, 129326. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, P.; Chatterjee, S.G.; Singha, S.S.; Mahapatra, R.; Chakraborty, A.K. Room temperature ethanol sensing by chemically reduced graphene oxide film. FlatChem 2021, 30, 100317. [Google Scholar] [CrossRef]
- Abdollahi, H.; Samkan, M.; Bayat, M. Graphene oxide nanoribbons for ethanol detection at room temperature. Mater. Res. Express 2019, 6, 075053. [Google Scholar] [CrossRef]
- Sun, D.; Luo, Y.; Debliquy, M.; Zhang, C. Graphene-enhanced metal oxide gas sensors at room temperature: A review. Beilstein J. Nanotechnol. 2018, 9, 2832–2844. [Google Scholar] [CrossRef]
- Pienutsa, N.; Roongruangsree, P.; Seedokbuab, V.; Yannawibut, K.; Phatoomvijitwong, C.; Srinives, S. SnO2-graphene composite gas sensor for a room temperature detection of ethanol. Nanotechnology 2021, 32, 115502. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, M.; Casotto, A.; Arachchige, H.M.M.M.; Sangaletti, L.; Comini, E. Quenching of oxygen-related defects in graphene oxide nanohybrid: Highly selective room-temperature ethanol sensor. Appl. Phys. Rev. 2022, 9, 041407. [Google Scholar] [CrossRef]
- Mehmood, S.; Zhao, X.; Bhopal, M.F.; Khan, F.U.; Yang, Y.; Wang, G.; Pan, X. MoO2-Ni-graphene ternary nanocomposite for a high- performance room-temperature ethanol gas sensor. Appl. Surf.Sci. 2021, 554, 149595. [Google Scholar] [CrossRef]
- Morsy, M.; Yahia, I.S.; Zahran, H.Y.; Ibrahim, M. Hydrothermal synthesis of CNTs/Co3O4@rGO mesoporous nanocomposite as a room temperature gas sensor for VOCs. J. Inorg. Organomet. Polym. Mater. 2019, 29, 416–422. [Google Scholar] [CrossRef]
- Tung, T.T.; Tran, M.T.; Feller, J.F.; Castro, M.; Ngo, T.V.; Hassan, K.; Nine, M.J.; Losic, D. Graphene and metal organic frameworks (MOFs) hybridization for tunable chemoresistive sensors for detection of volatile organic compounds (VOCs) biomarkers. Carbon 2020, 159, 333–344. [Google Scholar] [CrossRef]
- Hassan, K.; Tung, T.T.; Yap, P.L.; Rastin, H.; Stanley, N.; Nine, M.J.; Losic, D. Fractal design for advancing the performance of chemoresistive sensors. ACS Sens. 2021, 6, 3685–3695. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Al-Hamry, A.; Rosolen, J.M.; Hu, Z.; Hao, J.; Wang, Y.; Adiraju, A.; Yu, T.; Matsubara, E.Y.; Kanoun, O. Flexible impedimetric electronic nose for high-accurate determination of individual volatile organic compounds bytuning the graphene sensitive properties. Chemosensors 2021, 9, 360. [Google Scholar] [CrossRef]
- Basharnavaz, H.; Habibi-Yangjeh, A.; Pirhashemi, M. Graphitic carbon nitride as a fascinating adsorbent for toxic gases: A mini-review. Chem. Phys. Lett. 2020, 754, 137676. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Q.; Wu, H.; Chen, Y.; Lu, C.H.; Chi, Y.; Yang, H.H. Graphitic carbon nitride materials: Sensing, imaging anf therapy. Small 2016, 12, 5376–5393. [Google Scholar] [CrossRef] [PubMed]
- Sahani, S.; Park, S.J.; Myung, Y.; Pham, T.H.; Tung, T.T.; Kim, T.Y. Enhanced room-temperature ethanol detection by quasi 2D nanosheets of an exfoliated polymeric graphitized carbon nitride composite-based patterned sensor. ACS Omrga 2022, 7, 41905–41914. [Google Scholar] [CrossRef]
