Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature
Abstract
1. Introduction
2. Metal Oxides Semiconductors (MOSs)
3. Metal Organic Frameworks (MOFs)
4. 2D Materials
4.1. Graphene and Derivatives Based Gas Sensors
4.2. Graphitic Carbon Nitride-Based Gas Sensors
4.3. 2D Metal Chalcogenides-Based Gas Sensors
4.3.1. 2D Transition Metal Dichalcogenide (TMDs)
4.3.2. 2D Metal Monochalcogenides
4.4. MXene Based Gas Sensors
5. Polymers
Polyaniline (PANI)-Based Gas Sensors
6. Gasistor
7. Discussion and Future Perspectives
- -
- morphology design and synthesis of ultra-porous nanostructures;
- -
- design of suitable heterojunctions between two dissimilar materials or homojunctions between different crystalline phases of the same material;
- -
- doping;
- -
- defect engineering.
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boroujerdi, R.; Abdelkader, A.; Paul, R. State of the art in alcohol sensing with 2D materials. Nano-Micro Lett. 2020, 12, 33. [Google Scholar] [CrossRef]
- Alsaigh, R.A.; Rahman, S.; Alfaifi, F.S.; Al-Gawati, M.A.; Shallaa, R.; Alzaid, F.; Alanazi, A.F.; Albrithen, H.; Alzahrani, K.E.; Assaifan, A.K. Detection of volatile alcohol vapors using PMMA-coated micromechanical sensors: Experimental and quantum chemical DFT analysis. Chemosensors 2022, 10, 452. [Google Scholar] [CrossRef]
- Gallego Martinez, E.E.; Matias, I.R.; Melendi-Espina, S.; Hernaez, M.; Ruiz Zamarreno, C. Lossy mode resonance based 1-butanol sensor in the mid-infrared region. Sens. Actuators B Chem. 2023, 388, 133845. [Google Scholar] [CrossRef]
- Song, G.; Qin, T.; Liu, H.; Xu, G.B.; Pan, Y.Y.; Xiong, F.X.; Chen, Z.D. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 2010, 67, 227–231. [Google Scholar] [CrossRef]
- Luo, S.; Wang, R.; Wang, L.; Qu, H.; Zheng, L. Breath alchol sensor based on hydrogel-gated graphene field-effect transistors. Biosens. Bioelectron. 2022, 210, 114319. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, L.; Wang, J.; Zhuang, R.; Mu, P.; Wang, J.; Yan, W. Advances in functional guest materials for resistive gas sensors. RCS Adv. 2022, 12, 24614. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Myung, N.V.; Tran, T.T. 1D metal oxide semiconductor materials for chemiresistive gas sensors: A review. Adv. Electron. Mater. 2021, 7, 2100271. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, M.; Comini, E. One-dimensional nanostructured oxide chemoresistive sensors. Langmuir 2020, 36, 6326–6344. [Google Scholar] [CrossRef] [PubMed]
- Dharmalingam, G.; Sivasubramaniam, R.; Parthiban, S. Quantification of ethanol by metal-oxide-based resistive sensors: A review. J. Electron. Mater. 2020, 49, 3009–3024. [Google Scholar] [CrossRef]
- Thu, D.T.; Liu, Z.H.; Lee, Y.C.; Kuo, T.W.; Sung, W.L.; Chu, Y.C.; Chuen, Y.L.; Fang, W. A miniaturized CMOS-MEMS amperometric gas sensor for rapid ethanol detection. IEEE Sens. J. 2023, 23, 8128–8137. [Google Scholar] [CrossRef]
- Baron, R.; Saffell, J. Amperometric gas sensors as a low cost emerging tecnology platform for air quality monitoring applications: A review. ACS Sens. 2017, 2, 1553–1566. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, G.; Hung, K.M.; Cho, J.; Choi, M.; O’Coileain, C.; Duesberg, G.S.; Ren, X.K.; Chang, C.R.; Wu, H.C. Field effect transistor gas sensors based on mechanically exfoliated Van der Waals materials. ACS Appl. Mater. Interfaces 2023, 15, 17335–17343. [Google Scholar] [CrossRef]
- Singh, A.K.; Chowdhury, N.K.; Roy, S.C.; Bhowmik, B. Review of thin film transistor gas sensors: Comparison with resistive and capacitive sensors. J. Electron. Mater. 2022, 51, 1974–2003. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, Y.; Zhang, J.; Liu, B.; Ma, X.; Wang, Y. Highly sensitive gas sensing platforms based on field effect transistor-A review. Anal. Chim. Acta 2021, 1172, 338575. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, X.; Hao, X.; Niu, B.; Li, C. Metal-organic frameworks materials for capacitive gas sensors. Adv. Mater. Technol. 2021, 6, 2100127. [Google Scholar] [CrossRef]
- McGinn, C.K.; Lamport, Z.A.; Kymissis, I. Review of gravimetric sensing of volatile organic compounds. ACS Sens. 2020, 5, 1514–1534. [Google Scholar] [CrossRef]
- Gardner, E.L.W.; Gardner, J.W.; Udrea, F. Micromachined thermal gas sensors—A review. Sensors 2023, 23, 681. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Hossen, R.; Walid, M.A.A.; Alvi, S.T.; Al-Amin, M.; Sen, S.; Azad, M.M. Design of quasi-shaped spectroscopy based optical sensor for the detection of alcohol. Sens. Bio-Sens. Res. 2023, 41, 100527. [Google Scholar] [CrossRef]
- Zhan, K.; Qin, P.; Jiang, Y.; Chen, Y.; Heinke, L. Optical sensor array of metal-organic-framework-based inverse opal films for the detection and identification of various alcohols. Sens. Actuators B Chem. 2023, 393, 134271. [Google Scholar] [CrossRef]
