error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,570)

Search Parameters:
Keywords = inflammatory regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 743 KB  
Review
Biological Roles of Melanin and Natural Product-Derived Approaches for Its Modulation
by Sunghyun Hong, Hanbin Lim and Do-Hee Kim
Int. J. Mol. Sci. 2026, 27(2), 653; https://doi.org/10.3390/ijms27020653 (registering DOI) - 8 Jan 2026
Abstract
Melanin produced in melanocytes contributes to photoprotection, oxidative stress reduction, immune regulation, and epidermal homeostasis, while its dysregulation underlies diverse pigmentary disorders. Natural products modulate melanogenesis by regulating tyrosinase activity, intracellular signaling pathways such as extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and cyclicAMP/protein [...] Read more.
Melanin produced in melanocytes contributes to photoprotection, oxidative stress reduction, immune regulation, and epidermal homeostasis, while its dysregulation underlies diverse pigmentary disorders. Natural products modulate melanogenesis by regulating tyrosinase activity, intracellular signaling pathways such as extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and cyclicAMP/protein kinase A/cAMP response element-binding protein (cAMP/PKA/CREB), and cellular redox balance. Anti-melanogenic effects have been reported for various fruit-derived phytochemicals, ginseng-based metabolites, and plant polyphenols, which act through direct enzymatic inhibition, suppression of melanoenic signaling, modulation of melanosome dynamics, and antioxidant or anti-inflammatory activities. Advances in delivery systems, including nano- and microencapsulation platforms, further enhance the stability and topical bioavailability of these compounds. In contrast, certain methoxylated flavonoids and phenolic constituents can stimulate pigmentation by sustaining melanogenic signaling and promoting microphthalmia-associated transcription factor (MITF)-driven transcription, emphasizing the context-dependent and bidirectional influence of natural substances on pigmentation outcomes. Collectively, these findings highlight the therapeutic potential of natural product-based modulators of melanogenesis while underscoring the need for mechanistic clarification, safety evaluation, and translational studies to ensure effective and controlled pigmentation management. This review summarizes the biological functions of melanin and examines natural strategies for regulating pigmentation. Full article
(This article belongs to the Special Issue Molecular Mechanisms for Skin Protection and Aging)
24 pages, 2594 KB  
Review
Molecular Mechanisms Underlying Atherosclerosis and Current Advances in Targeted Therapeutics
by Bo Zhu
Int. J. Mol. Sci. 2026, 27(2), 634; https://doi.org/10.3390/ijms27020634 - 8 Jan 2026
Abstract
Atherosclerosis is a chronic, multifactorial vascular disease and the leading global cause of cardiovascular morbidity. Its development reflects interconnected disturbances in lipid metabolism, endothelial function, inflammation, smooth muscle cell (SMC) phenotypic switching, and extracellular matrix remodeling. Genetic predisposition, including monogenic disorders such as [...] Read more.
Atherosclerosis is a chronic, multifactorial vascular disease and the leading global cause of cardiovascular morbidity. Its development reflects interconnected disturbances in lipid metabolism, endothelial function, inflammation, smooth muscle cell (SMC) phenotypic switching, and extracellular matrix remodeling. Genetic predisposition, including monogenic disorders such as familial hypercholesterolemia and polygenic risk variants, modulates disease susceptibility by altering lipid homeostasis as well as inflammatory and thrombotic pathways. Epigenetic regulators and noncoding RNAs, such as histone modifications, microRNAs, and long noncoding RNAs, further shape gene expression and link environmental cues to vascular pathology. Endothelial injury promotes lipoprotein retention and oxidation, triggering monocyte recruitment and macrophage-driven foam cell formation, cytokine secretion, and necrotic core development. Persistent inflammation, macrophage heterogeneity, and SMC plasticity collectively drive plaque growth and destabilization. Emerging insights into immune cell metabolism, intracellular signaling networks, and novel regulatory RNAs are expanding therapeutic possibilities beyond lipid-lowering. Current and evolving treatments include statins, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, anti-inflammatory agents targeting interleukin-1 beta (IL-1β) or NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3), and advanced approaches such as gene editing, siRNA, and nanoparticle-based delivery. Integrating multi-omics, biomarker-guided therapy, and precision medicine promises improved risk stratification and next-generation targeted interventions. This review summarizes recent molecular advances and highlights translational opportunities for enhancing atherosclerosis prevention and treatment. Full article
(This article belongs to the Special Issue Molecular Insights and Therapeutic Advances in Atherosclerosis)
Show Figures

Figure 1

8 pages, 647 KB  
Case Report
Description of a Large Family with Periodic Fever Carrying a Variant in RXFP1 Gene: A Possible Novel Modulator of Inflammation in Autoinflammatory Diseases
by Marianna Buttarelli, Giulia Rapari, Melania Riccio, Raffaele Manna, Donato Rigante and Eugenio Sangiorgi
Int. J. Mol. Sci. 2026, 27(2), 638; https://doi.org/10.3390/ijms27020638 - 8 Jan 2026
Abstract
Autoinflammatory diseases involve recurrent systemic inflammation caused by dysregulated innate immunity, arising from genetic or multifactorial mechanisms, as seen in periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome. About 10% of PFAPA patients show autosomal dominant inheritance. We describe a three-generation family [...] Read more.
Autoinflammatory diseases involve recurrent systemic inflammation caused by dysregulated innate immunity, arising from genetic or multifactorial mechanisms, as seen in periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome. About 10% of PFAPA patients show autosomal dominant inheritance. We describe a three-generation family with a PFAPA-like recurrent fever syndrome displaying clear autosomal dominant transmission. All affected individuals tested negative on a diagnostic panel of 13 known autoinflammatory genes. Whole-exome sequencing was performed in two distantly related affected members, followed by variant filtering, segregation analysis, and phenotype-based prioritization. A single heterozygous missense variant in RXFP1, c.154G>A p.(Asp52Asn), co-segregated with disease in all affected relatives. This variant is extremely rare in population databases, absent from ClinVar, present in COSMIC, and predicted as damaging by REVEL and CADD. RXFP1, not previously implicated in autoinflammatory or innate immune disorders, encodes the relaxin family peptide receptor 1, a G protein–coupled receptor involved in extracellular matrix regulation, anti-fibrotic pathways, and modulation of inflammatory cytokine production. Protein network analysis showed interactions with RLXN1-3, inflammatory mediators, PTGDR, ADORA2B, and C1QTNF8, supporting an immunomodulatory function. This is the first report linking RXFP1 variation to a hereditary recurrent fever syndrome, identifying relaxin signalling as a potential immune regulatory pathway. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3513 KB  
Communication
Cnidium monnieri Polysaccharides Exhibit Inhibitory Effect on Airborne Transmission of Influenza A Virus
by Heng Wang, Yifei Jin, Yanrui Li, Yan Wang, Yixin Zhao, Shuang Cheng, Zhenyue Li, Mengxi Yan, Zitong Yang, Xiaolong Chen, Yan Zhang, Zhixin Yang, Zhongyi Wang, Kun Liu and Ligong Chen
Viruses 2026, 18(1), 86; https://doi.org/10.3390/v18010086 - 8 Jan 2026
Abstract
Influenza A virus (IAV) continues to present a threat to public health, highlighting the need for safe and multi-target antivirals. In this study, anti-influenza activity, airborne transmission blocking capacity, and immunomodulatory effects of Cnidium monnieri polysaccharides (CMP) were evaluated. Cytotoxicity in A549 cells [...] Read more.
Influenza A virus (IAV) continues to present a threat to public health, highlighting the need for safe and multi-target antivirals. In this study, anti-influenza activity, airborne transmission blocking capacity, and immunomodulatory effects of Cnidium monnieri polysaccharides (CMP) were evaluated. Cytotoxicity in A549 cells was assessed by CCK-8 (CC50 = 8.49 mg/mL), antiviral efficacy against A/California/04/2009 (CA04) by dose–response (EC50 = 1.63 mg/mL), and the stage of action by time-of-addition assays (pre-, co-, post-treatment). A guinea pig model infected with CA04 was used for testing the effect of pre-exposure CMP on transmission, with readouts including nasal-wash titers, seroconversion, lung index, and tissue titers (EID50). RT-qPCR was employed to quantify the mRNA expression levels of proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, in lung tissue, while Western blot analysis was performed to assess the expression and phosphorylation status of key proteins involved in the NF-κB signaling pathway. CMP suppressed viral replication in vitro within non-cytotoxic ranges, and pre-treatment—rather than co- or post-treatment—significantly reduced titers and cytopathic effect, consistent with effects at pre-entry steps and/or host priming. In vivo, pre-exposure CMP lowered nasal shedding, reduced aerosol transmission (3/6 seroconverted vs. 6/6 controls), decreased lung indices, and diminished tissue viral loads; IAV was undetectable in trachea at 7 days post-infection in pre-exposed animals, and nasal-turbinate titers declined relative to infection controls. Moreover, during in vivo treatment in mice, CMP significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) in lung tissue. This effect was mechanistically associated with CMP-mediated regulation of the NF-κB signaling pathway, leading to attenuation of inflammatory responses. These data indicate that CMP combines a favorable in vitro safety and efficacy profile with inhibition of airborne spread in vivo, supporting further mechanistic, pharmacokinetic, and fractionation studies toward translational development. Full article
Show Figures

Figure 1

25 pages, 16856 KB  
Article
Bupleuri Radix Polysaccharides Alleviate MASLD by Regulating Muribaculaceae-Derived SCFAs in the Gut–Liver Axis
by Yang Yang, Hong Wang, Yiqing Gu, Ruiyu Wu, Wenqing Qin, Ranyun Chen, Guifang Fan, Xiaoyong Xue, Jianhang Lan, Zixi Huang, Qi Han and Runping Liu
Int. J. Mol. Sci. 2026, 27(2), 637; https://doi.org/10.3390/ijms27020637 - 8 Jan 2026
Abstract
Bupleuri radix has demonstrated therapeutic potential in treating liver disorders, and polysaccharides are one of its main bioactive components; however, the effects of Bupleuri radix polysaccharides (BRP) on metabolic dysfunction-associated steatotic liver disease (MASLD) remain unclear. This study aimed to identify the BRP [...] Read more.
Bupleuri radix has demonstrated therapeutic potential in treating liver disorders, and polysaccharides are one of its main bioactive components; however, the effects of Bupleuri radix polysaccharides (BRP) on metabolic dysfunction-associated steatotic liver disease (MASLD) remain unclear. This study aimed to identify the BRP fractions with anti-MASLD activity and elucidate their underlying mechanisms. We prepared BRP and characterized its physicochemical properties. It markedly alleviated liver injury and restored intestinal barrier function in MASLD. The correlation analysis between transcriptomics and targeted metabolomics showed that BRP restored intestinal acetic acid and propionic acid, with acetic acid activating AMPK and propionic acid promoting cholesterol efflux and metabolism in the liver, thereby reducing lipid accumulation in hepatocytes. Mechanistically, 16S RNA sequencing and diversity analysis indicated that BRP enriched short chain fatty acids (SCFAs)-producing bacteria, such as the genus Muribaculaceae, and inhibited pro-inflammatory microbiota. Interestingly, Paramuribaculum intestinale (P. intestinale), a representative species in the genus Muribaculaceae, synergistically enhanced BRP in improving liver and colonic mucosal damage in MASLD. In conclusion, our findings revealed that BRP improved MASLD by regulating Muribaculaceae-derived SCFAs in the gut–liver axis and could be used in combination with probiotics as a novel therapeutic strategy for MASLD. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

31 pages, 3998 KB  
Review
Obesity-Related Oxidative Stress and Antioxidant Properties of Natural Compounds in the Enteric Nervous System: A Literature Overview
by Vincenzo Bellitto, Daniele Tomassoni, Ilenia Martinelli, Giulio Nittari and Seyed Khosrow Tayebati
Antioxidants 2026, 15(1), 83; https://doi.org/10.3390/antiox15010083 - 8 Jan 2026
Abstract
The enteric nervous system (ENS) constitutes a highly organized and intricate neuronal network comprising two principal plexuses: myenteric and submucosal. These plexuses consist of neurons and enteric glial cells (EGCs). Neurons ensure innervation throughout the intestinal wall, whereas EGCs, distributed within the mucosa, [...] Read more.
The enteric nervous system (ENS) constitutes a highly organized and intricate neuronal network comprising two principal plexuses: myenteric and submucosal. These plexuses consist of neurons and enteric glial cells (EGCs). Neurons ensure innervation throughout the intestinal wall, whereas EGCs, distributed within the mucosa, contribute to epithelial barrier integrity and modulation of local inflammatory responses. The ENS orchestrates essential gastrointestinal functions, including motility, secretion, absorption, vascular regulation, and immune interactions with gut microbiota. Under physiological conditions, intestinal homeostasis involves moderate generation of reactive oxygen species (ROS) through endogenous processes such as mitochondrial oxidative phosphorylation. Cellular antioxidant systems maintain redox equilibrium; however, excessive ROS production induces oxidative stress, promoting EGCs activation toward a reactive phenotype characterized by pro-inflammatory cytokine release. This disrupts neuron–glia communication, predisposing to enteric neuroinflammation and neurodegeneration. Obesity, associated with hyperglycemia, hyperlipidemia, and micronutrient deficiencies, enhances ROS generation and inflammatory cascades, thereby impairing ENS integrity. Nevertheless, non-pharmacological strategies—including synthetic and natural antioxidants, bioactive dietary compounds, probiotics, and prebiotics—attenuate oxidative and inflammatory damage. This review summarizes preclinical and clinical evidence elucidating the interplay among the ENS, obesity-induced oxidative stress, inflammation, and the modulatory effects of antioxidant interventions. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

21 pages, 3001 KB  
Review
The Role of Zinc Against Bacterial Infections in Neonates, Children, and Adults: A Scoping Review from the Available Evidence of Randomized Controlled Trials About Zinc Supplementation to New Research Opportunities
by Domenico Umberto De Rose, Nicola Mirotta, Andrea Dotta, Guglielmo Salvatori, Maria Paola Ronchetti, Laura Campogiani, Francesca Ceccherini-Silberstein and Marco Iannetta
Antibiotics 2026, 15(1), 66; https://doi.org/10.3390/antibiotics15010066 - 8 Jan 2026
Abstract
(1) Background: Zinc is an essential micronutrient involved in immune regulation, epithelial barrier integrity, and the host response to bacterial infections. However, the clinical benefits of zinc supplementation across different age groups remain uncertain, with heterogeneous findings and variable dosing strategies reported [...] Read more.
(1) Background: Zinc is an essential micronutrient involved in immune regulation, epithelial barrier integrity, and the host response to bacterial infections. However, the clinical benefits of zinc supplementation across different age groups remain uncertain, with heterogeneous findings and variable dosing strategies reported in the literature. (2) Objectives: To map and summarize randomized controlled trials (RCTs) evaluating zinc supplementation (either as treatment or prophylaxis) for bacterial infection outcomes in neonates, children, and adults, and to identify gaps requiring further research, including the use of zinc-based nanoparticles. (3) Eligibility Criteria: We included English-language RCTs that evaluated zinc supplementation and reported clinical outcomes related to bacterial infections. Observational studies, trials without infection-related outcomes, and studies not involving human participants were excluded. (4) Sources of Evidence: A MEDLINE (PubMed) search was conducted from 2000 to 1 November 2025 using predefined keywords related to zinc supplementation, neonates, children, adults, and bacterial infections. Reference lists of eligible articles were screened to identify additional studies. (5) Charting Methods: Data were charted for each included study, including population characteristics, zinc dosing and regimen, type of supplementation (therapeutic or prophylactic), main infection-related outcomes, and key findings. Data charting was performed independently and verified within the research team. (6) Results: A total of 51 RCTs were included: 10 in neonates, 32 in children, and 9 in adults. In neonates, therapeutic zinc supplementation as an adjunct to antibiotics showed heterogeneous results, with some studies reporting reductions in morbidity, inflammatory markers or mortality, while others found no significant differences in clinical outcomes. In children, zinc supplementation consistently reduced the duration and severity of diarrheal episodes and, in several trials, improved the resolution of respiratory infections. In adults, the evidence was limited but suggested potential benefits in selected populations, such as burn patients or those with zinc deficiency or immunologic dysfunction. Variability in zinc dosage, treatment duration, and outcome definitions limits direct comparison across studies. (7) Conclusions: Zinc supplementation appears to provide benefits in neonates and children, whereas evidence in adults remains mixed and inconclusive. Standardized, well-powered RCTs are needed to define optimal dosing strategies, identify populations most likely to benefit, and clarify the mechanisms underlying zinc’s anti-infective effects. Future research should consider the use of zinc oxide nanoparticles (ZnO-NPs) demonstrated broad-spectrum antimicrobial activity and potential synergy with antibiotics, although clinical data remain still limited. Full article
Show Figures

Figure 1

16 pages, 3769 KB  
Article
Sex-Specific Downregulation of CDK5RAP3 Exacerbates ER Stress-Mediated Inflammation and Apoptosis in CCl4-Induced Acute Liver Injury
by Jian Ruan, Qianyi Dong, Fangling Xu, Yufan Jin, Yuhong Yang, Jun Li and Yafei Cai
Genes 2026, 17(1), 73; https://doi.org/10.3390/genes17010073 - 8 Jan 2026
Abstract
Background/Objectives: Sex-specific differences in the mechanisms of acute liver injury remain poorly understood. CDK5 regulatory subunit-associated protein 3 (CDK5RAP3) is crucial for liver development and endoplasmic reticulum (ER) homeostasis. This study aimed to investigate sex-dependent changes in CDK5RAP3 expression in a carbon tetrachloride [...] Read more.
Background/Objectives: Sex-specific differences in the mechanisms of acute liver injury remain poorly understood. CDK5 regulatory subunit-associated protein 3 (CDK5RAP3) is crucial for liver development and endoplasmic reticulum (ER) homeostasis. This study aimed to investigate sex-dependent changes in CDK5RAP3 expression in a carbon tetrachloride (CCl4)-induced acute liver injury model and to explore the mechanisms underlying differential susceptibility between males and females. Methods: Acute liver injury was induced in male and female mice by CCl4 administration. Liver injury was evaluated by serum biochemical parameters and histopathological analysis. CDK5RAP3 expression, inflammatory cytokines, and ER stress-related apoptotic markers were assessed. Hepatocyte apoptosis was examined by TUNEL staining. In addition, CDK5RAP3 was conditionally deleted in mouse embryonic fibroblasts (MEFs) using 4-hydroxytamoxifen to assess its direct role in regulating inflammatory and apoptotic responses in vitro. Results: CCl4 exposure caused liver injury in both sexes, with male mice showing more severe biochemical and histological damage. CDK5RAP3 expression was significantly reduced after CCl4 treatment, particularly in males. Inflammatory mediators and ER stress-associated apoptotic markers were upregulated, accompanied by increased hepatocyte apoptosis. A similar enhancement of inflammatory and apoptotic signaling was observed in CDK5RAP3-deficient MEFs. Conclusions: Downregulation of CDK5RAP3 is associated with ER stress, inflammation, and apoptosis, contributing to increased susceptibility of male mice to acute liver injury. These findings provide insight into sex-specific mechanisms of hepatic injury and highlight CDK5RAP3 as a potential therapeutic target. Full article
(This article belongs to the Section Toxicogenomics)
Show Figures

Figure 1

18 pages, 5508 KB  
Article
Opn3 Drives Blue-Light-Induced Reduction in Lipid Droplets and Antiviral Defense
by Qifan Wu, Huiping Liu, Hongcui Liang, Xinyi Jiang, Yingqiao Qin, Shaomei Liang, Jingjing Wang and Kunpeng Liu
Biomolecules 2026, 16(1), 109; https://doi.org/10.3390/biom16010109 - 8 Jan 2026
Abstract
Abnormal lipid metabolism is a key feature of many diseases. Therefore, investigating its underlying mechanisms is of great importance. Recently, blue light has shown promise as a drug-free way to influence energy metabolism, relying on the light-sensitive protein Opsin 3 (Opn3). This study [...] Read more.
Abnormal lipid metabolism is a key feature of many diseases. Therefore, investigating its underlying mechanisms is of great importance. Recently, blue light has shown promise as a drug-free way to influence energy metabolism, relying on the light-sensitive protein Opsin 3 (Opn3). This study aimed to investigate the effects of blue light irradiation on lipid droplet degradation in cells and its molecular mechanism, while also evaluating its potential antiviral effects. The results demonstrate that exposure to 470–480 nm blue light significantly reduced oleic-acid-induced intracellular lipid droplet accumulation and decreased triglyceride and total cholesterol levels, an effect dependent on the Opn3. It was found that blue light affects the Pparα signaling pathway through Opn3, and, at the same time, blue light and Opn3 promote autophagy mediated by p62 protein, thereby cooperatively regulating lipid droplet degradation. In Opn3 knockout cells, blue-light-induced lipid droplet degradation, nuclear accumulation of Pparα, and autophagic effects were all suppressed. Additionally, the study unexpectedly observed that blue light, via Opn3, significantly suppressed the replication of VSV, H1N1 and EMCV and alleviated virus-induced cell death and inflammatory responses. This study reveals the critical role of the blue light–Opn3-Pparα/p62 axis in regulating lipid droplet degradation in hepatocytes and identifies a novel antiviral function of Opn3-mediated blue light exposure. These findings provide a new theoretical basis and potential targets for innovative therapeutic strategies against metabolic diseases and viral infections. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

24 pages, 3247 KB  
Article
Analysis of Roux-en-Y Gastric Bypass and High-Fat Feeding Reveals Hepatic Transcriptome Reprogramming: Ironing out the Details
by Matthew Stevenson, Munichandra Babu Tirumalasetty, Ankita Srivastava, Qing Miao, Collin Brathwaite and Louis Ragolia
J. Clin. Med. 2026, 15(2), 479; https://doi.org/10.3390/jcm15020479 - 7 Jan 2026
Abstract
Background/Objectives: Roux-en-Y gastric bypass (RYGB) improves obesity-related metabolic disorders, yet post-operative dietary composition critically shapes outcomes. This study explored how RYGB and high-fat diet (HFD) differentially regulate hepatic transcriptional programs. Methods: We performed RNA-seq on liver tissues from diet-induced obese C57BL/6 male mice [...] Read more.
Background/Objectives: Roux-en-Y gastric bypass (RYGB) improves obesity-related metabolic disorders, yet post-operative dietary composition critically shapes outcomes. This study explored how RYGB and high-fat diet (HFD) differentially regulate hepatic transcriptional programs. Methods: We performed RNA-seq on liver tissues from diet-induced obese C57BL/6 male mice 8 weeks post-RYGB or sham surgery, maintained on chow or HFD. Differentially expressed genes (DEGs) were identified using DESeq2. Gene sets were categorized as RYGB-induced (commonly regulated by surgery across diets), Reversal (RYGB-driven counter-regulation of obesity-induced changes), and HFD-induced (commonly regulated by diet). A subset of RYGB-specific HFD-induced genes was derived by excluding HFD-induced genes from the RYGB Chow vs. RYGB HFD contrast. Pathway enrichment was conducted using STRING. Results: RYGB induced 365 DEGs, including pathways related to extracellular remodeling and reduced mitochondrial/antioxidant activity. Among these, 119 Reversal genes countered obesity-associated transcriptional patterns and accounted for ~27% of the RYGB-induced enrichment results. HFD regulated 860 DEGs, highlighting stress responses and translational repression. Lastly, a set of 426 RYGB-specific HFD-induced genes revealed persistent hepatic inflammation, coagulation, and iron dysregulation under HFD despite surgery. Conclusions: RYGB induces robust hepatic transcriptomic changes that attenuate obesity-driven dysregulation, including a coordinated reprogramming of iron-handling pathways. However, high dietary fat partially overrides these benefits, promoting inflammatory, metabolic stress, and iron-related stress. Optimizing post-operative diets and carefully managing micronutrient intake, especially iron, may enhance RYGB’s metabolic efficacy and long-term liver health. Full article
(This article belongs to the Special Issue Bariatric Surgery: Current Status and Emerging Clinical Trends)
Show Figures

Figure 1

16 pages, 2693 KB  
Article
Vitamin E Modulates Hepatic Extracellular Adenosine Signaling to Attenuate Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
by Mengting Shan, Magdeline E. Carrasco Apolinario, Tomoko Tokumaru, Kenshiro Shikano, Phurpa Phurpa, Ami Kato, Hitoshi Teranishi, Shinichiro Kume, Nobuyuki Shimizu, Tatsuki Kurokawa, Takatoshi Hikida, Toshikatsu Hanada, Yulong Li and Reiko Hanada
Int. J. Mol. Sci. 2026, 27(2), 614; https://doi.org/10.3390/ijms27020614 - 7 Jan 2026
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) involves early disturbances such as excessive lipid accumulation, sterile inflammation, and hepatocellular stress. The results of recent studies have highlighted extracellular ATP and its metabolite adenosine (Ado) as damage-associated molecular patterns (DAMPs) that drive inflammation, endoplasmic reticulum [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) involves early disturbances such as excessive lipid accumulation, sterile inflammation, and hepatocellular stress. The results of recent studies have highlighted extracellular ATP and its metabolite adenosine (Ado) as damage-associated molecular patterns (DAMPs) that drive inflammation, endoplasmic reticulum (ER) stress, and steatosis, contributing to MASLD progression. Although vitamin E is clinically used for its antioxidant and anti-inflammatory properties, it remains unclear whether its therapeutic effects involve modulation of DAMP-associated signaling. To address this gap, we used transgenic zebrafish expressing a liver-specific G-protein-coupled receptor activation-based adenosine sensor (GRABAdo). We found that a high-cholesterol diet markedly increased hepatic extracellular Ado levels, combined with inflammatory and ER stress-associated gene expression. Vitamin E significantly reduced extracellular Ado levels and hepatic lipid accumulation. Based on RNA sequencing results, vitamin E restored the expression of genes encoding calcium-handling proteins, including atp2a1 and atp1b1b. These genes encode components of the sarco/ER Ca2+-ATPase (SERCA) machinery, which is essential for maintaining ER Ca2+ homeostasis and preventing stress-induced hepatic injury. CDN1163-mediated SERCA activation phenocopied the protective effect of vitamin E, supporting a Ca2+-dependent mechanism. Together, these findings highlight extracellular Ado signaling and impaired SERCA-mediated Ca2+ regulation as early drivers of MASLD and demonstrate that vitamin E ameliorates steatosis by targeting both pathways. Full article
Show Figures

Figure 1

13 pages, 1712 KB  
Article
Endogenous Bioelectrical Modulation by REAC Metabolic Optimization-IBZ Modulates SIRT1, PPAR-γ, and Metabolic Signaling Pathways in Human Fibroblasts
by Sara Cruciani, Vania Fontani, Arianna Rinaldi, Salvatore Rinaldi and Margherita Maioli
Cells 2026, 15(2), 106; https://doi.org/10.3390/cells15020106 - 7 Jan 2026
Abstract
Fibroblasts play a fundamental role in maintaining tissue architecture, regulating repair processes, and adapting to metabolic and inflammatory stress. Increasing evidence indicates that endogenous bioelectrical states contribute to gene expression regulation and cellular homeostasis. In this study, we investigated the effects of Radio [...] Read more.
Fibroblasts play a fundamental role in maintaining tissue architecture, regulating repair processes, and adapting to metabolic and inflammatory stress. Increasing evidence indicates that endogenous bioelectrical states contribute to gene expression regulation and cellular homeostasis. In this study, we investigated the effects of Radio Electric Asymmetric Conveyer (REAC) Metabolic Optimization–Inside Blue Zone (MO-IBZ) treatment on key regulators of stress response and metabolic control in human foreskin fibroblasts (HFF-1). Cells were exposed to nine standardized REAC MO-IBZ sessions, and changes in gene and protein expression were evaluated. Quantitative RT-PCR revealed a significant downregulation of SIRT1 and an upregulation of PPAR-γ expression in treated cells compared with untreated controls. These findings indicate molecular changes involving stress-responsive and metabolic regulatory pathways; however, they should be interpreted primarily as transcriptional signatures, as no direct functional stress-response or metabolic assays were performed. Immunofluorescence analysis showed visually increased expression of mTOR, IGF-1 receptor, and cytochrome c in REAC-treated fibroblasts, supporting a qualitative indication of activation of pathways associated with anabolic signaling, mitochondrial function, and metabolic efficiency. Taken together, these findings indicate that REAC MO-IBZ induces a coordinated molecular profile compatible with changes in cellular metabolic regulatory capacity. Within the framework of current bioelectrical literature, these changes may plausibly reflect broader regulatory adaptations; however, the present work does not provide direct measurements of bioelectrical parameters, functional metabolic activity, or epigenetic regulation, and therefore such interpretations remain speculative. These results provide descriptive mechanistic evidence supporting further investigation of REAC-based bioelectrical modulation as a potential strategy to influence cellular pathways involved in metabolic balance and tissue repair, encouraging future studies incorporating direct bioelectrical, epigenetic, and functional analyses. Full article
Show Figures

Figure 1

24 pages, 6324 KB  
Article
MicroRNAs as Key Regulators in the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease: A Bioinformatics Analysis
by Claudriana Locatelli, Karine Luz, Sergio Fallone de Andrade, Emyr Hiago Bellaver, Rosana Claudio Silva Ogoshi, Ariana Centa, João Paulo Assolini, Gustavo Colombo Dal Pont and Tania Beatriz Creczynski-Pasa
Biomedicines 2026, 14(1), 120; https://doi.org/10.3390/biomedicines14010120 - 7 Jan 2026
Abstract
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is a highly prevalent hepatic condition closely linked to metabolic syndrome (MetS). Epigenetic regulators such as microRNAs (miRNAs) have emerged as critical modulators of the molecular pathways underlying MASLD [...] Read more.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is a highly prevalent hepatic condition closely linked to metabolic syndrome (MetS). Epigenetic regulators such as microRNAs (miRNAs) have emerged as critical modulators of the molecular pathways underlying MASLD pathogenesis, offering new perspectives for non-invasive diagnosis and targeted therapy. This study aimed to identify and characterize target genes and pathways regulated by two key hepatic miRNAs, namely miR-122 and miR-29a, through a comprehensive in silico bioinformatics approach, to better understand their functional roles in MASLD and MetS. Methods: Target genes of miR-122 and miR-29a were predicted using three databases (TargetScan, DIANA-microT-CDS, and miRWalk), and those identified by at least two databases were selected for downstream analyses. Functional enrichment was performed using Gene Ontology and KEGG pathway analysis. Gene networks and biological process maps were constructed using Metascape, clusterProfiler and Cytoscape. Results: miR-122 was found to negatively regulate genes involved in lipid metabolism, insulin signaling, and inflammatory pathways, including PPARGC1A, PPARA, LPL, TLR4, and HMGCR, contributing to insulin resistance and liver dysfunction. By contrast, miR-29a demonstrated potential hepatoprotective effects by targeting LEP, INSR, IL13, and IL18, enhancing insulin sensitivity and reducing fibrogenic activity. Enrichment analysis revealed strong associations with biological processes, such as STAT phosphorylation, lipid homeostasis, and inflammatory signaling, as well as associations with cellular components, including lipoproteins and plasma membranes. miR-122 and miR-29a exhibit opposing regulatory functions in MASLD pathogenesis. Whereas miR-122 is associated with disease progression, miR-29a acts protectively. These miRNAs may serve as promising biomarkers and therapeutic targets in MASLD and related metabolic conditions. Further validation through experimental and clinical studies is warranted. Full article
(This article belongs to the Special Issue Bioinformatics Analysis of RNA for Human Health and Disease)
Show Figures

Figure 1

15 pages, 1696 KB  
Article
Luteolin Inhibits Bovine Viral Diarrhea Virus Replication by Disrupting Viral Internalization and Replication and Interfering with the NF-κB/STAT3-NLRP3 Inflammasome Pathway
by Dongjie Cai, Qing Liu, Zifan Shen, Bin Tian, Jiabin Gao, Yulin Lin, Lanjing Ma, Ya Wang and Xiaoping Ma
Vet. Sci. 2026, 13(1), 57; https://doi.org/10.3390/vetsci13010057 - 7 Jan 2026
Abstract
Bovine viral diarrhea virus (BVDV) causes severe mucosal inflammation in cattle, and effective treatment options remain limited. Dysregulated activation of the NLRP3 inflammasome, driven by NF-κB and STAT3 signaling, may exacerbate disease pathogenesis, highlighting this axis as a potential therapeutic target. Although traditional [...] Read more.
Bovine viral diarrhea virus (BVDV) causes severe mucosal inflammation in cattle, and effective treatment options remain limited. Dysregulated activation of the NLRP3 inflammasome, driven by NF-κB and STAT3 signaling, may exacerbate disease pathogenesis, highlighting this axis as a potential therapeutic target. Although traditional Chinese medicine has shown promise in antiviral and anti-inflammatory applications, it remains unclear whether it can inhibit BVDV replication via the NF-κB/STAT3-NLRP3 pathway. The present study aimed to clarify the inhibitory effect of luteolin on bovine viral diarrhea virus (BVDV) replication, and to elucidate its underlying mechanisms from two perspectives: interference with viral internalization and replication processes, as well as regulation of the NF-κB/STAT3-NLRP3 inflammasome pathway. Collectively, this work intended to provide experimental evidence and theoretical support for the development of luteolin as a natural anti-BVDV agent. To this end, BVDV-infected MDBK cells were treated with gradient concentrations of luteolin, followed by quantification of viral load using qRT-PCR and Western blot assays. Meanwhile, the activation status of the NF-κB/STAT3-NLRP3 signaling pathway was evaluated via immunofluorescence staining and luciferase reporter gene assays. Our results demonstrate that luteolin exhibits potent dual antiviral activity against cytopathic BVDV-1m in MDBK (Madin-Darby Bovine Kidney) cells, effectively suppressing both viral replication and inflammatory responses. At non-cytotoxic concentrations, luteolin specifically inhibited the internalization and replication stages of the viral lifecycle, accompanied by reduced NS5B polymerase activity. Importantly, luteolin disrupted the NF-κB/STAT3-NLRP3 axis by suppressing phosphorylation of p65 (Ser536) and STAT3 (Ser727), downregulating NLRP3 and pro-caspase-1 expression, and inhibiting caspase-1 cleavage (p20) as well as maturation of IL-1β and IL-18. Consequently, it attenuated the overexpression of TNF-α and IL-8. To our knowledge, this is the first report of a single compound simultaneously targeting multiple stages of the BVDV lifecycle and counteracting NLRP3-mediated immunopathology, offering a strategic basis for developing flavonoid-based therapies against Flavivirus infections. Full article
Show Figures

Figure 1

12 pages, 8750 KB  
Article
NRF1 and NRF2 Expression in Preeclamptic Placentas: A Comparative Observational Study
by Şehmus Kaplan, Uğur Karabat, Muhyiddin Sancar, Fırat Aşır and Elif Ağaçayak
Life 2026, 16(1), 89; https://doi.org/10.3390/life16010089 - 7 Jan 2026
Abstract
Background: Preeclampsia (PE) is a hypertensive disorder of pregnancy associated with oxidative stress and mitochondrial dysfunction. NRF1 and NRF2 are transcription factors that regulate mitochondrial activity and antioxidant defense. This study investigated their expression patterns in placentas from preeclamptic and severe preeclamptic pregnancies [...] Read more.
Background: Preeclampsia (PE) is a hypertensive disorder of pregnancy associated with oxidative stress and mitochondrial dysfunction. NRF1 and NRF2 are transcription factors that regulate mitochondrial activity and antioxidant defense. This study investigated their expression patterns in placentas from preeclamptic and severe preeclamptic pregnancies by immunohistochemical and bioinformatical methods. Methods: Placentas from 40 healthy controls, 40 PE, and 40 sPE patients were analyzed by histological and immunohistochemical techniques. Protein–protein interaction networks for NRF1, NRF2, and PE-related proteins were constructed using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape software, followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis performed via ShinyGO, with significance set at false discovery rate (FDR) < 0.05. Results: NRF1 expression was significantly decreased in PE and sPE groups compared to controls, with notably negative staining in syncytial knots and fibrinoid areas. Conversely, NRF2 expression significantly increased, showing intense positivity in syncytiotrophoblasts, stromal cells, and vascular structures. Pathway analysis revealed that decreased NRF1 expression was associated with glutathione metabolism, hypoxia inducible factor-1 (HIF-1) signaling, and AMP-Activated Protein Kinase (AMPK) signaling pathways. Increased NRF2 expression was associated predominantly with inflammatory and immune response pathways, including AGE-RAGE signaling and pathogen–response pathways. Conclusions: Differential expressions of NRF1 and NRF2 in preeclamptic placentas reflect distinct yet interconnected responses to oxidative stress and inflammation. These transcription factors have potential clinical relevance as biomarkers for PE severity assessment and as targets for future therapeutic interventions. Full article
Show Figures

Figure 1

Back to TopTop