- Qiu, J.; Hu, X.; Shi, L.; Fan, J.; MJin, X.; Zhang, W.; Wang, J. Enabling selective, room-temperature gas detection using atomically dispersed Zn. Sens. Actuators B Chem. 2021, 392, 129221. [Google Scholar] [CrossRef]
- Gu, F.; Luo, C.; Han, D.; Hong, S.; Wang, Z. Atomically dispersed Pt on 3DOM WO3 promoted with cobalt and nickel oxides for highly selective and highly sensitive detection of xylene. Sens. Actuator B Chem. 2019, 297, 126772–126782. [Google Scholar] [CrossRef]
- Gu, F.; Cui, Y.; Han, D.; Hong, S.; Flytzani-Stephanopoulos, M.; Wang, Z. Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Appl. Catal. B Environ. 2019, 256, 117809–117818. [Google Scholar] [CrossRef]
- David, S.P.S.; Veeralakshmi, S.; Priya, M.S.; Nehru, S.; Kalaiselvam, S. Room-temperature chemiresistive g-C3N4/Ag2ZrO3 nanocomposite gas sensor for ethanol detection. J. Mater. Sci. Mater. Electron. 2022, 33, 11498–11510. [Google Scholar] [CrossRef]
- Chhowalla, M.; Liu, Z.; Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Cao, Y.; Wu, J.; Zhang, X. Tungsten trioxide nanoparticles decorated tungsten disulfide nanoheterojunction for highly sensitive ethanol gas sensing application. Appl. Surf. Sci. 2020, 503, 144063. [Google Scholar] [CrossRef]
- Tian, X.; Wang, S.; Li, H.; Li, M.; Chen, T.; Xiao, X.; Wang, Y. Recent advances in MoS2-based nanomaterial sensors for room-temperature gas detection: A review. Sens. Diagn. 2023, 2, 361. [Google Scholar] [CrossRef]
- Halvaee, P.; Dehghani, S.; Mohammadzadeh, M. Room temperature methanol sensors based on rod-shaped nanostructures of MoS2 functionalized with Ag nanoparticles. IEEE Sens. J. 2021, 21, 4233–4240. [Google Scholar] [CrossRef]
- Zhang, J.; Li, T.; Guo, J.; Hu, Y.; Zhang, D. Two-step hydrothermal fabrication of CeO2-loaded MoS2 nanoflowers for ethanol gas sensing application. Appl. Surf. Sci. 2021, 568, 150942. [Google Scholar] [CrossRef]
- Das, S.; Sharma, S.; Sharma, S.K. Fa Facile synthesis of 2D-HfS2 flakes for µ-IDE-based methanol sensor: Fast detection at room temperature. IEEE Sens. J. 2019, 19, 9090–9096. [Google Scholar] [CrossRef]
- Rana, C.; Bera, S.R.; Saha, S. Growth of SnS nanoparticles and its ability as ethanol gas sensor. J. Mater. Sci. Mater. Electron. 2019, 30, 2016–2029. [Google Scholar] [CrossRef]
- Shan, W.; Fu, Z.; Ma, M.; Liu, Z.; Xue, Z.; Xu, J.; Zhang, F.; Li, Y. Facile chemical bath synthesis of SnS nanosheets and their ethanol sensing properties. Sensors 2019, 19, 2581. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Bai, Y.; Xie, J.; Gui, H. Novel insights into the unique intrinsic sensing essences of 2D tin chalcogenides for ethanol: From hexagonal SnS2 to orthorhombic SnS. Vacuum 2023, 207, 111616. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, S.; Bai, Y. Adsorption and sensing performance toward methanol vapor on SnS/SnS2 in-plane heterostructures. ACS Appl. Electron. Mater. 2022, 4, 158–167. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, J.; Bai, Y. Graphene-oriented construction of 2D SnS for methanol gas-sensor application. Phys. Status Solidi A 2021, 218, 2000642. [Google Scholar] [CrossRef]
- Qin, Y.; Bai, C.; Qiu, P. Alkalized SnS nanoflakes with enhanced sensing properties towards methanol vapor. ECS J. Solid State Sci. Technol. 2020, 9, 121013. [Google Scholar] [CrossRef]
