Cnidium monnieri Polysaccharides Exhibit Inhibitory Effect on Airborne Transmission of Influenza A Virus
Abstract
1. Introduction
2. Materials and Methods
2.1. Viruses and Cells
2.2. Maximum Non-Toxic Concentration in A549 Cells
2.3. In Vitro Antiviral Efficacy and EC50 Assay
2.4. Time-of-Addition (Drug-Timing) Assay
- (i)
- Pre-treatment (Pre Cell): Add CMP solution, 100 µL/well, and incubate at 37 °C, 5% CO2 for 2 h. The supernatant was removed, and cells were inoculated with diluted virus (100 TCID50; 100 µL/well) for 1 h at 37 °C. Inoculum was discarded and replaced with drug-free DMEM containing 2% FBS (DMEM–2% FBS), followed by incubation to 72 h.
- (ii)
- Co-treatment: CMP and virus inoculum were mixed 1:1 (50 µL + 50 µL) and added to cells for 1 h at 37 °C, 5% CO2. The mixture was then replaced with drug-free DMEM–2% FBS and incubated to 72 h.
- (iii)
- Post-treatment: Cells were first inoculated with virus (100 TCID50; 100 µL/well) for 1 h at 37 °C Remove the viral supernatant and cover with DMEM–2% FBS. After 2 h, remove the supernatant, DMEM–2% FBS containing CMP was added and cells were incubated to 72 h.
2.5. Airborne-Transmission Experiment
2.6. Hemagglutination-Inhibition (HI) Assay
2.7. Virus Tissue Distribution and Lung Index
2.8. Effects of CMP on Cytokine-Related mRNAs in Virus-Infected Mouse Lungs
2.9. Regulatory Effects of CMP on NF-κB p65 and p-NF-κB p65 Protein Expression in Mouse Lung Tissue
2.10. Statistical Analysis
3. Results
3.1. Cytotoxicity and Antiviral Efficacy of CMP
3.2. Time-of-Addition Assay
3.3. CMP Reduces Aerosol Transmissibility of Influenza Virus
3.4. CMP Lowers Seroconversion in the Aerosol-Exposed Group
3.5. CMP Decreases the Lung Index in Infected Guinea Pigs
3.6. CMP Decreases Viral Replication in the Nasal Turbinates
3.7. Effects of CMP on Cytokines in the Lungs of Infected Mice
3.8. The Regulatory Role of CMP in the NF-κB Signaling Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| IAV | Influenza A virus |
| CMP | Cnidium monnieri polysaccharides |
| HSV | Herpes simplex virus |
| HBV | Hepatitis B virus |
| HIV | Human immunodeficiency virus |
| DMEM | Dulbecco’s Modified Eagle Medium |
| FBS | Fetal Bovine Serum |
| CCK-8 | Cell Counting Kit-8 |
| CC50 | Median cytotoxic concentration |
| EC50 | Median effect concentration |
| EID50 | Median infective dose |
| TCID50 | Median tissue culture infectious dose |
| WHO | World Health Organization |
| SPF | Specific pathogen free |
| TCM | Traditional Chinese Medicines |
| HI | Hemagglutination inhibition |
References
- Neumann, G.; Kawaoka, Y. Transmission of influenza A viruses. Virology 2015, 479–480, 234–246. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Li, H.; Haerheng, A.; Marcelino, V.R.; Lu, M.; Lemey, P.; Tang, J.; Bi, Y.; Pettersson, J.H.; et al. Extensive cross-species transmission of pathogens and antibiotic resistance genes in mammals neglected by public health surveillance. Cell 2025, 188, 6591–6605. [Google Scholar] [CrossRef]
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Gong, Y.; Zhang, C.; Sun, J.; Wong, G.; Shi, W.; Liu, W.; Gao, G.F.; Bi, Y. Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges. Innovation 2022, 3, 100306. [Google Scholar] [CrossRef]
- Chang, Y.; Shan, Z.; Shi, W.; Li, Q.; Wang, Y.; Wang, B.; Wang, G.; Chen, H.; Jiang, L.; Li, C. KRT6A Restricts Influenza A Virus Replication by Inhibiting the Nuclear Import and Assembly of Viral Ribonucleoprotein Complex. Viruses 2025, 17, 671. [Google Scholar] [CrossRef]
- Meng, F.; Cheng, Z.; Feng, Z.; Zhang, Y.; Zhang, Y.; Wang, Y.; Zhai, Y.; Kuang, P.; Qu, R.; Chen, Y.; et al. H128N Substitution in the Sa Antigenic Site of HA1 Causes Antigenic Drift Between Eurasian Avian-like H1N1 and 2009 Pandemic H1N1 Influenza Viruses. Viruses 2025, 17, 1360. [Google Scholar] [CrossRef]
- Han, X.; Ma, R.; Ma, X.; Chen, H.; Zhao, T.; Liu, X.; Zhu, L.; Yuan, L.; Shi, Y.; Zhang, Y.; et al. Development of a broad-spectrum nasal live attenuated influenza vaccine based on mosaic antigen design against influenza B viruses. Emerg. Microbes Infect. 2025, 14, 2576141. [Google Scholar] [CrossRef] [PubMed]
- Paules, C.; Subbarao, K. Influenza. Lancet 2017, 390, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Moscona, A. Global transmission of oseltamivir-resistant influenza. N. Engl. J. Med. 2009, 360, 953–956. [Google Scholar] [CrossRef]
- Ayora-Talavera, G.; López-Martínez, I.; Barrera-Badillo, G.; Aparicio-Antonio, R.; Aréchiga-Ceballos, N.; Aguirre-Barbosa, A.; Wong-Chew, R.M.; Canul-Canul, D.; Solís-Hernández, M. Genetic and Serological Analysis of H7N3 Avian Influenza Viruses in Mexico for Pandemic Risk Assessment. Viruses 2025, 17, 1376. [Google Scholar] [CrossRef]
- Duwe, S.C.; Milde, J.; Heider, A.; Wedde, M.; Schweiger, B.; Dürrwald, R. Increase of Synergistic Secondary Antiviral Mutations in the Evolution of A(H1N1)pdm09 Influenza Virus Neuraminidases. Viruses 2024, 16, 1109. [Google Scholar] [CrossRef]
- Xu, X.; Wang, S.; Zhang, Y.; Xie, H.; Hu, J.; Wang, Z.; Liu, Y.; Huang, L. Preparation of fucoidan oligosaccharides from Sargassum fusiforme using the “layer by layer” degradation strategy and their binding study with HA proteins of influenza A viruses. Carbohydr. Polym. 2025, 368, 124222. [Google Scholar] [CrossRef]
- Xu, Y.; Anirudhan, V.; Gaisina, I.N.; Du, H.; Alqarni, S.; Moore, T.W.; Caffrey, M.; Manicassamy, B.; Zhou, T.; Rong, L.; et al. Mechanistic insights into the small-molecule inhibition of influenza A virus entry. Proc. Natl. Acad. Sci. USA 2025, 122, e2503899122. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Zhang, C.; Cai, Z.; Chen, L.; Chen, Z.; Zhao, K.; Qiao, S.; Wang, Y.; Meng, L.; et al. Anti-Influenza Effect and Mechanisms of Lentinan in an ICR Mouse Model. Front. Cell. Infect. Microbiol. 2022, 12, 892864. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Guo, F.; Roy, A.; Wang, X.; Shen, Y. Integrated In Silico, In Vitro, and In Vivo Studies Reveal Mangiferin as a Promising Antiviral Agent Against H1N1/pdm2009 Influenza Virus. Viruses 2025, 17, 873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yuan, M.; Rong, W.; Du, H.; Li, X.; Ji, T.; Li, J.; Dai, B.; Ma, Z.; Qi, H.; et al. Synergistic effects of Lianhuaqingwen in combination with Oseltamivir and Baloxavir against seasonal influenza virus: In vitro and in vivo assessment. J. Ethnopharmacol. 2025, 338, 119091. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 3. [Google Scholar] [CrossRef]
- Fan, P.; Lv, P.; Zhang, S.; Zhu, Z.; Qian, K.; Han, J.; Cui, Y.; Feng, Y.; Li, Z.; Qiang, L.; et al. Licoflavone B Suppresses Influenza A Virus by Targeting the Viral RNA-Dependent RNA Polymerase (RdRp). Viruses 2025, 17, 1157. [Google Scholar] [CrossRef]
