Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (84,919)

Search Parameters:
Keywords = infect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 294 KiB  
Article
Perinatal Outcomes of Chronic Abruption Oligohydramnios Sequence: A Multicenter Retrospective Observational Study
by Yoshifumi Kasuga, Yuka Fukuma, Kaoru Kajikawa, Keisuke Akita, Junko Tamai, Yuya Tanaka, Toshimitsu Otani, Marie Fukutake, Satoru Ikenoue and Mamoru Tanaka
J. Clin. Med. 2025, 14(15), 5523; https://doi.org/10.3390/jcm14155523 - 5 Aug 2025
Abstract
Objective: This study aimed to describe the perinatal and neonatal outcomes of chronic abruption oligohydramnios sequence in the Kanto region of Japan. Methods: This survey was conducted at 123 perinatal centers affiliated to this area. Data on the experience of managing [...] Read more.
Objective: This study aimed to describe the perinatal and neonatal outcomes of chronic abruption oligohydramnios sequence in the Kanto region of Japan. Methods: This survey was conducted at 123 perinatal centers affiliated to this area. Data on the experience of managing chronic abruption oligohydramnios sequence between 1 January 2017, and 31 December 2022, were collected and analyzed. Results: Among the 82 cases of chronic abruption oligohydramnios sequence that were included in this study, there were seven miscarriages, five artificial abortions, and 70 deliveries beyond 22 gestational weeks (singleton: 68; twin: 2). In 82 patients, vaginal bleeding was the initial symptom of chronic abruption oligohydramnios sequence (88%). The mean gestational duration at the initial symptom onset was 17.3 ± 5.0 weeks. Of the 68 singleton pregnancies delivered after 22 gestational weeks, the mean gestational duration at delivery was 25.2 ± 2.8 weeks. In patients with chronic abruption oligohydramnios sequence, the mean white blood cell count at diagnosis and mean of the maximum white blood cell count during pregnancy were 11,589 ± 2885 and 15,357 ± 4745/μL, respectively; and the mean C-reactive protein at diagnosis and mean of the maximum C-reactive protein during pregnancy were 1.0 ± 1.2 and 2.0 ± 2.1 mg/L, respectively. Chorioamnionitis was identified in 43 patients (63%). All neonates were admitted to the neonatal intensive care unit. Of the 68 singleton neonates, 5 died immediately after birth. Conclusions: Chronic abruption oligohydramnios sequence is a rare perinatal complication that is possibly associated with infections, such as chorioamnionitis, and linked to adverse perinatal and neonatal outcomes. Full article
(This article belongs to the Section Obstetrics & Gynecology)
16 pages, 1214 KiB  
Article
Screening of Medicinal Herbs Identifies Cimicifuga foetida and Its Bioactive Component Caffeic Acid as SARS-CoV-2 Entry Inhibitors
by Ching-Hsuan Liu, Yu-Ting Kuo, Chien-Ju Lin, Feng-Lin Yen, Shu-Jing Wu and Liang-Tzung Lin
Viruses 2025, 17(8), 1086; https://doi.org/10.3390/v17081086 - 5 Aug 2025
Abstract
The emergence of SARS-CoV-2 variants highlights the urgent need for novel therapeutic strategies, particularly entry inhibitors that could efficiently prevent viral infection. Medicinal herbs and herbal combination formulas have long been recognized for their effects in treating infectious diseases and their antiviral properties, [...] Read more.
The emergence of SARS-CoV-2 variants highlights the urgent need for novel therapeutic strategies, particularly entry inhibitors that could efficiently prevent viral infection. Medicinal herbs and herbal combination formulas have long been recognized for their effects in treating infectious diseases and their antiviral properties, thus providing abundant resources for the discovery of antiviral candidates. While many candidates have been suggested to have antiviral activity against SARS-CoV-2 infection, few have been validated for their mechanisms, including possible effects on viral entry. This study aimed to identify SARS-CoV-2 entry inhibitors from medicinal herbs and herbal formulas that are known for heat-clearing and detoxifying properties and/or antiviral activities. A SARS-CoV-2 pseudoparticle (SARS-CoV-2pp) system was used to assess mechanism-specific entry inhibition. Our results showed that the methanol extract of Anemarrhena asphodeloides rhizome, as well as the water extracts of Cimicifuga foetida rhizome, Xiao Chai Hu Tang (XCHT), and Sheng Ma Ge Gen Tang (SMGGT), have substantial inhibitory effects on the entry of SARS-CoV-2pps into host cells. Given the observation that Cimicifuga foetida exhibited the most potent inhibition and is a constituent of SMGGT, we further investigated the major compounds of the herb and identified caffeic acid as a bioactive component for blocking SARS-CoV-2pp entry. Entry inhibition of Cimicifuga foetida and caffeic acid was validated on both wild-type and the currently dominant JN.1 strain SARS-CoV-2pp systems. Moreover, caffeic acid was able to both inactivate the pseudoparticles and prevent their entry into pretreated host cells. The results support the traditional use of these herbal medicines and underscore their potential as valuable resources for identifying active compounds and developing therapeutic entry inhibitors for the management of COVID-19. Full article
(This article belongs to the Section Coronaviruses)
12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