- Jibon, R.H.; Khodaei, A.; Priya, P.P.; Rashed, A.N.Z.; Ahammad, S.H.; Hossain, M.A. ZEONEW based hollow rectangular core photonic crystal fiber (PCF) sensor design and numerical investigation for alcohol detection of variant classes. Opt. Quantum. Electron. 2023, 55, 977. [Google Scholar] [CrossRef]
- Shinde, P.V.; Rout, C.S. Magnetic gas sensing: Working principles and recent developments. Nanoscale Adv. 2021, 3, 1551. [Google Scholar] [CrossRef] [PubMed]
- Vidis, M.; Plecenik, T.; Mosko, M.; Tomasec, S.; Roch, T.; Satrapinskyy, L.; Grancic, B.; Plencenik, A. Gasistor: A memristor based gas-triggered switch and gas sensor with memory. Appl. Phys. Lett. 2019, 115, 093504. [Google Scholar] [CrossRef]
- Sivaperuman, K.; Thomas, A.; Thangavel, R.; Thirumalaisamy, L.; Palanivel, S.; Pitchaimuthu, S.; Ahsan, N.; Okada, Y. Binary and ternary metal oxide semiconductor thin films for effective gas sensing applications: A comprehensive review and future prospects. Prog. Mater. Sci. 2024, 142, 101222. [Google Scholar] [CrossRef]
- Xavier, R.; Sivaperuman, K. Review on the of physical vapor deposition on imminent chemiresistive metal oxide gas sensors and their future scope. Mater. Today Commun. 2024, 38, 107831. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Zhang, B.; Wang, G.; Shi, F.; Wang, Y.; Zhang, Z. Conductometric sensor of hierarchical Bi2MoxW1-x O6 microcages in sensing three gases NH3, isopropanol and ethanol. Sens. Actuators B Chem. 2023, 392, 134084. [Google Scholar] [CrossRef]
- Ab Kadir, R.; Li, Z.; Sadek, A.Z.; Rani, R.A.; Zoolfakar, A.S.; Field, M.R.; Ou, J.Z.; Chrimes, A.F.; Kalantar-Zadeh, K. Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J. Phys. Chem. C 2014, 118, 3129–3139. [Google Scholar] [CrossRef]
- Chung, C.K.; Ku, C.A. An effective resistive-type alcohol vapor sensor using one-step facile nanoporous anodic alumina. Micromachines 2023, 14, 1330. [Google Scholar] [CrossRef]
- Tiwary, P.; Mahapatra, R.; Chakraborty, A.K. ZnO nanobristles prepared by one-step thermal decomposition of zinc nitrate as ultra-high response ethanol sensor at room temperature. J. Mater. Sci. Mater. Electron. 2019, 30, 5464–5469. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Y.; Meng, D.; Wang, K.; Wang, C. A novel room temperature ethanol gas sensor based on 3D hierarchical flower-like TiO2 microstructures. Mater. Lett. 2020, 277, 128372. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Mater. Sci. 2021, 3, 390–403. [Google Scholar] [CrossRef]
- Jayababu, N.; Poloju, M.; Shruthi, J.; Reddy, M.V.R. Semi shield driven p-n heterostructures and their role in enhancing the room temperature ethanol gas sensing performance of NiO/SnO2 nanocomposites. Ceram. Int. 2019, 45, 15134–15142. [Google Scholar] [CrossRef]
- Hezarjaribi, S.T.; Nasirian, S. An enhanced fast ethanol sensor based on zinc oxide/nickel oxide nanocomposite in dynamic situations. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4072–4081. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.G.; Xi, R.; Zhang, L.; Zhang, S.H.; Wang, L.J.; Pan, G.B. In situ synthesis of flower-like ZnO on GaN using electrodeposition and its application as ethanol gas sensor at room temperature. Sens. Actuators B Chem. 2019, 292, 270–276. [Google Scholar] [CrossRef]
- Jayababu, N.; Poloju, M.; Shruthi, J.; Reddy, M.V.R. NiO decorated CeO2 nanostructures as room temperature isopropanol gas sensors. RSC Adv. 2019, 9, 13765–13775. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Osorio, D.; Hidalgo-Falla, P.; Peres, H.E.M.; Goncalves, J.M.; Araki, K.; Garcia-Segura, S.; Picasso, G. Silver hehances hematite nanoparticles based ethanol sensor response and selectivity at room temperature. Sensors 2021, 21, 440. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, B.; Dutta, K.; Bhattacharyya, P. An efficiet room temperature ethanol sensor device based on p-n homojunction of TiO2 nanostructures. IEEE Trans. Electron. Devices 2019, 66, 1063–1068. [Google Scholar] [CrossRef]
- Nascimento, E.P.; Firmino, H.C.T.; Santos, A.M.C.; Sales, H.B.; Silva, V.D.; Macedo, D.A.; Neves, G.A.; Medeiros, E.S.; Menezes, R.R. Facile synthesis of hollow F-doped SnO2 nanofibers and their efficiency in ethanol sensing. J. Am. Ceram. Soc. 2021, 104, 1297–1308. [Google Scholar] [CrossRef]
- Wu, L.; Shi, X.; Du, H.; An, Q.; Li, Z.; Xu, H.; Ran, H. Ce-doped LaCoO3 film as a promising gas sensor for ethanol. AIP Adv. 2021, 11, 055305. [Google Scholar] [CrossRef]
- Bui, H.; Shin, J.H. Perovskite materials for sensing applications: Recent advances and challenges. Microchem. J. 2023, 191, 108924. [Google Scholar] [CrossRef]
- Wang, J.; Chen, R.; Xiang, L.; Komarneni, S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram. Int. 2018, 44, 7357. [Google Scholar] [CrossRef]
- Al-Hashem, M.; Akbar, S.; Morris, P. Role of oxygen vacancies in nanostructured metal-oxide gas sensors: A review. Sens. Actuators B Chem. 2019, 301, 126845. [Google Scholar] [CrossRef]