- Bu, W.; Zhang, Y.; Qiu, Q.; Li, Y.; Zhou, Z.; Hu, C.; Chuai, X.; Wang, T.; Sun, P.; Lu, G. Homojunction between cubic/hexagonal CdS nanocrystal for high and fast response to n-propanol. Sens. Actuator B Chem. 2022, 369, 132281. [Google Scholar] [CrossRef]
- Qin, Y.; Liang, Y.; Zhou, C.; Bai, Y. Homogeneous heterophase junction based on cubic/orthomorphic SnS for chemiresistive room temperature trace-ethanol sensor. Sens. Actuator B Chem. 2024, 404, 135285. [Google Scholar] [CrossRef]
- Qiu, P.; Qin, Y.; Bai, Y. Ultra-sensitive methanol detection based on S-vacancy enriched SnS: A combined theoretical and experimental investigation. Vacuum 2022, 198, 110880. [Google Scholar] [CrossRef]
- Qin, Y.; Qiu, P.; Bai, Y. First-principles calculations combined with experiments to study the gas-sensing performance of Zn-substituted SnS. Phys. Chem. Chem. Phys. 2020, 22, 17513–17522. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, X. Experiments combined with first-principles calculations to compare the enhancement of Ag-doping and -functionalization on the sensing properties of two-dimensional SnS. Physica E low Dimens. Syst. Nanostruct. 2021, 131, 114752. [Google Scholar] [CrossRef]
- Kuchi, P.S.; Roshan, H.; Sheikhi, M.H. A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties. J. Alloys Compd. 2020, 816, 152666. [Google Scholar] [CrossRef]
- Roshan, H.; Kuchi, P.S.; Sheikhi, M.H.; Mirzaei, A. Enhancement of room temperature ethanol sensing behavior of PbS–SnS2 nanocomposite by Au decoration. Mater. Sci. Semicond. Process 2021, 127, 105742. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliationof Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Aghei, S.M.; Aasi, A.; Panchapakesan, B. Experimental and theoretical advances in MXene-based gas sensors. ACS Omega 2021, 6, 2450–2461. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Xiong, S.; Gong, D.; Deng, Y.; Wang, Y.; Su, L.; Ding, C.; Yang, L.; Liao, C. Ti3C2 2D MXene: Recent progress and perspectives in photocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 56663–56680. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; VahidMohammadi, A.; Prorok, B.C.; Yoon, Y.S.; Beidaghi, M.; Kim, D.-J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190. [Google Scholar] [CrossRef] [PubMed]
- Shuck, C.E.; Han, M.; Maleski, K.; Hantanasirisakul, K.; Kim, S.J.; Choi, J.; Reil, W.E.; Gogotsi, Y. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. 2019, 2, 3368–3376. [Google Scholar] [CrossRef]
- Koh, H.J.; Kim, S.J.; Maleski, K.; Cho, S.Y.; Kim, Y.J.; Ahn, C.W.; Gogotsi, Y.; Jung, H.T. Enhanced selectivity of MXene gas sensors through metal ion intercalation: In situ X-ray diffraction study. ACS Sens. 2019, 4, 1365–1372. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jiang, X.; Lai, S.N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 2020, 11, 1302. [Google Scholar] [CrossRef]
- Hou, M.; Gao, J.; Yang, L.; Guo, S.; Hu, T.; Li, Y. Room temperature gas sensing under UV light irradiation for Ti3C2Tx MXene derived lamellar TiO2-C/g-C3N4 composites. App. Surf. Sci. 2021, 535, 147666. [Google Scholar] [CrossRef]