17 pages, 1027 KiB  
Review
Chimeric Antigen Receptor Immunotherapy for Infectious Diseases: Current Advances and Future Perspectives
by Maria Kourti, Paschalis Evangelidis, Emmanuel Roilides and Elias Iosifidis
Pathogens 2025, 14(8), 774; https://doi.org/10.3390/pathogens14080774 (registering DOI) - 5 Aug 2025
Abstract
Chimeric antigen receptor (CAR)-T immunotherapy has revolutionized the management of patients with relapsed/refractory B-cell hematological malignancies. There is emerging evidence that CAR-engineered cells—not only T cells, but also natural killers and macrophages—might have a crucial role in the treatment of autoimmune disorders and [...] Read more.
Chimeric antigen receptor (CAR)-T immunotherapy has revolutionized the management of patients with relapsed/refractory B-cell hematological malignancies. There is emerging evidence that CAR-engineered cells—not only T cells, but also natural killers and macrophages—might have a crucial role in the treatment of autoimmune disorders and solid tumors. Moreover, given the burden of chronic infectious diseases, the mortality and morbidity of infections in immunocompromised individuals, and the development of multidrug-resistant pathogens, including bacteria, fungi, and mycobacteria, a need for novel and personalized therapeutics in this field is emerging. To this end, the development of CAR cells for the management of chronic infections has been reported. In this literature review, we summarize the ongoing clinical and pre-clinical data about CAR cell products in the field of infectious diseases. Currently, clinical studies on CAR immunotherapy for infections mainly concern human immunodeficiency virus infection treatment, and data regarding other infections largely originate from preclinical in vitro and in vivo models. In the era of personalized medicine, effective and safe therapies for the management of chronic infections and infectious complications in immunocompromised patients are crucial. Full article
(This article belongs to the Special Issue Bacterial Resistance and Novel Therapeutic Approaches)
Show Figures

Figure 1

23 pages, 1610 KiB  
Article
Unraveling the Systemic and Local Immune Response of Rainbow Trout (Oncorhynchus mykiss) to the Viral Hemorrhagic Septicemic Virus
by Mariana Vaz, Gonçalo Espregueira Themudo, Felipe Bolgenhagen Schöninger, Inês Carvalho, Carolina Tafalla, Patricia Díaz-Rosales, Lourenço Ramos-Pinto, Benjamín Costas and Marina Machado
Biology 2025, 14(8), 1003; https://doi.org/10.3390/biology14081003 - 5 Aug 2025
Abstract
Viral outbreaks have caused significant mortality and economic losses in aquaculture, highlighting the urgent need for effective therapies and a deeper understanding of antiviral and immune mechanisms in key species. This study investigates the constitutive and virus-induced antiviral responses in juvenile rainbow trout [...] Read more.
Viral outbreaks have caused significant mortality and economic losses in aquaculture, highlighting the urgent need for effective therapies and a deeper understanding of antiviral and immune mechanisms in key species. This study investigates the constitutive and virus-induced antiviral responses in juvenile rainbow trout (Oncorhynchus mykiss) following infection with viral hemorrhagic septicemia virus (VHSV). Trout (30 g) were infected by immersion with VHSV (TCID50 = 105 mL−1) for two hours. Samples were collected at 24, 72, and 120 h post-infection to assess hematology, innate immunity, viral load, and transcriptomic response. At 24 h post-infection, no immune response or increase in viral load was detected, suggesting the host had not yet recognized the virus and was still in the incubation phase. By 72 h, viral replication peaked, with high viral loads observed in mucosal tissues (skin and gills) and immune organs (kidney, spleen, liver), alongside strong up-regulation of antiviral genes, such as viperin. This gene maintained high expression through the final sampling point, indicating its key role in the antiviral response. At this stage, reduced immune competence was observed, marked by elevated nitric oxide and circulating thrombocytes. At 120 h, modest increases in peripheral monocyte, plasma lysozyme, and peroxidase activity were detected; however, these responses were insufficient to reduce viral load, suggesting the resolution phase had not yet begun. In summary, while a limited immune response was observed by the end of the trial, the consistent antiviral activity of viperin from peak infection to 120 h post-infection underscores its importance in the defence against VHSV in rainbow trout. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