- Ul Abideen, Z.; Choi, J.G.; Yuwono, J.A.; Kiy, A.; Kumar, P.V.; Murugappan, K.; Lee, W.J.; Kluth, P.; Nisbet, D.R.; Tran-Phu, T.; et al. Oxygen vacancies engineering in thick semiconductor films via deep ultraviolet photoactivation for selective and sensitive gas sensing. Adv. Electron. Mater. 2023, 9, 2200905. [Google Scholar] [CrossRef]
- Tomic, M.; Fohlerova, Z.; Gracia, I.; Figueras, E.; Cane, C.; Vallejos, S. UV-light activated APTES modified WO3-x nanowires sensitive to ethanol and nitrogen dioxide. Sens. Actuators B Chem. 2021, 328, 129046. [Google Scholar] [CrossRef]
- Paun, C.; Motelica, L.; Ficai, D.; Ficai, A.; Andronescu, E. Metal-organic frameworks: Versatile platforms for biomedical applications. Materials 2023, 16, 6143. [Google Scholar] [CrossRef]
- Wang, H.; Pei, X.; Kalmutzki, M.J.; Yang, J.; Yaghi, O.M. Large cages of zeolitic imidazolate frameworks. Acc. Chem. Res. 2022, 55, 707–721. [Google Scholar] [CrossRef]
- Bose, R.; Ethiraj, J.; Sridhar, P.; Varghese, J.J.; Kaisare, N.S.; Selvam, P. Adsorption of hydrogen and carbon dioxide in zeolitic imidazolate framework structure with SOD topology: Experimental and modelling studies. Adsorption 2020, 26, 1027–1038. [Google Scholar] [CrossRef]
- Coudert, F.X. Molecular mechanism of swing effect in zeolitic imidazolate framework ZIF-8: Continuous deformation upon adsorption. Chem. Phys. Chem. 2017, 18, 2732–2738. [Google Scholar] [CrossRef]
- Quin, Y.; Xie, J.; Liu, S.; Bai, Y. Selective methanol-sensing of SnS-supported ultrathin ZIF-8 nanocomposite with core-shell heterostructure. Sens. Actuators B Chem. 2022, 368, 132230. [Google Scholar] [CrossRef]
- Qui, Y.; Wang, X.; Zang, J. Ultrasensitive ethanol sensor based on nano-Ag&ZIF-8 co-modified SiNWs with enhanced moisture resistance. Sens. Actuators B Chem. 2021, 340, 129959. [Google Scholar] [CrossRef]
- Meng, Z.; Stolz, R.M.; Mendecki, L.; Mirica, K.A. Electrically-transduced chemical sensors based on two- dimensional nanomaterials. Chem. Rev. 2019, 119, 478–598. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Zhong, H.; Huang, X.; Li, W.; Hambsch, M.; Zhang, P.; Wang, Z.; St. Petkov, P.; Heine, T.; et al. Surface-modified phthalocyanine-based two-dimensional conjugated metal–organic framework films for polarity-selective chemiresistive sensing. Angew. Chem. Int. Ed. 2021, 60, 18666–18672. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Kwon, H.; Kang, H.; Jang, J.E.; Kwon, H.J. Laser-induced and MOF-derived metal oxide/carbon composite for synergistically improved ethanol sensing at room temperature. Nano-Micro Lett. 2024, 16, 113. [Google Scholar] [CrossRef]
- Yao, B.; Cui, X.; Tian, X.; Xing, X.; Chen, T.; Wang, Y. SnO2 submicron porous cube derived from metal-organic framework for n-butanol sensing at room temperature. Ceram. Int. 2023, 49, 25477–25485. [Google Scholar] [CrossRef]
- Cui, X.; Tian, X.; Xing, X.; Chen, T.; Wang, Y. Au modified hollow cube Sn-MOF derivatives for highly sensitive, great selective, and stable detection of n-butanol at room temperature. Adv. Mater. Technol. 2023, 8, 2300572. [Google Scholar] [CrossRef]
- Mo, R.; Han, D.; Yang, C.; Tang, J.; Wang, F.; Li, C. MOF-derived porous Fe2O3 nanocubes combined with reduced graphene oxide for n-butanol room temperature gas sensing. Sens. Actuators B Chem. 2021, 330, 129326. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, P.; Chatterjee, S.G.; Singha, S.S.; Mahapatra, R.; Chakraborty, A.K. Room temperature ethanol sensing by chemically reduced graphene oxide film. FlatChem 2021, 30, 100317. [Google Scholar] [CrossRef]
- Abdollahi, H.; Samkan, M.; Bayat, M. Graphene oxide nanoribbons for ethanol detection at room temperature. Mater. Res. Express 2019, 6, 075053. [Google Scholar] [CrossRef]
- Sun, D.; Luo, Y.; Debliquy, M.; Zhang, C. Graphene-enhanced metal oxide gas sensors at room temperature: A review. Beilstein J. Nanotechnol. 2018, 9, 2832–2844. [Google Scholar] [CrossRef]
- Pienutsa, N.; Roongruangsree, P.; Seedokbuab, V.; Yannawibut, K.; Phatoomvijitwong, C.; Srinives, S. SnO2-graphene composite gas sensor for a room temperature detection of ethanol. Nanotechnology 2021, 32, 115502. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, M.; Casotto, A.; Arachchige, H.M.M.M.; Sangaletti, L.; Comini, E. Quenching of oxygen-related defects in graphene oxide nanohybrid: Highly selective room-temperature ethanol sensor. Appl. Phys. Rev. 2022, 9, 041407. [Google Scholar] [CrossRef]
- Mehmood, S.; Zhao, X.; Bhopal, M.F.; Khan, F.U.; Yang, Y.; Wang, G.; Pan, X. MoO2-Ni-graphene ternary nanocomposite for a high- performance room-temperature ethanol gas sensor. Appl. Surf.Sci. 2021, 554, 149595. [Google Scholar] [CrossRef]
- Morsy, M.; Yahia, I.S.; Zahran, H.Y.; Ibrahim, M. Hydrothermal synthesis of CNTs/Co3O4@rGO mesoporous nanocomposite as a room temperature gas sensor for VOCs. J. Inorg. Organomet. Polym. Mater. 2019, 29, 416–422. [Google Scholar] [CrossRef]