- Raghu, A.V.; Karuppanan, K.K.; Nampoothiri, J.; Pullithadathil, B. Wearable, flexible ethanol gas sensor based on TiO2 nanoparticles-grafted 2D-titanium carbide canosheets. ACS Appl. Nano Mater. 2019, 2, 1152–1163. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Song, P.; Yang, Z.; Wang, Q. In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature. Ceram. Int. 2021, 47, 23028–23037. [Google Scholar] [CrossRef]
- Yao, Y.; Han, Y.; Zhou, M.; Xie, L.; Zhao, X.; Wang, Z.; Barsan, N.; Zhu, Z. MoO3/TiO2/Ti3C2Tx nanocomposite based gas sensors for highly sensitive and selective isopropanol detection at room temperature. J. Mater. Chem. A 2022, 10, 8283–8292. [Google Scholar] [CrossRef]
- Zhang, S.; Song, P.; Zheng, Y.; Ding, Y.; Wang, Q. MoO2/MoO3/MXene ternary nanocomposites for high-performance ethanol detection at room temperature. J. Alloys Compd. 2022, 925, 166663. [Google Scholar] [CrossRef]
- Nylabder, C.; Armgrath, M.; Lundstrom, I. An ammonia detector based on a conducting polymer. Anal. Chem. Symp. Ser. 1983, 17, 203–207. [Google Scholar]
- Samanta, S.; Roy, P.; Kar, P. Sensing of ethanol and other alcohol contaminated ethanol by conducting functional poly(o-phenylenediamine). Mater. Sci. Eng. B 2020, 256, 114541. [Google Scholar] [CrossRef]
- Cobianu, C.; Serban, B.C.; Dumbravescu, N.; Buiu, O.; Avramescu, V.; Pachiu, C.; Bita, B.; Bumbac, M.; Nicolescu, C.M.; Cobianu, C. Organic-inorganic ternary nanohybrids of single-walled carbon nanohorns for room temperature chemiresistive ethanol detection. Nanomaterials 2020, 10, 2552. [Google Scholar] [CrossRef]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. Chemiresistive polyaniline-based gas sensors: A mini review. Sens. Actuators B Chem. 2015, 220, 534–548. [Google Scholar] [CrossRef]
- Al-Haidary, Q.N.; Al-Mokaram, A.M.; Hussein, F.M.; Ismail, A.H. Development of polyaniline for sensor applications: A review. J. Phys. Conf. Ser. 2021, 1853, 012062. [Google Scholar] [CrossRef]
- Pal, R.; Goyal, S.L.; Rawal, I.; Sharma, S. Efficient room temperature methanol sensors based on polyaniline/graphene micro/nanocomposites. Iran. Polym. J. 2020, 29, 591–603. [Google Scholar] [CrossRef]
- Tan, C.K.; Blackwood, D.J. Interactions between polyaniline and methanol vapour. Sens. Actuators B Chem. 2000, 71, 184–191. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y. Preparation and electrochemical properties of polyaniline/reduced graphene oxide composites. J. Appl. Polym. Sci. 2018, 135, 46103. [Google Scholar] [CrossRef]
- Jung, J.W.; Son, S.H.; Choi, J. Polyaniline/reduced graphene oxide composites for hole transporting layer of high-performance inverted perovskite solar cell. Polymers 2021, 13, 1281. [Google Scholar] [CrossRef]
- Kumar, M.; Supreet; Sharma, S.; Goyal, S.L.; Kumar, S.; Chauhan, S.; Vidhani, B.; Pal, R. Composite nanoarchitectonics with reduced-graphene oxide and polyaniline for a highly responsive and selective sensing of methanol vapors. Mater. Chem. Phys. 2024, 312, 128626. [Google Scholar]
- Kumar, M.; Sharma, S.; Pal, R.; Vidhani, B. Supreet a novel gas sensor based on activated charcoal and polyaniline composites for selective sensing of methanol vapors. Sens. Actuators A Phys. 2023, 353, 114210. [Google Scholar] [CrossRef]
- Kumar, Y.R.; Deshmukh, K.; Sadasivuni, K.K.; Pasha, S.K.K. Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: A review. RSC Adv. 2020, 10, 23861. [Google Scholar] [CrossRef]