21 pages, 2202 KiB  
Article
Galactose Inhibits the Translation of Erg1, Enhancing the Antifungal Activities of Azoles Against Candida albicans
by Sijin Hang, Li Wang, Zhe Ji, Xuqing Shen, Xinyu Fang, Wanqian Li, Yuanying Jiang and Hui Lu
Antibiotics 2025, 14(8), 799; https://doi.org/10.3390/antibiotics14080799 (registering DOI) - 5 Aug 2025
Abstract
Background/Objectives: The diminished efficacy of azoles in treating fungal infections is attributed to the emergence of resistance among pathogenic fungi. Employing a synergistic approach with other compounds to enhance the antifungal activity of azoles has shown promise, yet the availability of clinically valuable [...] Read more.
Background/Objectives: The diminished efficacy of azoles in treating fungal infections is attributed to the emergence of resistance among pathogenic fungi. Employing a synergistic approach with other compounds to enhance the antifungal activity of azoles has shown promise, yet the availability of clinically valuable adjuvants for azoles and allylamines remains limited. Studies have demonstrated that the human host environment provides multiple carbon sources, which can influence the susceptibility of C. albicans to antifungal agents. Therefore, a comprehensive investigation into the mechanisms by which carbon sources modulate the susceptibility of C. albicans to azoles may uncover a novel pathway for enhancing the antifungal efficacy of azoles. Methods: This study explored the impact of various carbon sources on the antifungal efficacy of azoles through methodologies including minimum inhibitory concentration (MIC) assessments, super-MIC growth (SMG) assays, disk diffusion tests, and spot assays. Additionally, the mechanism by which galactose augments the antifungal activity of azoles was investigated using a range of experimental approaches, such as gene knockout and overexpression techniques, quantitative real-time PCR (qRT-PCR), Western blot analysis, and cycloheximide (CHX) chase experiments. Results: This study observed that galactose enhances the efficacy of azoles against C. albicans by inhibiting the translation of Erg1. This results in the suppression of Erg1 protein levels and subsequent inhibition of ergosterol biosynthesis in C. albicans. Conclusions: In C. albicans, the translation of Erg1 is inhibited when galactose is utilized as a carbon source instead of glucose. This novel discovery of galactose’s inhibitory effect on Erg1 translation is expected to enhance the antifungal efficacy of azoles. Full article
Show Figures

Figure 1

10 pages, 5588 KiB  
Article
Anti-Viral Activity of Conessine Against Influenza A Virus
by Won-Kyung Cho and Jin Yeul Ma
Int. J. Mol. Sci. 2025, 26(15), 7572; https://doi.org/10.3390/ijms26157572 (registering DOI) - 5 Aug 2025
Abstract
Conessine is a steroidal alkaloid found in many plants. The pharmacological efficacies of conessine on various ailments, including antiviral effects against Zika, Herpes, and Coronavirus, were reported. However, the effect of conessine on the influenza virus was still unknown. In this study, conessine [...] Read more.
Conessine is a steroidal alkaloid found in many plants. The pharmacological efficacies of conessine on various ailments, including antiviral effects against Zika, Herpes, and Coronavirus, were reported. However, the effect of conessine on the influenza virus was still unknown. In this study, conessine exhibited a strong inhibitory effect against influenza A virus (IAV) infection. We examined the effect of conessine on IAV using green fluorescent protein (GFP)-expressing Influenza A/PR8/34 and wild-type A/PR8/34. The fluorescence-activated cell sorting, fluorescence microscopy, cytopathic effect analysis, and plaque assay demonstrated that conessine significantly inhibits IAV infection. Consistently, immunofluorescence results showed that conessine strongly reduces the expression of IAV proteins. The time-of-drug-addition assay revealed that conessine could affect the viral attachment and entry into the cells upon IAV infection. Further, conessine eradicated the virus before binding to the cells in the early stage of viral infection. Our results suggest that conessine has strong anti-viral efficacy against IAV infection and could be developed as an anti-influenza viral agent. Full article
Show Figures