- Tung, T.T.; Tran, M.T.; Feller, J.F.; Castro, M.; Ngo, T.V.; Hassan, K.; Nine, M.J.; Losic, D. Graphene and metal organic frameworks (MOFs) hybridization for tunable chemoresistive sensors for detection of volatile organic compounds (VOCs) biomarkers. Carbon 2020, 159, 333–344. [Google Scholar] [CrossRef]
- Hassan, K.; Tung, T.T.; Yap, P.L.; Rastin, H.; Stanley, N.; Nine, M.J.; Losic, D. Fractal design for advancing the performance of chemoresistive sensors. ACS Sens. 2021, 6, 3685–3695. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Al-Hamry, A.; Rosolen, J.M.; Hu, Z.; Hao, J.; Wang, Y.; Adiraju, A.; Yu, T.; Matsubara, E.Y.; Kanoun, O. Flexible impedimetric electronic nose for high-accurate determination of individual volatile organic compounds bytuning the graphene sensitive properties. Chemosensors 2021, 9, 360. [Google Scholar] [CrossRef]
- Basharnavaz, H.; Habibi-Yangjeh, A.; Pirhashemi, M. Graphitic carbon nitride as a fascinating adsorbent for toxic gases: A mini-review. Chem. Phys. Lett. 2020, 754, 137676. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Q.; Wu, H.; Chen, Y.; Lu, C.H.; Chi, Y.; Yang, H.H. Graphitic carbon nitride materials: Sensing, imaging anf therapy. Small 2016, 12, 5376–5393. [Google Scholar] [CrossRef] [PubMed]
- Sahani, S.; Park, S.J.; Myung, Y.; Pham, T.H.; Tung, T.T.; Kim, T.Y. Enhanced room-temperature ethanol detection by quasi 2D nanosheets of an exfoliated polymeric graphitized carbon nitride composite-based patterned sensor. ACS Omrga 2022, 7, 41905–41914. [Google Scholar] [CrossRef]
- Qiu, J.; Hu, X.; Shi, L.; Fan, J.; MJin, X.; Zhang, W.; Wang, J. Enabling selective, room-temperature gas detection using atomically dispersed Zn. Sens. Actuators B Chem. 2021, 392, 129221. [Google Scholar] [CrossRef]
- Gu, F.; Luo, C.; Han, D.; Hong, S.; Wang, Z. Atomically dispersed Pt on 3DOM WO3 promoted with cobalt and nickel oxides for highly selective and highly sensitive detection of xylene. Sens. Actuator B Chem. 2019, 297, 126772–126782. [Google Scholar] [CrossRef]
- Gu, F.; Cui, Y.; Han, D.; Hong, S.; Flytzani-Stephanopoulos, M.; Wang, Z. Atomically dispersed Pt (II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Appl. Catal. B Environ. 2019, 256, 117809–117818. [Google Scholar] [CrossRef]
- David, S.P.S.; Veeralakshmi, S.; Priya, M.S.; Nehru, S.; Kalaiselvam, S. Room-temperature chemiresistive g-C3N4/Ag2ZrO3 nanocomposite gas sensor for ethanol detection. J. Mater. Sci. Mater. Electron. 2022, 33, 11498–11510. [Google Scholar] [CrossRef]
- Chhowalla, M.; Liu, Z.; Zhang, H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 2015, 44, 2584–2586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Cao, Y.; Wu, J.; Zhang, X. Tungsten trioxide nanoparticles decorated tungsten disulfide nanoheterojunction for highly sensitive ethanol gas sensing application. Appl. Surf. Sci. 2020, 503, 144063. [Google Scholar] [CrossRef]
- Tian, X.; Wang, S.; Li, H.; Li, M.; Chen, T.; Xiao, X.; Wang, Y. Recent advances in MoS2-based nanomaterial sensors for room-temperature gas detection: A review. Sens. Diagn. 2023, 2, 361. [Google Scholar] [CrossRef]
- Halvaee, P.; Dehghani, S.; Mohammadzadeh, M. Room temperature methanol sensors based on rod-shaped nanostructures of MoS2 functionalized with Ag nanoparticles. IEEE Sens. J. 2021, 21, 4233–4240. [Google Scholar] [CrossRef]
- Zhang, J.; Li, T.; Guo, J.; Hu, Y.; Zhang, D. Two-step hydrothermal fabrication of CeO2-loaded MoS2 nanoflowers for ethanol gas sensing application. Appl. Surf. Sci. 2021, 568, 150942. [Google Scholar] [CrossRef]
- Das, S.; Sharma, S.; Sharma, S.K. Fa Facile synthesis of 2D-HfS2 flakes for µ-IDE-based methanol sensor: Fast detection at room temperature. IEEE Sens. J. 2019, 19, 9090–9096. [Google Scholar] [CrossRef]
- Rana, C.; Bera, S.R.; Saha, S. Growth of SnS nanoparticles and its ability as ethanol gas sensor. J. Mater. Sci. Mater. Electron. 2019, 30, 2016–2029. [Google Scholar] [CrossRef]
- Shan, W.; Fu, Z.; Ma, M.; Liu, Z.; Xue, Z.; Xu, J.; Zhang, F.; Li, Y. Facile chemical bath synthesis of SnS nanosheets and their ethanol sensing properties. Sensors 2019, 19, 2581. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Bai, Y.; Xie, J.; Gui, H. Novel insights into the unique intrinsic sensing essences of 2D tin chalcogenides for ethanol: From hexagonal SnS2 to orthorhombic SnS. Vacuum 2023, 207, 111616. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, S.; Bai, Y. Adsorption and sensing performance toward methanol vapor on SnS/SnS2 in-plane heterostructures. ACS Appl. Electron. Mater. 2022, 4, 158–167. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, J.; Bai, Y. Graphene-oriented construction of 2D SnS for methanol gas-sensor application. Phys. Status Solidi A 2021, 218, 2000642. [Google Scholar] [CrossRef]
- Qin, Y.; Bai, C.; Qiu, P. Alkalized SnS nanoflakes with enhanced sensing properties towards methanol vapor. ECS J. Solid State Sci. Technol. 2020, 9, 121013. [Google Scholar] [CrossRef]