- Masemola, C.M.; Moloto, N.; Tetana, Z.N.; Gqoba, S.S.; Mubiayi, P.K.; Linganiso, E.C. N-doped graphene quantum dot-modified polyaniline for room-temperature sensing of alcohol vapors. Mater. Chem. Phys. 2022, 287, 126229. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, W.; Dong, G.; Zhang, D. A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/PbS quantum dots nanofilm. J. Mater. Sci. Electron. 2019, 30, 17907–17915. [Google Scholar] [CrossRef]
- Pal, R.; Goyal, S.L.; Rawal, I. Selective methanol sensors based on polyaniline/V2O5 nanocomposites. Iran. Polym. J. 2022, 31, 519–532. [Google Scholar] [CrossRef]
- Zhang, R.; Pang, W.; Feng, Z.; Chen, X.; Chen, Y.; Zhang, Q.; Zhang, H.; Sun, C.; Yang, J.J.; Zhang, D. Enabling selectivity and fast recovery on ZnO nanowire gas sensors through resistive switching. Sens. Actuators B Chem. 2017, 238, 357–363. [Google Scholar] [CrossRef]
- Lee, D.; Yun, M.J.; Kim, K.H.; Kim, S.; Kim, H.D. Advanced recovery and high sensitive properties of memristor-based gas sensor devices operated at room temperature. ACS Sens. 2021, 6, 4217–4224. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Qin, Y.; Xia, Q. Ultrasensitive memristor-based gas sensor (gasistor) with gas-triggered switch and memory function for dilute NH3 detection. Sens. Actuators B Chem. 2022, 373, 132730. [Google Scholar] [CrossRef]
- Huang, C.H.; Chou, T.S.; Huang, J.S.; Lin, S.M.; Chueh, Y.L. Self-selecting resisitive swithching scheme using TiO2 nanorod arrays. Sci. Rep. 2017, 7, 2066. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yang, F.; Wang, S.; Wang, L.; Wang, X.; Wang, C.; Xie, Y.; Liu, Q. Emerging of two-dimensional materials in novel memristor. Front. Phys. 2022, 17, 23204. [Google Scholar] [CrossRef]
- Pereira, M.E.; Martins, R.; Fortunato, E.; Barquinha, P.; Kiazadeh, A. Recent progress in optoelectronic memristors for neuromorphic and in-memory computation. Neuromorph. Comput. Eng. 2023, 3, 022002. [Google Scholar] [CrossRef]
- Qiu, P.; Qin, Y.; Xia, Q. Ultrasensitive gas sensor developed from SnS/TiO2-based memristor for diluite methanol detection at room temperature. Sens. Actuators B Chem. 2023, 392, 134038. [Google Scholar] [CrossRef]
- Chae, M.; Lee, D.; Kim, H.D. Low-power consumption IGZO memristor-based gas sensor embedded in an internet of things monitoring system for isopropanol alcohol gas. Micromachines 2024, 15, 77. [Google Scholar] [CrossRef]
- Lee, D.; Bae, D.; Chae, M.; Kim, H.D. High sensitivity of isopropyl alcohol gas sensor based on memristor device operated at room temperature. J. Korean Phys. Soc. 2022, 80, 1065–1070. [Google Scholar] [CrossRef]
Type of Sensor | Working Principle | Refs. |
---|---|---|
Electrical | Changes of resistance, impedance or conductance in sensitive layer are induced by physical/chemical interaction with analytes molecules (e.g., chemiresistive sensors) | [6,7,8,9] |
Electrochemical | Changes of electrical current in an electrochemical cell are induced by oxidation or reduction of analytes molecules (e.g., amperometric sensors) | [10,11] |
FET | Changes of work function in a field effect transistor are induced by a charge transfer between the sensing material and the adsorbed analytes molecules (e.g., FET sensors, thin film field effect transistor TFT) | [12,13,14] |