Figure 1

43 pages, 1183 KiB  
Review
Harnessing Legume Productivity in Tropical Farming Systems by Addressing Challenges Posed by Legume Diseases
by Catherine Hazel Aguilar, David Pires, Cris Cortaga, Reynaldo Peja, Maria Angela Cruz, Joanne Langres, Mark Christian Felipe Redillas, Leny Galvez and Mark Angelo Balendres
Nitrogen 2025, 6(3), 65; https://doi.org/10.3390/nitrogen6030065 - 5 Aug 2025
Abstract
Legumes are among the most important crops globally, serving as a major food source for protein and oil. In tropical regions, the cultivation of legumes has expanded significantly due to the increasing demand for food, plant-based products, and sustainable agriculture practices. However, tropical [...] Read more.
Legumes are among the most important crops globally, serving as a major food source for protein and oil. In tropical regions, the cultivation of legumes has expanded significantly due to the increasing demand for food, plant-based products, and sustainable agriculture practices. However, tropical environments pose unique challenges, including high temperatures, erratic rainfall, soil infertility, and a high incidence of pests and diseases. Indeed, legumes are vulnerable to infections caused by bacteria, fungi, oomycetes, viruses, and nematodes. This review highlights the importance of legumes in tropical farming and discusses major diseases affecting productivity and their impact on the economy, environment, and lives of smallholder legume farmers. We emphasize the use of legume genetic resources and breeding, and biotechnology innovations to foster resistance and address the challenges posed by pathogens in legumes. However, an integrated approach that includes other cultivation techniques (e.g., crop rotation, rational fertilization, deep plowing) remains important for the prevention and control of diseases in legume crops. Finally, we highlight the contributions of plant genetic resources to smallholder resilience and food security. Full article
Show Figures

Figure 1

18 pages, 1899 KiB  
Article
MALAT1 Expression Is Deregulated in miR-34a Knockout Cell Lines
by Andrea Corsi, Tonia De Simone, Angela Valentino, Elisa Orlandi, Chiara Stefani, Cristina Patuzzo, Stefania Fochi, Maria Giusy Bruno, Elisabetta Trabetti, John Charles Rotondo, Chiara Mazziotta, Maria Teresa Valenti, Alessandra Ruggiero, Donato Zipeto, Cristina Bombieri and Maria Grazia Romanelli
Non-Coding RNA 2025, 11(4), 60; https://doi.org/10.3390/ncrna11040060 - 5 Aug 2025
Abstract
Background/Objectives: Non-coding microRNA-34a (miR-34a) regulates the expression of key factors involved in several cellular processes, such as differentiation, apoptosis, proliferation, cell cycle, and senescence. Deregulation of the expression of these factors is implicated in the onset and progression of several human diseases, including [...] Read more.
Background/Objectives: Non-coding microRNA-34a (miR-34a) regulates the expression of key factors involved in several cellular processes, such as differentiation, apoptosis, proliferation, cell cycle, and senescence. Deregulation of the expression of these factors is implicated in the onset and progression of several human diseases, including cancer, neurodegenerative disorders, and pathologies associated with viral infections and inflammation. Despite numerous studies, the molecular mechanisms regulated by miR-34a remain to be fully understood. The present study aimed to generate miR-34a knockout cell lines to identify novel genes potentially regulated by its expression. Methods: We employed the CRISPR-Cas9 gene editing system to knock out the hsa-miR-34a gene in HeLa and 293T cell lines, two widely used models for studying molecular and cellular mechanisms. We compared proliferation rates and gene expression profiles via RNA-seq and qPCR analyses between the wild-type and miR-34a KO cell lines. Results: Knockout of miR-34a resulted in a decreased proliferation rate in both cell lines. Noteworthy, the ablation of miR-34a resulted in increased expression of the long non-coding RNA MALAT1. Additionally, miR-34a-5p silencing in the A375 melanoma cell line led to MALAT1 overexpression. Conclusions: Our findings support the role of the miR-34a/MALAT1 axis in regulating proliferation processes. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