- Bu, W.; Zhang, Y.; Qiu, Q.; Li, Y.; Zhou, Z.; Hu, C.; Chuai, X.; Wang, T.; Sun, P.; Lu, G. Homojunction between cubic/hexagonal CdS nanocrystal for high and fast response to n-propanol. Sens. Actuator B Chem. 2022, 369, 132281. [Google Scholar] [CrossRef]
- Qin, Y.; Liang, Y.; Zhou, C.; Bai, Y. Homogeneous heterophase junction based on cubic/orthomorphic SnS for chemiresistive room temperature trace-ethanol sensor. Sens. Actuator B Chem. 2024, 404, 135285. [Google Scholar] [CrossRef]
- Qiu, P.; Qin, Y.; Bai, Y. Ultra-sensitive methanol detection based on S-vacancy enriched SnS: A combined theoretical and experimental investigation. Vacuum 2022, 198, 110880. [Google Scholar] [CrossRef]
- Qin, Y.; Qiu, P.; Bai, Y. First-principles calculations combined with experiments to study the gas-sensing performance of Zn-substituted SnS. Phys. Chem. Chem. Phys. 2020, 22, 17513–17522. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, X. Experiments combined with first-principles calculations to compare the enhancement of Ag-doping and -functionalization on the sensing properties of two-dimensional SnS. Physica E low Dimens. Syst. Nanostruct. 2021, 131, 114752. [Google Scholar] [CrossRef]
- Kuchi, P.S.; Roshan, H.; Sheikhi, M.H. A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties. J. Alloys Compd. 2020, 816, 152666. [Google Scholar] [CrossRef]
- Roshan, H.; Kuchi, P.S.; Sheikhi, M.H.; Mirzaei, A. Enhancement of room temperature ethanol sensing behavior of PbS–SnS2 nanocomposite by Au decoration. Mater. Sci. Semicond. Process 2021, 127, 105742. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliationof Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [PubMed]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Aghei, S.M.; Aasi, A.; Panchapakesan, B. Experimental and theoretical advances in MXene-based gas sensors. ACS Omega 2021, 6, 2450–2461. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Xiong, S.; Gong, D.; Deng, Y.; Wang, Y.; Su, L.; Ding, C.; Yang, L.; Liao, C. Ti3C2 2D MXene: Recent progress and perspectives in photocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 56663–56680. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; VahidMohammadi, A.; Prorok, B.C.; Yoon, Y.S.; Beidaghi, M.; Kim, D.-J. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190. [Google Scholar] [CrossRef] [PubMed]
- Shuck, C.E.; Han, M.; Maleski, K.; Hantanasirisakul, K.; Kim, S.J.; Choi, J.; Reil, W.E.; Gogotsi, Y. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. 2019, 2, 3368–3376. [Google Scholar] [CrossRef]
- Koh, H.J.; Kim, S.J.; Maleski, K.; Cho, S.Y.; Kim, Y.J.; Ahn, C.W.; Gogotsi, Y.; Jung, H.T. Enhanced selectivity of MXene gas sensors through metal ion intercalation: In situ X-ray diffraction study. ACS Sens. 2019, 4, 1365–1372. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jiang, X.; Lai, S.N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 2020, 11, 1302. [Google Scholar] [CrossRef]
- Hou, M.; Gao, J.; Yang, L.; Guo, S.; Hu, T.; Li, Y. Room temperature gas sensing under UV light irradiation for Ti3C2Tx MXene derived lamellar TiO2-C/g-C3N4 composites. App. Surf. Sci. 2021, 535, 147666. [Google Scholar] [CrossRef]
- Raghu, A.V.; Karuppanan, K.K.; Nampoothiri, J.; Pullithadathil, B. Wearable, flexible ethanol gas sensor based on TiO2 nanoparticles-grafted 2D-titanium carbide canosheets. ACS Appl. Nano Mater. 2019, 2, 1152–1163. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Song, P.; Yang, Z.; Wang, Q. In2O3 nanocubes/Ti3C2Tx MXene composites for enhanced methanol gas sensing properties at room temperature. Ceram. Int. 2021, 47, 23028–23037. [Google Scholar] [CrossRef]
- Yao, Y.; Han, Y.; Zhou, M.; Xie, L.; Zhao, X.; Wang, Z.; Barsan, N.; Zhu, Z. MoO3/TiO2/Ti3C2Tx nanocomposite based gas sensors for highly sensitive and selective isopropanol detection at room temperature. J. Mater. Chem. A 2022, 10, 8283–8292. [Google Scholar] [CrossRef]
- Zhang, S.; Song, P.; Zheng, Y.; Ding, Y.; Wang, Q. MoO2/MoO3/MXene ternary nanocomposites for high-performance ethanol detection at room temperature. J. Alloys Compd. 2022, 925, 166663. [Google Scholar] [CrossRef]
- Nylabder, C.; Armgrath, M.; Lundstrom, I. An ammonia detector based on a conducting polymer. Anal. Chem. Symp. Ser. 1983, 17, 203–207. [Google Scholar]
- Samanta, S.; Roy, P.; Kar, P. Sensing of ethanol and other alcohol contaminated ethanol by conducting functional poly(o-phenylenediamine). Mater. Sci. Eng. B 2020, 256, 114541. [Google Scholar] [CrossRef]
- Cobianu, C.; Serban, B.C.; Dumbravescu, N.; Buiu, O.; Avramescu, V.; Pachiu, C.; Bita, B.; Bumbac, M.; Nicolescu, C.M.; Cobianu, C. Organic-inorganic ternary nanohybrids of single-walled carbon nanohorns for room temperature chemiresistive ethanol detection. Nanomaterials 2020, 10, 2552. [Google Scholar] [CrossRef]
- Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. Chemiresistive polyaniline-based gas sensors: A mini review. Sens. Actuators B Chem. 2015, 220, 534–548. [Google Scholar] [CrossRef]