- Cui, X.R.; Guo, Y.H.; Liu, Q.Q. Cangma Huadu granules, a new drug with great potential to treat coronavirus and influenza infections, exert its efficacy through anti-inflammatory and immune regulation. J. Ethnopharmacol. 2022, 287, 114965. [Google Scholar] [CrossRef]
- Aldridge, J.R., Jr.; Moseley, C.E.; Boltz, D.A.; Negovetich, N.J.; Reynolds, C.; Franks, J.; Brown, S.A.; Doherty, P.C.; Webster, R.G.; Thomas, P.G. TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc. Natl. Acad. Sci. USA 2009, 106, 5306–5311. [Google Scholar] [CrossRef] [PubMed]
- Flory, E.; Kunz, M.; Scheller, C.; Jassoy, C.; Stauber, R.; Rapp, U.R.; Ludwig, S. Influenza virus-induced NF-κB-dependent gene expression is mediated by overexpression of viral proteins and involves oxidative radicals and activation of IκB kinase. J. Biol. Chem. 2000, 275, 8307–8314. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.H.; Ren, M.Y.; Luo, J.B. San Wu Huangqin decoction regulates inflammation and immune dysfunction induced by influenza virus by regulating the NF-κB signaling pathway in H1N1-infected mice. J. Ethnopharmacol. 2021, 264, 112800. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jie, X.; Liang, X.; Chen, Z.; Xie, P.; Pan, X.; Zhou, B.; Li, J. Sinensetin suppresses influenza a virus-triggered inflammation through inhibition of NF-κB and MAPKs signalings. BMC Complement. Med. Ther. 2020, 20, 135. [Google Scholar] [CrossRef]
- Meng, F.; Yang, H.; Qu, Z.; Chen, Y.; Zhang, Y.; Zhang, Y.; Liu, L.; Zeng, X.; Li, C.; Kawaoka, Y.; et al. A Eurasian avian-like H1N1 swine influenza reassortant virus became pathogenic and highly transmissible due to mutations in its PA gene. Proc. Natl. Acad. Sci. USA 2022, 119, e2203919119. [Google Scholar] [CrossRef]
- Wang, C.C.; Prather, K.A.; Sznitman, J.; Jimenez, J.L.; Lakdawala, S.S.; Tufekci, Z.; Marr, L.C. Airborne transmission of respiratory viruses. Science 2021, 373, 6558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Jiang, L.; Chen, Q.; Fu, Y.; Jin, Y.; Chen, Z.; Tang, F.; Zeng, X.; Wen, H.; et al. Comparison of SARS-CoV-2 aerosol emission from patients with Omicron BA.1 or BA.2 subvariant infection. J. Infect. 2022, 85, e37–e39. [Google Scholar] [CrossRef]
- Guo, W.; Fu, Y.; Jia, R.; Guo, Z.; Su, C.; Li, J.; Zhao, X.; Jin, Y.; Li, P.; Fan, J.; et al. Visualization of the infection risk assessment of SARS-CoV-2 through aerosol and surface transmission in a negative-pressure ward. Environ. Int. 2022, 162, 107153. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Qian, L.; Liu, L.; Qian, J.; Lu, B.; Guo, Z. Composition and Distribution Analysis of Bioaerosols Under Different Environmental Conditions. J. Vis. Exp. 2019, 143, e58795. [Google Scholar] [CrossRef]
- Shi, J.; Kong, H.; Cui, P.; Deng, G.; Zeng, X.; Jiang, Y.; He, X.; Zhang, X.; Chen, L.; Zhuang, Y.; et al. H5N1 virus invades the mammary glands of dairy cattle through ‘mouth-to-teat’ transmission. Natl. Sci. Rev. 2025, 12, nwaf262. [Google Scholar] [CrossRef]
- Giugliano, R.; Ferraro, V.; Chianese, A.; Della Marca, R.; Zannella, C.; Galdiero, F.; Fasciana, T.M.A.; Giammanco, A.; Salerno, A.; Cannillo, J.; et al. Antiviral Properties of Moringa oleifera Leaf Extracts against Respiratory Viruses. Viruses 2024, 16, 1199. [Google Scholar] [CrossRef]
- Wang, L.; Didelot, X.; Bi, Y.; Gao, G.F. Assessing the extent of community spread caused by mink-derived SARS-CoV-2 variants. Innovation 2021, 2, 100128. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, A.W.H.; Lenon, G.B. Phytochemistry, Ethnopharmacology, Pharmacokinetics and Toxicology of Cnidium monnieri (L.) Cusson. Int. J. Mol. Sci. 2020, 21, 1006. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Zhao, Z.; Ma, S.; Wang, R.; Li, Y.; Liu, Y.; Li, Y.; Li, L.; Qu, J.; Yu, S. Cnidimonins A-C, Three Types of Hybrid Dimer from Cnidium monnieri: Structural Elucidation and Semisynthesis. Org. Lett. 2017, 19, 4920–4923. [Google Scholar] [CrossRef]
- Tamura, S.; Fujitani, T.; Kaneko, M.; Murakami, N. Prenylcoumarin with Rev-export inhibitory activity from Cnidii Monnieris Fructus. Bioorganic Med. Chem. Lett. 2010, 20, 3717–3720. [Google Scholar] [CrossRef]
- Huang, R.L.; Chen, C.C.; Huang, Y.L.; Hsieh, D.J.; Hu, C.P.; Chen, C.F.; Chang, C. Osthole increases glycosylation of hepatitis B surface antigen and suppresses the secretion of hepatitis B virus in vitro. Hepatology 1996, 24, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Mondal, P.P.; Bhattacharya, A.; Chakrabarti, A.K. Role of the Chaperone Protein 14-3-3η in Regulation of the Infection Dynamics of the Influenza A (H1N1) Virus. Viruses 2025, 17, 1337. [Google Scholar] [CrossRef]
- Voronina, D.V.; Vavilova, I.V.; Zubkova, O.V.; Ozharovskaia, T.A.; Popova, O.; Chugunova, A.S.; Goldovskaya, P.P.; Zrelkin, D.I.; Savina, D.M.; Favorskaya, I.A.; et al. Single-Dose Intranasal or Intramuscular Administration of Simian Adenovirus-Based H1N1 Vaccine Induces a Robust Humoral Response and Complete Protection in Mice. Viruses 2025, 17, 1085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, M.; Huang, J.; Zeng, Q.; Zhu, Q.; Xu, S.; Chen, H. H1N1 Influenza A Virus Protein NS2 Inhibits Innate Immune Response by Targeting IRF7. Viruses 2022, 14, 2411. [Google Scholar] [CrossRef]
- David, C.; Verney, C.; Si-Tahar, M.; Guillon, A. The deadly dance of alveolar macrophages and influenza virus. Eur. Respir. Rev. Off. J. Eur. Respir. Soc. 2024, 33, 240132. [Google Scholar] [CrossRef]
- Bi, Y.; Yang, J.; Wang, L.; Ran, L.; Gao, G.F. Ecology and evolution of avian influenza viruses. Curr. Biol. 2024, 34, R716–R721. [Google Scholar] [CrossRef]
- Stannard, H.; Koszalka, P.; Deshpande, N.; Desjardins, Y.; Baz, M. Pre-Clinical Evaluation of the Antiviral Activity of Epigalocatechin-3-Gallate, a Component of Green Tea, against Influenza A(H1N1)pdm Viruses. Viruses 2023, 15, 2447. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, B.; Yang, N.; Lin, X.; Chen, M.; Chang, H.; Shi, Y.; Lin, X.; Li, G.; Dai, W.; et al. The mechanism of action in Mussaenda pubescens (Yuye Jinhua) against influenza A virus: Evidence from in vitro and in vivo studies. Phytomed. Int. J. Phytother. Phytopharm. 2025, 145, 157070. [Google Scholar] [CrossRef]
- Su, J.; Lai, J.; Li, J.; Liu, X.; Chen, H.; Li, C.; Zhu, B.; Jia, X.; Li, Y. Carambolaside W Inhibited H1N1 Influenza Virus-Induced Oxidative Stress through STAT-3/BCL-XL Signaling Pathway. Viruses 2023, 15, 1858. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.B.; Kim, Y.S.; Hwang, Y.H.; Kim, B.; Lee, S.B.; Park, S.K.; Choi, M.S.; Ha, H.; Choi, J.G. Antiviral activity of soybean GL 2626/96 (Glycine max) ethanolic extract against influenza A virus in vitro and in vivo. Biomed. Pharmacother. Biomed. Pharmacother. 2022, 156, 113780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, J.; Cui, H.; Jin, Y.; Chen, Z.; Zhang, L.; Song, S.; Lu, B.; Wang, Z.; Guo, Z. Lentinan Reduces Transmission Efficiency of COVID-19 by Changing Aerodynamic Characteristic of Exhaled SARS-CoV-2 Aerosols in Golden Hamsters. Microorganisms 2025, 13, 597. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, C.; Zhang, C.; Cui, H.; Chen, Z.; Jiang, X.; Wang, T.; Li, Y.; Liu, J.; Wan, Z.; et al. SARS-CoV-2-related pangolin coronavirus exhibits similar infection characteristics to SARS-CoV-2 and direct contact transmissibility in hamsters. iScience 2022, 25, 104350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, Z.Y.; Cui, H.; Chen, L.G.; Zhang, C.M.; Chen, Z.L.; Dong, S.S.; Zhao, K.; Fu, Y.Y.; Liu, J.X.; et al. Emergence of H5N8 avian influenza virus in domestic geese in a wild bird habitat, Yishui Lake, north central China. Virol. Sin. 2023, 38, 157–161. [Google Scholar] [CrossRef]
- Jin, Y.; Cui, H.; Jiang, L.; Zhang, C.; Li, J.; Cheng, H.; Chen, Z.; Zheng, J.; Zhang, Y.; Fu, Y.; et al. Evidence for human infection with avian influenza A(H9N2) virus via environmental transmission inside live poultry market in Xiamen, China. J. Med. Virol. 2023, 95, e28242. [Google Scholar] [CrossRef]
- Jiang, L.; Li, J.; Cui, H.; Zhang, C.; Jin, Y.; Fu, Y.; Ma, N.; Tang, F.; Zhang, Y.; Zheng, J.; et al. Etiologic characteristics of avian influenza H11 viruses isolated from the live poultry market in southeast coastal region in China. Front. Microbiol. 2022, 13, 1002670. [Google Scholar] [CrossRef]
- Zhang, C.; Jin, Y.; Cui, H.; Wang, Z.; Chen, Z.; Zhang, L.; Song, S.; Lu, B.; Guo, Z. Cross-Species Transmission Risks of a Quail-Origin H7N9 Influenza Virus from China Between Avian and Mammalian Hosts. Viruses 2025, 17, 1402. [Google Scholar] [CrossRef]
- Tang, J.; Gao, R.; Liu, L.; Zhang, S.; Liu, J.; Li, X.; Fang, Q.; Feng, Z.; Xu, C.; Huang, W.; et al. Substitution of I222L-E119V in neuraminidase from highly pathogenic avian influenza H7N9 virus exhibited synergistic resistance effect to oseltamivir in mice. Sci. Rep. 2021, 11, 16293. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Morens, D.M. The pathology of influenza virus infections. Annu. Rev. Pathol. 2008, 3, 499–522. [Google Scholar] [CrossRef]
- Lowen, A.C.; Mubareka, S.; Steel, J.; Palese, P. Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature. PLoS Pathog. 2007, 3, e151. [Google Scholar] [CrossRef]
- Park, C.; Jang, J.; Jang, J. Airborne Influenza Virus Surveillance Platform Using Paper-Based Immunosensors and a Growth-Based Virus Aerosol Concentrator. Environ. Sci. Technol. 2025, 59, 6502–6511. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Z.; Qian, L.; Zhao, Z.; Zhang, C.; Fu, Y.; Li, J.; Zhang, C.; Lu, B.; Qian, J. Biological and chemical compositions of atmospheric particulate matter during hazardous haze days in Beijing. Environ. Sci. Pollut. Res. Int. 2018, 25, 34540–34549. [Google Scholar] [CrossRef]
- Li, J.; Zheng, J.; Chen, P.; Wang, B.; Zhang, Y.; Xiong, J.; You, L.; Jin, Y.; Jiang, L.; Tang, F.; et al. Higher SARS-CoV-2 shedding in exhaled aerosol probably contributed to the enhanced transmissibility of Omicron BA.5 subvariant. J. Med. Virol. 2023, 95, e28365. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Jiang, L.; Cheng, H.; Li, J.; Li, L.; Chen, Z.; Tang, F.; Fu, Y.; Jin, Y.; et al. Similar aerosol emission rates and viral loads in upper respiratory tracts for COVID-19 patients with Delta and Omicron variant infection. Virol. Sin. 2022, 37, 762–764. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fu, Y.; Guo, Z.; Li, J.; Li, J.; Cheng, H.; Lu, B.; Sun, Q. Transmission and prevention of SARS-CoV-2. Biochem. Soc. Trans. 2020, 48, 2307–2316. [Google Scholar] [CrossRef]
- Guo, Z.D.; Wang, Z.Y.; Zhang, S.F.; Li, X.; Li, L.; Li, C.; Cui, Y.; Fu, R.B.; Dong, Y.Z.; Chi, X.Y.; et al. Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerg. Infect. Dis. 2020, 26, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Lu, X.; Ling, L.; Li, H.; Ou, Y.; Shi, X.; Lu, Y.; Zhang, Y.; Chen, D. Houttuynia cordata polysaccharides ameliorate pneumonia severity and intestinal injury in mice with influenza virus infection. J. Ethnopharmacol. 2018, 218, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, L.; Zhou, H.; Zeng, L.; Chen, T.; Chen, Q.; Zhou, B.; Wang, Y.; Chen, Q.; Hu, P.; et al. Radix isatidis Polysaccharides Inhibit Influenza a Virus and Influenza A Virus-Induced Inflammation via Suppression of Host TLR3 Signaling In Vitro. Molecules 2017, 22, 116. [Google Scholar] [CrossRef]
- Kataoka, K.; Muta, T.; Yamazaki, S.; Takeshige, K. Activation of macrophages by linear (1→3)-β-D-glucans. Impliations for the recognition of fungi by innate immunity. J. Biol. Chem. 2002, 277, 36825–36831. [Google Scholar] [CrossRef]
- Qi, J.; Lv, C.; Guo, J.; Li, Y.; Sima, M.; Luo, R.; Xiang, H.; Xia, X.; Zhou, Y.; Wang, T. Schisandra chinensis (Turcz.) Baill. polysaccharide inhibits influenza A virus in vitro and in vivo. FEBS Open Bio 2023, 13, 1831–1843. [Google Scholar] [CrossRef] [PubMed]
- Ison, M.G.; Hayden, F.G. 154—Antiviral Agents Against Respiratory Viruses. In Infectious Diseases, 4th ed.; Cohen, J., Powderly, W.G., Opal, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1318–1326.e2. [Google Scholar]
- Zheng, J.; Wang, Z.; Li, J.; Zhang, Y.; Jiang, L.; Fu, Y.; Jin, Y.; Cheng, H.; Li, J.; Chen, Z.; et al. High amounts of SARS-CoV-2 in aerosols exhaled by patients with Omicron variant infection. J. Infect. 2022, 84, e126–e128. [Google Scholar] [CrossRef]
- Leung, N.H.L.; Chu, D.K.W.; Shiu, E.Y.C.; Chan, K.H.; McDevitt, J.J.; Hau, B.J.P.; Yen, H.L.; Li, Y.; Ip, D.K.M.; Peiris, J.S.M.; et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 2020, 26, 676–680. [Google Scholar] [CrossRef]
- Jiang, L.; Jin, Y.; Li, J.; Zhang, R.; Zhang, Y.; Cheng, H.; Lu, B.; Zheng, J.; Li, L.; Wang, Z. Respiratory Pathogen Coinfection During Intersecting COVID-19 and Influenza Epidemics. Pathogens 2024, 13, 1113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Guo, K.; Cui, H.; Chen, L.; Zhang, C.; Wang, X.; Li, J.; Fu, Y.; Wang, Z.; Guo, Z.; et al. Risk of Environmental Exposure to H7N9 Influenza Virus via Airborne and Surface Routes in a Live Poultry Market in Hebei, China. Front. Cell. Infect. Microbiol. 2021, 11, 688007. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Li, X.; Xue, C.; Zhang, L.; Wang, C.; Xu, X.; Shan, A. Astragalus polysaccharides alleviates LPS-induced inflammation via the NF-κB/MAPK signaling pathway. J. Cell. Physiol. 2020, 235, 5525–5540. [Google Scholar] [CrossRef]
- Xie, M.; Cai, J.; Zhong, X.; Liang, J.; Liang, S.; Xian, M.; Yan, C.; Wang, S. Extraction and structural profiling of polysaccharides from Rehmannia glutinosa and anti-inflammatory action via the NF-κB/IκBα pathway. Ind. Crops Prod. 2024, 208, 117874. [Google Scholar] [CrossRef]
- He, J.; Lu, J.; Zhan, L.; Zheng, D.; Wang, Y.; Meng, J.; Li, P.; Zhao, J.; Zhang, W. An Alkali-extracted polysaccharide from Poria cocos activates RAW264.7 macrophages via NF-κB signaling pathway. Arab. J. Chem. 2023, 16, 104592. [Google Scholar] [CrossRef]
- Kuo, C.L.; Ting, B.; Tseng, R.J.; Liu, S.P.; Liou, J.Y. Comparative Efficacy of Antrodia cinnamomea on Liver Function Biomarkers in Mice and Rats: A Network Meta-Analysis. Antioxidants 2025, 14, 660. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zeng, M.; Zhang, Q.; Wang, R.; Jia, J.; Cao, B.; Liu, M.; Guo, P.; Zhang, Y.; Zheng, X.; et al. Ephedrae Herba polysaccharides inhibit the inflammation of ovalbumin induced asthma by regulating Th1/Th2 and Th17/Treg cell immune imbalance. Mol. Immunol. 2022, 152, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.D.; Chen, K.C.; Li, S.S.; Zhang, Y.T.; Li, Z.M.; Liu, S.; Sun, Y.S. Panax quinquefolius polysaccharides ameliorate ulcerative colitis in mice induced by dextran sulfate sodium. Front. Immunol. 2023, 14, 1161625. [Google Scholar] [CrossRef] [PubMed]
- Ridgway, H.; Apostolopoulos, V.; Moore, G.J.; Gadanec, L.K.; Zulli, A.; Swiderski, J.; Tsiodras, S.; Kelaidonis, K.; Chasapis, C.T.; Matsoukas, J.M. Computational Evidence for Bisartan Arginine Blockers as Next-Generation Pan-Antiviral Therapeutics Targeting SARS-CoV-2, Influenza, and Respiratory Syncytial Viruses. Viruses 2024, 16, 1776. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, L.; Wang, Y.; Liu, X.; Wang, B.; Shan, Z.; Wang, Y.H.; Wang, Y.; Chen, H.; Li, C. HACD3 Prevents PB1 from Autophagic Degradation to Facilitate the Replication of Influenza A Virus. Viruses 2024, 16, 702. [Google Scholar] [CrossRef]
- Richard, M.; van den Brand, J.M.A.; Bestebroer, T.M.; Lexmond, P.; de Meulder, D.; Fouchier, R.A.M.; Lowen, A.C.; Herfst, S. Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets. Nat. Commun. 2020, 11, 766. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, H.; Jin, Y.; Li, Y.; Wang, Y.; Zhao, Y.; Cheng, S.; Li, Z.; Yan, M.; Yang, Z.; Chen, X.; et al. Cnidium monnieri Polysaccharides Exhibit Inhibitory Effect on Airborne Transmission of Influenza A Virus. Viruses 2026, 18, 86. https://doi.org/10.3390/v18010086
Wang H, Jin Y, Li Y, Wang Y, Zhao Y, Cheng S, Li Z, Yan M, Yang Z, Chen X, et al. Cnidium monnieri Polysaccharides Exhibit Inhibitory Effect on Airborne Transmission of Influenza A Virus. Viruses. 2026; 18(1):86. https://doi.org/10.3390/v18010086
Chicago/Turabian StyleWang, Heng, Yifei Jin, Yanrui Li, Yan Wang, Yixin Zhao, Shuang Cheng, Zhenyue Li, Mengxi Yan, Zitong Yang, Xiaolong Chen, and et al. 2026. "Cnidium monnieri Polysaccharides Exhibit Inhibitory Effect on Airborne Transmission of Influenza A Virus" Viruses 18, no. 1: 86. https://doi.org/10.3390/v18010086
APA StyleWang, H., Jin, Y., Li, Y., Wang, Y., Zhao, Y., Cheng, S., Li, Z., Yan, M., Yang, Z., Chen, X., Zhang, Y., Yang, Z., Wang, Z., Liu, K., & Chen, L. (2026). Cnidium monnieri Polysaccharides Exhibit Inhibitory Effect on Airborne Transmission of Influenza A Virus. Viruses, 18(1), 86. https://doi.org/10.3390/v18010086