18 pages, 1645 KiB  
Article
Assessing Zoonotic Risks of Blastocystis Infection in Singapore
by Thet Tun Aung, Charlotte Kai Qi How, Jean-Marc Chavatte, Nazmi Bin Nazir, Edgar Macabe Pena, Bryan Ogden, Grace Rou’en Lim, Yasmina Arditi Paramastri, Lois Anne Zitzow, Hanrong Chen, Niranjan Nagarajan, Kevin Shyong Wei Tan and Benoit Malleret
Pathogens 2025, 14(8), 773; https://doi.org/10.3390/pathogens14080773 (registering DOI) - 5 Aug 2025
Abstract
Blastocystis spp. is an enteric protist that is present worldwide. Despite being discovered a century ago, there is still much to be learned about its pathogenicity and transmission. Different subtypes (ST) of Blastocystis spp. have been identified in various hosts, including humans, birds, [...] Read more.
Blastocystis spp. is an enteric protist that is present worldwide. Despite being discovered a century ago, there is still much to be learned about its pathogenicity and transmission. Different subtypes (ST) of Blastocystis spp. have been identified in various hosts, including humans, birds, and insects, and there is potential for zoonotic transmission through contact between humans and animals. The prevalence of Blastocystis spp. in humans and macaques in Singapore was understudied, and the findings revealed a significant prevalence of the parasite, with rates of 90% and 100% observed in each respective Macaca fascicularis population 1 and 2, with main subtypes (ST1, ST2, ST3, and ST5). Using metagenomics, the different subtypes of Blastocystis spp. (comprising ST2, ST3, and ST17) were identified in a healthy Singaporean cohort. Additionally, seven incidental findings of Blastocystis spp. were discovered in human patients with other gut parasites, including two ST1, two ST2, two ST3, and one ST8. Several factors such as diet or reverse zoonotic transmission are suggested to play a role in Blastocystis sp. subtype distribution. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

12 pages, 1185 KiB  
Article
Clostridioides difficile Infections: Epidemiological and Laboratory Data from the Internal Medicine Departments of a Tertiary Care Hospital in Athens, Greece, During the Past Decade
by Dimitris Kounatidis, Edison Jahaj, Eleni V. Geladari, Kyriaki Papachristodoulou, Fotis Panagopoulos, Georgios Marakomichelakis, Vasileios Papastamopoulos, Vasilios Sevastianos and Natalia G. Vallianou
Medicina 2025, 61(8), 1416; https://doi.org/10.3390/medicina61081416 - 5 Aug 2025
Abstract
Background and Objectives: Clostridioides difficile infection (CDI) poses a major public health problem worldwide. Materials and Methods: In this retrospective study, we included 274 patients with CDI, who were hospitalized in Internal Medicine Departments in Evangelismos General Hospital in Athens, Greece, [...] Read more.
Background and Objectives: Clostridioides difficile infection (CDI) poses a major public health problem worldwide. Materials and Methods: In this retrospective study, we included 274 patients with CDI, who were hospitalized in Internal Medicine Departments in Evangelismos General Hospital in Athens, Greece, during the past decade. Demographic, clinical and laboratory parameters of the patients were recorded. Statistical analysis revealed an association between older age and mortality as well as heart failure and mortality among patients with CDI. Results: Notably, WBC (white blood count), neutrophils, NLR (neutrophil-to-lymphocyte ratio), dNLR (derived NLR), SII (systemic immune–inflammation index) and hs-CRP (high-sensitivity C-reactive protein) demonstrated a positive association with mortality, whereas serum albumin levels and PNR (platelet-to-neutrophil ratio) exhibited an inverse relationship with mortality. We propose that the aforementioned biomarkers may be used as prognostic parameters regarding mortality from CDI. Conclusions: Large scale studies among patients with CDI with the advent of AI (artificial intelligence) may incorporate demographic, clinical and laboratory features into prognostic scores to further characterize the global CDI threat. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