- Al-Haidary, Q.N.; Al-Mokaram, A.M.; Hussein, F.M.; Ismail, A.H. Development of polyaniline for sensor applications: A review. J. Phys. Conf. Ser. 2021, 1853, 012062. [Google Scholar] [CrossRef]
- Pal, R.; Goyal, S.L.; Rawal, I.; Sharma, S. Efficient room temperature methanol sensors based on polyaniline/graphene micro/nanocomposites. Iran. Polym. J. 2020, 29, 591–603. [Google Scholar] [CrossRef]
- Tan, C.K.; Blackwood, D.J. Interactions between polyaniline and methanol vapour. Sens. Actuators B Chem. 2000, 71, 184–191. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y. Preparation and electrochemical properties of polyaniline/reduced graphene oxide composites. J. Appl. Polym. Sci. 2018, 135, 46103. [Google Scholar] [CrossRef]
- Jung, J.W.; Son, S.H.; Choi, J. Polyaniline/reduced graphene oxide composites for hole transporting layer of high-performance inverted perovskite solar cell. Polymers 2021, 13, 1281. [Google Scholar] [CrossRef]
- Kumar, M.; Supreet; Sharma, S.; Goyal, S.L.; Kumar, S.; Chauhan, S.; Vidhani, B.; Pal, R. Composite nanoarchitectonics with reduced-graphene oxide and polyaniline for a highly responsive and selective sensing of methanol vapors. Mater. Chem. Phys. 2024, 312, 128626. [Google Scholar]
- Kumar, M.; Sharma, S.; Pal, R.; Vidhani, B. Supreet a novel gas sensor based on activated charcoal and polyaniline composites for selective sensing of methanol vapors. Sens. Actuators A Phys. 2023, 353, 114210. [Google Scholar] [CrossRef]
- Kumar, Y.R.; Deshmukh, K.; Sadasivuni, K.K.; Pasha, S.K.K. Graphene quantum dot based materials for sensing, bio-imaging and energy storage applications: A review. RSC Adv. 2020, 10, 23861. [Google Scholar] [CrossRef]
- Masemola, C.M.; Moloto, N.; Tetana, Z.N.; Gqoba, S.S.; Mubiayi, P.K.; Linganiso, E.C. N-doped graphene quantum dot-modified polyaniline for room-temperature sensing of alcohol vapors. Mater. Chem. Phys. 2022, 287, 126229. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, W.; Dong, G.; Zhang, D. A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/PbS quantum dots nanofilm. J. Mater. Sci. Electron. 2019, 30, 17907–17915. [Google Scholar] [CrossRef]
- Pal, R.; Goyal, S.L.; Rawal, I. Selective methanol sensors based on polyaniline/V2O5 nanocomposites. Iran. Polym. J. 2022, 31, 519–532. [Google Scholar] [CrossRef]
- Zhang, R.; Pang, W.; Feng, Z.; Chen, X.; Chen, Y.; Zhang, Q.; Zhang, H.; Sun, C.; Yang, J.J.; Zhang, D. Enabling selectivity and fast recovery on ZnO nanowire gas sensors through resistive switching. Sens. Actuators B Chem. 2017, 238, 357–363. [Google Scholar] [CrossRef]
- Lee, D.; Yun, M.J.; Kim, K.H.; Kim, S.; Kim, H.D. Advanced recovery and high sensitive properties of memristor-based gas sensor devices operated at room temperature. ACS Sens. 2021, 6, 4217–4224. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Qin, Y.; Xia, Q. Ultrasensitive memristor-based gas sensor (gasistor) with gas-triggered switch and memory function for dilute NH3 detection. Sens. Actuators B Chem. 2022, 373, 132730. [Google Scholar] [CrossRef]
- Huang, C.H.; Chou, T.S.; Huang, J.S.; Lin, S.M.; Chueh, Y.L. Self-selecting resisitive swithching scheme using TiO2 nanorod arrays. Sci. Rep. 2017, 7, 2066. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yang, F.; Wang, S.; Wang, L.; Wang, X.; Wang, C.; Xie, Y.; Liu, Q. Emerging of two-dimensional materials in novel memristor. Front. Phys. 2022, 17, 23204. [Google Scholar] [CrossRef]
- Pereira, M.E.; Martins, R.; Fortunato, E.; Barquinha, P.; Kiazadeh, A. Recent progress in optoelectronic memristors for neuromorphic and in-memory computation. Neuromorph. Comput. Eng. 2023, 3, 022002. [Google Scholar] [CrossRef]
- Qiu, P.; Qin, Y.; Xia, Q. Ultrasensitive gas sensor developed from SnS/TiO2-based memristor for diluite methanol detection at room temperature. Sens. Actuators B Chem. 2023, 392, 134038. [Google Scholar] [CrossRef]
- Chae, M.; Lee, D.; Kim, H.D. Low-power consumption IGZO memristor-based gas sensor embedded in an internet of things monitoring system for isopropanol alcohol gas. Micromachines 2024, 15, 77. [Google Scholar] [CrossRef]
- Lee, D.; Bae, D.; Chae, M.; Kim, H.D. High sensitivity of isopropyl alcohol gas sensor based on memristor device operated at room temperature. J. Korean Phys. Soc. 2022, 80, 1065–1070. [Google Scholar] [CrossRef]
Type of Sensor | Working Principle | Refs. |
---|---|---|
Electrical | Changes of resistance, impedance or conductance in sensitive layer are induced by physical/chemical interaction with analytes molecules (e.g., chemiresistive sensors) | [6,7,8,9] |
Electrochemical | Changes of electrical current in an electrochemical cell are induced by oxidation or reduction of analytes molecules (e.g., amperometric sensors) | [10,11] |