Capacitive | Changes of dielectric constant of dielectric layer thickness are induced by physical/chemical interaction with analytes molecules (gas capacitors) | [15] |
Gravimetric | Changes of the vibration resonant frequency in an electromechanical oscillator are induced by the mass of adsorbed analytes (e.g., surface acoustic wave, micro/nano cantilevers) | [16] |
Thermal | Changes of thermal conductivity are induced by physical/chemical interaction with analytes molecules (e.g., MEMS) | [17] |
Optical | Changes of optical properties (absorption, fluorescence, reflection, refractive index, interferometry, optical path length, surface plasmon effects) are induced by physical/chemical interaction with analytes molecules (e.g., Fabry–Perot sensors; absorptive, reflective, and fluorescence-based sensors) | [18,19,20] |
Magnetic | Changes of magnetic properties (magnetization, spin orientation) are induced by physical/chemical interaction with analytes molecules (e.g., Hall effect-based magnetic sensors, Kerr effect-based magnetic sensors, magnetostatic surface spin wave oscillator MSSW) | [21] |
Memristor | Change of memristance in sensitive layer are induced by physical/chemical interaction with analytes molecules (e.g., gasistor) | [22] |
Material | Morphology | Alcohol | Sensitivity | Sensing Range | Response Time | Recovery Time | Refs. |
---|---|---|---|---|---|---|---|
MOSs | |||||||
Bi2WO6 | Silkworm pupae-like cages | Isopropanol | Rair/Rgas 3.8 (500 ppm) | 10–500 ppm | 18 s | 117 s | [25] |
AAO | Nanoporous | Ethanol | (Rgas − Rair) × 100/Rair 61.5% (100 ppm) | 100–1000 ppm | - | - | [27] |
ZnO | Nanobristles | Ethanol | Rair/Rgas 464 (100 ppm) | 50–150 ppm | 20 s | 12 s | [28] |
TiO2 | Flower-like microstructures | Ethanol | Rgas/Rair 2.25 (100 ppm) | 10–500 ppm | - | - | [29] |
NiO/SnO2 | Nanoparticles | Ethanol | Rair/Rgas 140 (100 ppm) | 1–150 ppm | 23 s | 13 s | [31] |
ZnO/NiO | Nano-worm | Ethanol | (Rair − Rgas) × 100/Rair 32.48% (250 ppm) | 250–1500 ppm | 2.7 s | 3.6 s | [32] |
ZnO/GaN | Flower-like | Ethanol | Rair/Rgas 26.9 (50 ppm) | 0.1–50 ppm | 12 s | 9 s | [33] |
NiO/CeO2 | Nanoparticles | Isopropanol | Rair/Rgas 1570 (100 ppm) | 1–100 ppm | 15 s | 19 s | [34] |
α-Fe2O3/Ag | Nanoparticles | Ethanol | (Rgas − Rair)/Rair 4.5 (35 mg L−1) | 2–35 mg L−1 | 17 s | 33 s | [35] |
TiO2 | Nanotubes/nanoparticles | Ethanol | (Rair − Rgas) × 100/Rair 57.0% (100 ppm) | 1–100 ppm | 30 s | 16 s | [36] |
F-doped SnO2 | Hollow nanofibers | Ethanol | Rair/Rgas 5.53 (100 ppm) | 10–100 ppm | 85 s | 145 s | [37] |
Ce-doped LaCoO3 | Nanoparticles | Ethanol | Zgas/Zair 231 30% | 10–40% | 16 s | 8 s | [38] |
ZnO | Porous fractals | Ethanol | Igas/Iair − 1 4.3 (1 ppm) | 0.01–1 ppm | 11 min | 12 min | [42] |
ZnO oxygen vacant | Porous fractals | Ethanol | Igas/Iair − 1 10.41 (1 ppm) | 0.01–1 ppm | 300 s | 360 s | [42] |
APTES-WO3−x | Nanowires | Ethanol | Rair/Rgas 2.0 (10 ppm) | 10–80 ppm | 2.8 min | - | [43] |
CuO/C | Nanoparticles/ nanosheets | Ethanol | (Rgas − Rair) × 100/Rair 3500% (3400 ppm) | 170–3400 ppm | 105 s | 18 s | [52] |
SnO2 | Nanocubes | Butanol | (Rgas − Rair) × 100/Rair 175% (100 ppm) | 1–500 ppm | 184 s | 183 s | [53] |
Au/SnO2 | Nanocubes | Butanol | (Rgas − Rair) × 100/Rair 240% (100 ppm) | 0.25–500 ppm | 290 s | 450 s | [54] |
Fe2O3/rGO | Nanocubes | Butanol | (Rair − Rgas) × 100/Rair 171% (100 ppm) | 10–100 ppm | 53 s | 42 s | [55] |
SnS/TiO2 | Nanowires | Methanol | Rair/Rgas 85.2 (1 ppm) | 0.250–5 ppm | 1.2 s | 1.2 s | [127] |
IGZO | Film | Isopropanol | Rgas/Rair 55.15 (50 ppm) | 10–50 ppm | 105 s | 543 s | [128] |
SnO2 | Film | Isopropanol | Rgas/Rair 2.02 (30 ppm) | 10–30 ppm | 4 s | 6 s | [129] |
MOFs | |||||||
SnS/ZIF-8 | Flower like | Methanol | Gair/Ggas − 1 68.65 (10 ppm) | 1–10 ppm | 8 s | 30 s | [48] |
ZIF-8& Ag@SiNWs | Nanosphere/Nanowires | Ethanol | Rair/Rgas 3.0 (10 ppm) | 0.125–50 ppm | 5.5 s | 45 s | [49] |
Ni2[CuPc(NH)8]-OTMS | Thin film | Methanol | (Igas − Iair) × 100/Iair 3.22% (400 ppm) | 10–500 ppm | 36 s | 13 s | [51] |
2D materials | |||||||
rGO | Nanosheets | Ethanol | Igas/Iair 100 (25 ppm) | 25–150 ppm | 2 s | 17 s | [57] |
GONRs | Nanoribbons | Ethanol | (Rgas − Rair) × 100/Rair 4.4% (100 ppm) | 100–680 ppm | - | - | [58] |
SnO2/rGO | Nanoparticles/nanosheets | Ethanol | Rair/Rgas 12.0 (145 ppm) | 29–145 ppm | 123 s | 128 s | [60] |
SiO2/GO | Nanoparticles | Ethanol | (Ggas − Gair)/Gair 9.5 (50 ppm) | 10–50 ppm | - | - | [61] |
MoO2-Ni-graphene | Hierarchical structure | Ethanol | Rgas/Rair 105 (1000 ppm) | 15–1000 ppm | - | - | [62] |
CNTs/Co3O4@rGO | Mesopours structure | Ethanol | (Rgas − Rair) × 100/Rair 1.36% (50 ppm) | 10–150 ppm | - | - | [63] |
Graphene-Cu BTC | Sheets/nanoparticles | Methanol | (Rgas − Rair)/Rair 0.15 (22.6 ppm) | 2.82–22.6 ppm | - | - | [64] |
Graphene-based Ink | Nanosheets in fractal architecture | Ethanol | (Rgas − Rair) × 100/Rair 12% (30 ppm) | 5–100 ppm | 6 s | 36 s | [65] |
Exfoliated graphene and rGO | Nanoflakes | Methanol Ethanol Isopropanol | (Zgas − Zair)/Zair 0.9 (80 ppm) 2.5 (80 ppm) 1.2 (80 ppm) | 10–80 ppm | - | - | [66] |
g-C3N4/GNPs | Nanosheets/nanoplatelets | Ethanol | (Rgas − Rair) × 100/Rair 125% (10 ppm) | 1–10 ppm | - | - | [69] |
Zn-Nitrogenated graphene | Nanosheets | Ethanol | (Rgas − Rair)/Rair 0.25 (1500 ppm) | 50–1500 ppm | 102 s | 550 s | [70] |
g-C3N4/Ag2ZrO3 | Nanosheet/nanoparticles | Ethanol | (Rair − Rgas) × 100/Rair 53.1% (50 ppm) | 1–100 ppm | - | - | [73] |
WS2/WO3 | Nanosheets/nanoparticles | Ethanol | (Rgas − Rair) × 100/Rair 75.50% (10 ppm) | 0.001–50 ppm | 54 s | 26 s | [75] |
MoS2/Ag | Nanorods/nanoparticles | Methanol | (Rair − Rgas) × 100/Rair 21.6% (100 ppm) | 30–1500 ppm | 240 s | 1100 s | [77] |
MoS2/CeO2 | Nanoflowers/nanoparticles | Ethanol | Rair/Rgas 5.5 (30 ppm) | 1–50 ppm | 7 s | 5 s | [78] |
HfS2 | Flakes | Methanol | (Igas − Iair)/Iair 1.29 500 ppm | 100–500 ppm | 12 s | 24 s | [79] |
SnS | Flower like | Ethanol | Rgas/Rair 1.13 (0.5 ppm) | 0.5–200 ppm | 2 s | 3 s | [82] |
SnS/SnS2 | Flower like | Methanol | Rgas/Rair 14.85 (25 ppm) | 0.1–25 ppm | 8 s | - | [83] |
SnS/rGO | Nanosheets | Methanol | Rgas/Rair 5.2 (12 ppm) | 0.25–20 ppm | 6 s | 18 s | [84] |
SnS | Nanoflakes | Methanol | Rgas/Rair 3.81 (5 ppm) | 0.3–10 ppm | - | - | [85] |
Cubic/orthorhombic SnS | Spherical | Ethanol | (Rgas − Rair) × 100/Rair 241% (10 ppm) | 0.5–10 ppm | 6 s | 9 s | [87] |
SnS sulfur vacant | Flower-like | Methanol | (Rgas − Rair) × 100/Rair 61.2% (0.5 ppm) | 0.5–20 ppm | 3 s | 7 s | [88] |
Zn-doped SnS | Flower-like | Methanol | (Rgas − Rair) × 100/Rair 62% (1 ppm) | 0.1–10 ppm | 5 s | 5 s | [89] |
Ag-doped SnS | Flower-like | Ethanol | (Rgas − Rair) × 100/Rair 58% (10 ppm) | 1–10 ppm | 19 s | 36 s | [90] |
Ag-functionalized SnS | Flower-like | Ethanol | (Rgas − Rair) × 100/Rair 73% (10 ppm) | 1–10 ppm | 16 s | 53 s | [90] |
PbS/SnS2 | Nanoparticles | Ethanol | (Rgas − Rair) × 100/Rair 45.64% (60 ppm) | 60–1600 ppm | 104 s | 84 s | [91] |
Au-functionalized PbS/SnS | Nanoparticles | Ethanol | (Rgas − Rair) × 100/Rair 55% (60 ppm) | 60–1600 ppm | 40 s | 65 s | [92] |
Ti3C2Tx | Flakes | Ethanol | (Rgas − Rair) × 100/Rair 0.1–0.2% | 100 ppm | - | - | [98] |
Ti3C2Tx | Flakes | Ethanol | (Rgas − Rair) × 100/Rair 9.995% | 1000 ppm | - | - | [99] |
Ti3C2Tx/WS2 | Nanoflakes/nanosheets | Ethanol | (Rgas − Rair)/Rair 9.2 (40 ppm) | 1–40 ppm | 9.7 s | 6.6 s | [100] |
TiO2-Ti3C2Tx/g-C3N4 | Flakes | Ethanol | (Rgas − Rair) × 100/Rair 91% (10 ppm) | 10–600 ppm | - | - | [101] |
TiO2/TiC | Nanoparticles/nanosheets | Ethanol | (Rgas − Rair) × 100/Rair 32% (10 ppm) | 0.01–60 ppm | 2.0 s | 2.2 s | [102] |
In2O3/Ti3C2Tx | Nanocubes/nanosheets | Methanol | (Rair − Rgas) × 100/Rair 29.6% (5 ppm) | 5–100 ppm | 6.5 s | 3.5 s | [103] |
MoO3/TiO2/Ti3C2Tx | Nanoparticles/nanosheets | Isopropanol | (Rgas − Rair) × 100/Rair 245% (50 ppm) | 1–100 ppm | 100 s | 40 s | [104] |
MoO2/MoO3/Ti3C2Tx | Nanosheets | Ethanol | Rair/Rgas 2.07 (5 ppm) | 5–200 ppm | 46 s | 276 s | [105] |
Polymers | |||||||
Poly(o-phenylenediamine) | Thin film | Ethanol | (Rair − Rgas) × 100/Rair 29% (130 ppm) | 87–328 ppm | 8 min | 18 min | [107] |
ox-SWCNH/SnO2/PVP | Thin film | Ethanol | (Rgas − Rair)/(RairΔC) 0.0022 | 2–50 mg/mL | 30 s | 50 s | [108] |
PANI/graphene | Micro/nano structures | Methanol | (Igas − Iair) × 100/Iair 61.5% (100 ppm) | 50–100 ppm | 60 s | - | [110] |
PANI/rGO | Nanoparticles | Methanol | (Igas − Iair) × 100/Iair 52.0% (200 ppm) | 50–200 ppm | 30 s | 100 s | [115] |
PANI/activated charcoal | Nanoparticles | Methanol | (Igas − Iair) × 100/Iair 42.54% (200 ppm) | 50–200 ppm | 25 s | 305 s | [116] |
PANI/N-doped GQDs | Nanofibrous morphology | Ethanol | (Rair − Rgas) × 100/Rair 0.66% (100 ppm) | 50–150 ppm | 80 s | 62 s | [118] |
α-Fe2O3/PANI/PbS | Thin film | Methanol | Rair/Rgas 1.55 (10 ppm) | 10–100 ppm | - | - | [119] |
PANI/V2O5 | Nanoparticles | Methanol | (Rgas − Rair) × 100/Rair 36.41% (60 ppm) | 40–60 ppm | 240 s | 260 s | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laera, A.M.; Penza, M. Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature. Chemosensors 2024, 12, 78. https://doi.org/10.3390/chemosensors12050078
Laera AM, Penza M. Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature. Chemosensors. 2024; 12(5):78. https://doi.org/10.3390/chemosensors12050078
Chicago/Turabian StyleLaera, Anna Maria, and Michele Penza. 2024. "Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature" Chemosensors 12, no. 5: 78. https://doi.org/10.3390/chemosensors12050078
APA StyleLaera, A. M., & Penza, M. (2024). Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature. Chemosensors, 12(5), 78. https://doi.org/10.3390/chemosensors12050078