22 pages, 688 KiB  
Review
The Evolving Treatment Landscape for the Elderly Multiple Myeloma Patient: From Quad Regimens to T-Cell Engagers and CAR-T
by Matthew James Rees and Hang Quach
Cancers 2025, 17(15), 2579; https://doi.org/10.3390/cancers17152579 - 5 Aug 2025
Abstract
Multiple myeloma (MM) is predominantly a disease of the elderly. In recent years, a surge of highly effective plasma cell therapies has revolutionized the care of elderly multiple myeloma (MM) patients, for whom frailty and age-related competing causes of mortality determine management. Traditionally, [...] Read more.
Multiple myeloma (MM) is predominantly a disease of the elderly. In recent years, a surge of highly effective plasma cell therapies has revolutionized the care of elderly multiple myeloma (MM) patients, for whom frailty and age-related competing causes of mortality determine management. Traditionally, the treatment of newly diagnosed elderly patients has centered on doublet or triplet combinations composed of immunomodulators (IMIDs), proteasome inhibitors (PIs), anti-CD38 monoclonal antibodies (mAbs), and corticosteroids producing median progression-free survival (PFS) rates between 34 and 62 months. However, recently, a series of large phase III clinical trials examining quadruplet regimens of PIs, IMIDs, corticosteroids, and anti-CD38 mAbs have shown exceptional outcomes, with median PFS exceeding 60 months, albeit with higher rates of peripheral neuropathy (≥Grade 2: 27% vs. 10%) when PIs and IMIDs are combined, and infections (≥Grade 3: 40% vs. 29–41%) with the addition of anti-CD38mAbs. The development of T-cell redirecting therapies including T-cell engagers (TCEs) and CAR-T cells has further expanded the therapeutic arsenal. TCEs have shown exceptional activity in relapsed disease and are being explored in the newly diagnosed setting with promising early results. However, concerns remain regarding the logistical challenges of step-up dosing, which often necessitates inpatient admission, the infectious risks, and the financial burden associated with TCEs in elderly patients. CAR-T, the most potent commercially available therapy for MM, offers the potential of a ‘one and done’ approach. However, its application to elderly patients has been tempered by significant concerns of cytokine release syndrome, early and delayed neurological toxicity, and its overall tolerability in frail patients. Robust data in frail patients are still needed. How CAR-T and TCEs will be sequenced among the growing therapeutic armamentarium for elderly MM patients remains to be determined. This review explores the safety, efficacy, cost, and logistical barriers associated with the above treatments in elderly MM patients. Full article
Show Figures

Figure 1

18 pages, 7274 KiB  
Article
Functional Compression Fabrics with Dual Scar-Suppressing and Antimicrobial Properties: Microencapsulation Design and Performance Evaluation
by Lihuan Zhao, Changjing Li, Mingzhu Yuan, Rong Zhang, Xinrui Liu, Xiuwen Nie and Bowen Yan
J. Funct. Biomater. 2025, 16(8), 287; https://doi.org/10.3390/jfb16080287 - 5 Aug 2025
Abstract
Pressure therapy combined with silicone has a significant effect on scar hyperplasia, but limitations such as long-term wearing of compression garments (CGs) can easily cause bacterial infection, cleanliness, and lifespan problems of CGs caused by the tedious operation of applying silicone. In this [...] Read more.
Pressure therapy combined with silicone has a significant effect on scar hyperplasia, but limitations such as long-term wearing of compression garments (CGs) can easily cause bacterial infection, cleanliness, and lifespan problems of CGs caused by the tedious operation of applying silicone. In this study, a compression garment fabric (CGF) with both inhibition of scar hyperplasia and antibacterial function was prepared. A polydimethylsiloxane (PDMS)-loaded microcapsule (PDMS-M) was prepared with chitosan quaternary ammonium salt (HACC) and sodium alginate (SA) as wall materials and PDMS as core materials by the complex coagulation method. The PDMS-Ms were finished on CGF and modified with (3-aminopropyl)triethoxysilane (APTES) to obtain PDMS-M CGF, which was further treated with HACC to produce PDMS-M-HACC CGF. X-ray Photoelectron Spectroscopy(XPS) and Fourier transform infrared spectroscopy (FTIR) analysis confirmed the formation of covalent bonding between PDMS-M and CGF. The PDMS-M CGF exhibited antibacterial rates of 94.2% against Gram-negative bacteria Escherichia coli (E. coli, AATCC 6538) and of 83.1% against Gram-positive bacteria Staphylococcus aureus (S. aureus, AATCC 25922). The antibacterial rate of PDMS-M-HACC CGF against both E. coli and S. aureus reached 99.9%, with wash durability reaching grade AA for E. coli and approaching grade A for S. aureus. The finished CGF maintained good biocompatibility and showed minimal reduction in moisture permeability compared to unfinished CGF, though with decreased elastic recovery, air permeability and softness. The finished CGF of this study is expected to improve the therapeutic effect of hypertrophic scars and improve the quality of life of patients with hypertrophic scars. Full article
Show Figures