FET | Changes of work function in a field effect transistor are induced by a charge transfer between the sensing material and the adsorbed analytes molecules (e.g., FET sensors, thin film field effect transistor TFT) | [12,13,14] |
Capacitive | Changes of dielectric constant of dielectric layer thickness are induced by physical/chemical interaction with analytes molecules (gas capacitors) | [15] |
Gravimetric | Changes of the vibration resonant frequency in an electromechanical oscillator are induced by the mass of adsorbed analytes (e.g., surface acoustic wave, micro/nano cantilevers) | [16] |
Thermal | Changes of thermal conductivity are induced by physical/chemical interaction with analytes molecules (e.g., MEMS) | [17] |
Optical | Changes of optical properties (absorption, fluorescence, reflection, refractive index, interferometry, optical path length, surface plasmon effects) are induced by physical/chemical interaction with analytes molecules (e.g., Fabry–Perot sensors; absorptive, reflective, and fluorescence-based sensors) | [18,19,20] |
Magnetic | Changes of magnetic properties (magnetization, spin orientation) are induced by physical/chemical interaction with analytes molecules (e.g., Hall effect-based magnetic sensors, Kerr effect-based magnetic sensors, magnetostatic surface spin wave oscillator MSSW) | [21] |
Memristor | Change of memristance in sensitive layer are induced by physical/chemical interaction with analytes molecules (e.g., gasistor) | [22] |
Material | Morphology | Alcohol | Sensitivity | Sensing Range | Response Time | Recovery Time | Refs. |
---|---|---|---|---|---|---|---|
MOSs | |||||||
Bi2WO6 | Silkworm pupae-like cages | Isopropanol | Rair/Rgas 3.8 (500 ppm) | 10–500 ppm | 18 s | 117 s | [25] |
AAO | Nanoporous | Ethanol | (Rgas − Rair) × 100/Rair 61.5% (100 ppm) | 100–1000 ppm | - | - | [27] |
ZnO | Nanobristles | Ethanol | Rair/Rgas 464 (100 ppm) | 50–150 ppm | 20 s | 12 s | [28] |
TiO2 | Flower-like microstructures | Ethanol | Rgas/Rair 2.25 (100 ppm) | 10–500 ppm | - | - | [29] |
NiO/SnO2 | Nanoparticles | Ethanol | Rair/Rgas 140 (100 ppm) | 1–150 ppm | 23 s | 13 s | [31] |
ZnO/NiO | Nano-worm | Ethanol | (Rair − Rgas) × 100/Rair 32.48% (250 ppm) | 250–1500 ppm | 2.7 s | 3.6 s | [32] |
ZnO/GaN | Flower-like | Ethanol | Rair/Rgas 26.9 (50 ppm) | 0.1–50 ppm | 12 s | 9 s | [33] |
NiO/CeO2 | Nanoparticles | Isopropanol | Rair/Rgas 1570 (100 ppm) | 1–100 ppm | 15 s | 19 s | [34] |
α-Fe2O3/Ag | Nanoparticles | Ethanol | (Rgas − Rair)/Rair 4.5 (35 mg L−1) | 2–35 mg L−1 | 17 s | 33 s | [35] |
TiO2 | Nanotubes/nanoparticles | Ethanol | (Rair − Rgas) × 100/Rair 57.0% (100 ppm) | 1–100 ppm | 30 s | 16 s | [36] |
F-doped SnO2 | Hollow nanofibers | Ethanol | Rair/Rgas 5.53 (100 ppm) | 10–100 ppm | 85 s | 145 s | [37] |
Ce-doped LaCoO3 | Nanoparticles | Ethanol | Zgas/Zair 231 30% | 10–40% | 16 s | 8 s | [38] |
ZnO | Porous fractals | Ethanol | Igas/Iair − 1 4.3 (1 ppm) | 0.01–1 ppm | 11 min | 12 min | [42] |
ZnO oxygen vacant | Porous fractals | Ethanol | Igas/Iair − 1 10.41 (1 ppm) | 0.01–1 ppm | 300 s | 360 s | [42] |
APTES-WO3−x | Nanowires | Ethanol | Rair/Rgas 2.0 (10 ppm) | 10–80 ppm | 2.8 min | - | [43] |
CuO/C | Nanoparticles/ nanosheets | Ethanol | (Rgas − Rair) × 100/Rair 3500% (3400 ppm) | 170–3400 ppm | 105 s | 18 s | [52] |
SnO2 | Nanocubes | Butanol | (Rgas − Rair) × 100/Rair 175% (100 ppm) | 1–500 ppm | 184 s | 183 s | [53] |
Au/SnO2 | Nanocubes | Butanol | (Rgas − Rair) × 100/Rair 240% (100 ppm) | 0.25–500 ppm | 290 s | 450 s | [54] |
Fe2O3/rGO | Nanocubes | Butanol | (Rair − Rgas) × 100/Rair 171% (100 ppm) | 10–100 ppm | 53 s | 42 s | [55] |
SnS/TiO2 | Nanowires | Methanol | Rair/Rgas 85.2 (1 ppm) | 0.250–5 ppm | 1.2 s | 1.2 s | [127] |
IGZO | Film | Isopropanol | Rgas/Rair 55.15 (50 ppm) | 10–50 ppm | 105 s | 543 s | [128] |
SnO2 | Film | Isopropanol | Rgas/Rair 2.02 (30 ppm) | 10–30 ppm | 4 s | 6 s | [129] |
MOFs | |||||||
SnS/ZIF-8 | Flower like | Methanol | Gair/Ggas − 1 68.65 (10 ppm) | 1–10 ppm | 8 s | 30 s | [48] |
ZIF-8& Ag@SiNWs | Nanosphere/Nanowires | Ethanol | Rair/Rgas 3.0 (10 ppm) | 0.125–50 ppm | 5.5 s | 45 s | [49] |
Ni2[CuPc(NH)8]-OTMS | Thin film | Methanol | (Igas − Iair) × 100/Iair 3.22% (400 ppm) | 10–500 ppm | 36 s | 13 s | [51] |
2D materials | |||||||
rGO | Nanosheets | Ethanol | Igas/Iair 100 (25 ppm) | 25–150 ppm | 2 s | 17 s | [57] |
GONRs | Nanoribbons | Ethanol | (Rgas − Rair) × 100/Rair 4.4% (100 ppm) | 100–680 ppm | - | - | [58] |
SnO2/rGO | Nanoparticles/nanosheets | Ethanol | Rair/Rgas 12.0 (145 ppm) | 29–145 ppm | 123 s | 128 s | [60] |
SiO2/GO | Nanoparticles | Ethanol | (Ggas − Gair)/Gair 9.5 (50 ppm) | 10–50 ppm | - | - | [61] |
MoO2-Ni-graphene | Hierarchical structure | Ethanol | Rgas/Rair 105 (1000 ppm) | 15–1000 ppm | - | - | [62] |
CNTs/Co3O4@rGO | Mesopours structure | Ethanol | (Rgas − Rair) × 100/Rair 1.36% (50 ppm) | 10–150 ppm | - | - | [63] |
Graphene-Cu BTC | Sheets/nanoparticles | Methanol | (Rgas − Rair)/Rair 0.15 (22.6 ppm) | 2.82–22.6 ppm | - | - | [64] |
Graphene-based Ink | Nanosheets in fractal architecture | Ethanol | (Rgas − Rair) × 100/Rair 12% (30 ppm) | 5–100 ppm | 6 s | 36 s | [65] |
Exfoliated graphene and rGO | Nanoflakes | Methanol Ethanol Isopropanol | (Zgas − Zair)/Zair 0.9 (80 ppm) 2.5 (80 ppm) 1.2 (80 ppm) | 10–80 ppm | - | - | [66] |
g-C3N4/GNPs | Nanosheets/nanoplatelets | Ethanol | (Rgas − Rair) × 100/Rair 125% (10 ppm) | 1–10 ppm | - | - | [69] |
Zn-Nitrogenated graphene | Nanosheets | Ethanol | (Rgas − Rair)/Rair 0.25 (1500 ppm) | 50–1500 ppm | 102 s | 550 s | [70] |
g-C3N4/Ag2ZrO3 | Nanosheet/nanoparticles | Ethanol | (Rair − Rgas) × 100/Rair 53.1% (50 ppm) | 1–100 ppm | - | - | [73] |
WS2/WO3 | Nanosheets/nanoparticles | Ethanol | (Rgas − Rair) × 100/Rair 75.50% (10 ppm) | 0.001–50 ppm | 54 s | 26 s | [75] |
MoS2/Ag | Nanorods/nanoparticles | Methanol | (Rair − Rgas) × 100/Rair 21.6% (100 ppm) | 30–1500 ppm | 240 s | 1100 s | [77] |
MoS2/CeO2 | Nanoflowers/nanoparticles | Ethanol | Rair/Rgas 5.5 (30 ppm) | 1–50 ppm | 7 s | 5 s | [78] |
HfS2 | Flakes | Methanol | (Igas − Iair)/Iair 1.29 500 ppm | 100–500 ppm | 12 s | 24 s | [79] |
SnS | Flower like | Ethanol | Rgas/Rair 1.13 (0.5 ppm) | 0.5–200 ppm | 2 s | 3 s | [82] |
SnS/SnS2 | Flower like | Methanol | Rgas/Rair 14.85 (25 ppm) | 0.1–25 ppm | 8 s | - | [83] |
SnS/rGO | Nanosheets | Methanol | Rgas/Rair 5.2 (12 ppm) | 0.25–20 ppm | 6 s | 18 s | [84] |
SnS | Nanoflakes | Methanol | Rgas/Rair 3.81 (5 ppm) | 0.3–10 ppm | - | - | [85] |
Cubic/orthorhombic SnS | Spherical | Ethanol | (Rgas − Rair) × 100/Rair 241% (10 ppm) | 0.5–10 ppm | 6 s | 9 s | [87] |
SnS sulfur vacant | Flower-like | Methanol | (Rgas − Rair) × 100/Rair 61.2% (0.5 ppm) | 0.5–20 ppm | 3 s | 7 s | [88] |
Zn-doped SnS | Flower-like | Methanol | (Rgas − Rair) × 100/Rair 62% (1 ppm) | 0.1–10 ppm | 5 s | 5 s | [89] |
Ag-doped SnS | Flower-like | Ethanol | (Rgas − Rair) × 100/Rair 58% (10 ppm) | 1–10 ppm | 19 s | 36 s | [90] |
Ag-functionalized SnS | Flower-like | Ethanol | (Rgas − Rair) × 100/Rair 73% (10 ppm) | 1–10 ppm | 16 s | 53 s | [90] |
PbS/SnS2 | Nanoparticles | Ethanol | (Rgas − Rair) × 100/Rair 45.64% (60 ppm) | 60–1600 ppm | 104 s | 84 s | [91] |
Au-functionalized PbS/SnS | Nanoparticles | Ethanol | (Rgas − Rair) × 100/Rair 55% (60 ppm) | 60–1600 ppm | 40 s | 65 s | [92] |
Ti3C2Tx | Flakes | Ethanol | (Rgas − Rair) × 100/Rair 0.1–0.2% | 100 ppm | - | - | [98] |
Ti3C2Tx | Flakes | Ethanol | (Rgas − Rair) × 100/Rair 9.995% | 1000 ppm | - | - | [99] |
Ti3C2Tx/WS2 | Nanoflakes/nanosheets | Ethanol | (Rgas − Rair)/Rair 9.2 (40 ppm) | 1–40 ppm | 9.7 s | 6.6 s | [100] |
TiO2-Ti3C2Tx/g-C3N4 | Flakes | Ethanol | (Rgas − Rair) × 100/Rair 91% (10 ppm) | 10–600 ppm | - | - | [101] |
TiO2/TiC | Nanoparticles/nanosheets | Ethanol | (Rgas − Rair) × 100/Rair 32% (10 ppm) | 0.01–60 ppm | 2.0 s | 2.2 s | [102] |
In2O3/Ti3C2Tx | Nanocubes/nanosheets | Methanol | (Rair − Rgas) × 100/Rair 29.6% (5 ppm) | 5–100 ppm | 6.5 s | 3.5 s | [103] |
MoO3/TiO2/Ti3C2Tx | Nanoparticles/nanosheets | Isopropanol | (Rgas − Rair) × 100/Rair 245% (50 ppm) | 1–100 ppm | 100 s | 40 s | [104] |
MoO2/MoO3/Ti3C2Tx | Nanosheets | Ethanol | Rair/Rgas 2.07 (5 ppm) | 5–200 ppm | 46 s | 276 s | [105] |
Polymers | |||||||
Poly(o-phenylenediamine) | Thin film | Ethanol | (Rair − Rgas) × 100/Rair 29% (130 ppm) | 87–328 ppm | 8 min | 18 min | [107] |
ox-SWCNH/SnO2/PVP | Thin film | Ethanol | (Rgas − Rair)/(RairΔC) 0.0022 | 2–50 mg/mL | 30 s | 50 s | [108] |
PANI/graphene | Micro/nano structures | Methanol | (Igas − Iair) × 100/Iair 61.5% (100 ppm) | 50–100 ppm | 60 s | - | [110] |
PANI/rGO | Nanoparticles | Methanol | (Igas − Iair) × 100/Iair 52.0% (200 ppm) | 50–200 ppm | 30 s | 100 s | [115] |
PANI/activated charcoal | Nanoparticles | Methanol | (Igas − Iair) × 100/Iair 42.54% (200 ppm) | 50–200 ppm | 25 s | 305 s | [116] |
PANI/N-doped GQDs | Nanofibrous morphology | Ethanol | (Rair − Rgas) × 100/Rair 0.66% (100 ppm) | 50–150 ppm | 80 s | 62 s | [118] |
α-Fe2O3/PANI/PbS | Thin film | Methanol | Rair/Rgas 1.55 (10 ppm) | 10–100 ppm | - | - | [119] |
PANI/V2O5 | Nanoparticles | Methanol | (Rgas − Rair) × 100/Rair 36.41% (60 ppm) | 40–60 ppm | 240 s | 260 s | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laera, A.M.; Penza, M. Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature. Chemosensors 2024, 12, 78. https://doi.org/10.3390/chemosensors12050078
Laera AM, Penza M. Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature. Chemosensors. 2024; 12(5):78. https://doi.org/10.3390/chemosensors12050078
Chicago/Turabian StyleLaera, Anna Maria, and Michele Penza. 2024. "Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature" Chemosensors 12, no. 5: 78. https://doi.org/10.3390/chemosensors12050078
APA StyleLaera, A. M., & Penza, M. (2024). Chemiresistive Materials for Alcohol Vapor Sensing at Room Temperature. Chemosensors, 12(5), 78. https://doi.org/10.3390/chemosensors12050078