Figure 1

15 pages, 1636 KiB  
Article
The Immunoproteasome Is Expressed but Dispensable for a Leukemia Infected Cell Vaccine
by Delphine Béland, Victor Mullins-Dansereau, Karen Geoffroy, Mélissa Viens, Kim Leclerc Desaulniers and Marie-Claude Bourgeois-Daigneault
Vaccines 2025, 13(8), 835; https://doi.org/10.3390/vaccines13080835 (registering DOI) - 5 Aug 2025
Abstract
Background/Objectives: Leukemia is associated with high recurrence rates and cancer vaccines are emerging as a promising immunotherapy against the disease. Here, we investigate the mechanism of action by which a personalized vaccine made from leukemia cells infected with an oncolytic virus (ICV) induces [...] Read more.
Background/Objectives: Leukemia is associated with high recurrence rates and cancer vaccines are emerging as a promising immunotherapy against the disease. Here, we investigate the mechanism of action by which a personalized vaccine made from leukemia cells infected with an oncolytic virus (ICV) induces anti-tumor immunity. Methods: Using the L1210 murine model, leukemia cells were infected and irradiated to create the ICV. The CRISPR-Cas9 system was used to engineer knockout cells to test in treatment efficacy studies. Results: We found that pro-inflammatory interferons (IFNs) that are produced by infected vaccine cells induce the immunoproteasome (ImP), a specialized proteasome subtype that is found in immune cells. Interestingly, we show that while a vaccine using the oncolytic vesicular stomatitis virus (oVSV) completely protects against tumor challenge, the wild-type (wt) virus, which does not induce the ImP, is not as effective. To delineate the contribution of the ImP for vaccine efficacy, we generated ImP-knockout cell lines and found no differences in treatment efficacy compared to wild-type cells. Furthermore, an ICV using another murine leukemia model that expresses the ImP only when infected by an IFN gamma-encoding variant of the virus demonstrated similar efficacy as the parental virus. Conclusions: Taken together, our data show that ImP expression by vaccine cells was not required for the efficacy of leukemia ICVs. Full article
(This article belongs to the Special Issue Personalised Cancer Vaccines)
Show Figures

Figure 1

15 pages, 1786 KiB  
Article
Lycopene Inhibits PRRSV Replication by Suppressing ROS Production
by Ying-Xian Ma, Ya-Qi Han, Pei-Zhu Wang, Bei-Bei Chu, Sheng-Li Ming and Lei Zeng
Int. J. Mol. Sci. 2025, 26(15), 7560; https://doi.org/10.3390/ijms26157560 (registering DOI) - 5 Aug 2025
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-stranded positive-sense RNA virus, poses a significant threat to global swine production. Despite the availability of modified live virus and inactivated vaccines, their limited efficacy and safety concerns highlight the urgent need for novel [...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-stranded positive-sense RNA virus, poses a significant threat to global swine production. Despite the availability of modified live virus and inactivated vaccines, their limited efficacy and safety concerns highlight the urgent need for novel antiviral therapeutics. This study aimed to investigate the molecular mechanisms by which lycopene inhibits PRRSV replication. Initial assessments confirmed that lycopene did not adversely affect cellular viability, cell cycle progression, or apoptosis. Using fluorescence microscopy, flow cytometry, immunoblotting, quantitative real-time PCR (qRT-PCR), and viral titration assays, lycopene was shown to exhibit potent antiviral activity against PRRSV. Mechanistic studies revealed that lycopene suppresses reactive oxygen species (ROS) production, which is critical for PRRSV proliferation. Additionally, lycopene attenuated PRRSV-induced inflammatory responses, as demonstrated by immunoblotting, ELISA, and qRT-PCR assays. These findings suggest that lycopene inhibits PRRSV replication by modulating ROS levels and mitigating inflammation, offering a promising avenue for the development of antiviral therapeutics. This study provides new insights and strategies for combating PRRSV infections, emphasizing the potential of lycopene as a safe and effective antiviral agent. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop