Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = inertial gravity waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 13796 KiB  
Article
The BIRDIES Experiment: Measuring Beryllium Isotopes to Resolve Dynamics in the Stratosphere
by Sonia Wharton, Alan J. Hidy, Thomas S. Ehrmann, Wenbo Zhu, Shaun N. Skinner, Hassan Beydoun, Philip J. Cameron-Smith, Marisa Repasch, Nipun Gunawardena, Jungmin M. Lee, Ate Visser, Matthew Griffin, Samuel Maddren and Erik Oerter
Atmosphere 2024, 15(12), 1502; https://doi.org/10.3390/atmos15121502 - 17 Dec 2024
Viewed by 1297
Abstract
Cosmogenic beryllium-10 and beryllium-7, and the ratio of the two (10Be/7Be), are powerful atmospheric tracers of stratosphere–troposphere exchange (STE) processes; however, measurements are sparse for altitudes well above the tropopause. We present a novel high-altitude balloon campaign aimed to measure these isotopes in [...] Read more.
Cosmogenic beryllium-10 and beryllium-7, and the ratio of the two (10Be/7Be), are powerful atmospheric tracers of stratosphere–troposphere exchange (STE) processes; however, measurements are sparse for altitudes well above the tropopause. We present a novel high-altitude balloon campaign aimed to measure these isotopes in the mid-stratosphere called Beryllium Isotopes for Resolving Dynamics in the Stratosphere (BIRDIES). BIRDIES targeted gravity waves produced by tropopause-overshooting convection to study their propagation and impact on STE dynamics, including the production of turbulence in the stratosphere. Two custom-designed payloads called FiSH and GASP were flown at altitudes approaching 30 km to measure in situ turbulence and beryllium isotopes (on aerosols), respectively. These were flown on nine high-altitude balloon flights over Kansas, USA, in summer 2022. The atmospheric samples were augmented with a ground-based rainfall collection targeting isotopic signatures of deep convection overshooting. Our GASP samples yielded mostly negligible amounts of both 10Be and 7Be collected in the mid-stratosphere but led to design improvements to increase aerosol capture in low-pressure environments. Observations from FiSH and the precipitation collection were more fruitful. FiSH showed the presence of turbulent velocity, temperature, and acoustic fluctuations in the stratosphere, including length scales in the infra-sonic range and inertial subrange that indicated times of elevated turbulence. The precipitation collection, and subsequent statistical analysis, showed that large spatial datasets of 10Be/7Be can be measured in individual rainfall events with minimum terrestrial contamination. While the spatial patterns in rainfall suggested some evidence for overshooting convection, inter-event temporal variability was clearly observed and predicted with good agreement using the 3D chemical transport model GEOS-CHEM. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

17 pages, 3579 KiB  
Article
Experimental Study on Gas–Liquid Two-Phase Flow Upstream and Downstream of U-Bends
by Xiaoxu Ma, Zongyao Gu, Delong Ni, Chuang Li, Wei Zhang, Fengshan Zhang and Maocheng Tian
Processes 2024, 12(2), 277; https://doi.org/10.3390/pr12020277 - 26 Jan 2024
Cited by 4 | Viewed by 1645
Abstract
In this study, the influence of U-bends on the flow and pressure propagation characteristics of a gas–liquid two-phase flow in upstream and downstream straight pipes was investigated experimentally. The superficial velocities of the gas and liquid are 0.18–25.11 m/s and 0.20–1.98 m/s, respectively, [...] Read more.
In this study, the influence of U-bends on the flow and pressure propagation characteristics of a gas–liquid two-phase flow in upstream and downstream straight pipes was investigated experimentally. The superficial velocities of the gas and liquid are 0.18–25.11 m/s and 0.20–1.98 m/s, respectively, covering plug flow, slug flow, and annular flow. The experiments were conducted in U-tubes with inner diameters of 9 mm and 12 mm and with a curvature ratio of 8.33. The U-tube was C-shaped. The pressure fluctuations at the axial measurement points of the straight tubes were measured. Flow images of the distal straight tubes and U-bends were obtained. The disturbance from U-bends in the two-phase flow in the vicinity of the bend is very obvious. The perturbation from U-bends in the fluid in the adjacent straight tubes is highly related to the incoming flow pattern. The slug flow has the most significant influence, whereas the effects of the plug and annular flows are small. Fundamentally, it mainly depends on the weight relationship between the gravity, centrifugal force, and inertial force of the gas–liquid two-phase fluid. The pressure fluctuation propagates in the form of a wave with the same dominant frequency in the straight pipes of the U-tube. The pressure pulsation energy in the straight tubes strengthens with decreasing distance from the 180° return bend. In addition, the pressure fluctuation energy downstream of the U-bend is greater than that upstream of the return bend. Full article
Show Figures

Figure 1

36 pages, 2677 KiB  
Article
Dimensionless Groups by Entropic Similarity: II—Wave Phenomena and Information-Theoretic Flow Regimes
by Robert K. Niven
Entropy 2023, 25(11), 1538; https://doi.org/10.3390/e25111538 - 11 Nov 2023
Cited by 1 | Viewed by 1670
Abstract
The aim of this study is to explore the insights of the information-theoretic definition of similarity for a multitude of flow systems with wave propagation. This provides dimensionless groups of the form Πinfo=U/c, where U is a [...] Read more.
The aim of this study is to explore the insights of the information-theoretic definition of similarity for a multitude of flow systems with wave propagation. This provides dimensionless groups of the form Πinfo=U/c, where U is a characteristic flow velocity and c is a signal velocity or wave celerity, to distinguish different information-theoretic flow regimes. Traditionally, dimensionless groups in science and engineering are defined by geometric similarity, based on ratios of length scales; kinematic similarity, based on ratios of velocities or accelerations; and dynamic similarity, based on ratios of forces. In Part I, an additional category of entropic similarity was proposed based on ratios of (i) entropy production terms; (ii) entropy flow rates or fluxes; or (iii) information flow rates or fluxes. In this Part II, the information-theoretic definition is applied to a number of flow systems with wave phenomena, including acoustic waves, blast waves, pressure waves, surface or internal gravity waves, capillary waves, inertial waves and electromagnetic waves. These are used to define the appropriate Mach, Euler, Froude, Rossby or other dimensionless number(s)—including new groups for internal gravity, inertial and electromagnetic waves—to classify their flow regimes. For flows with wave dispersion, the coexistence of different celerities for individual waves and wave groups—each with a distinct information-theoretic group—is shown to imply the existence of more than two information-theoretic flow regimes, including for some acoustic wave systems (subsonic/mesosonic/supersonic flow) and most systems with gravity, capillary or inertial waves (subcritical/mesocritical/supercritical flow). For electromagnetic wave systems, the additional vacuum celerity implies the existence of four regimes (subluminal/mesoluminal/transluminal/superluminal flow). In addition, entropic analyses are shown to provide a more complete understanding of frictional behavior and sharp transitions in compressible and open channel flows, as well as the transport of entropy by electromagnetic radiation. The analyses significantly extend the applications of entropic similarity for the analysis of flow systems with wave propagation. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Graphical abstract

15 pages, 10310 KiB  
Article
Evolution of a Stratified Turbulent Cloud under Rotation
by Tianyi Li, Minping Wan and Shiyi Chen
Atmosphere 2023, 14(10), 1590; https://doi.org/10.3390/atmos14101590 - 22 Oct 2023
Viewed by 1782
Abstract
Localized turbulence is common in geophysical flows, where the roles of rotation and stratification are paramount. In this study, we investigate the evolution of a stratified turbulent cloud under rotation. Recognizing that a turbulent cloud is composed of vortices of varying scales and [...] Read more.
Localized turbulence is common in geophysical flows, where the roles of rotation and stratification are paramount. In this study, we investigate the evolution of a stratified turbulent cloud under rotation. Recognizing that a turbulent cloud is composed of vortices of varying scales and shapes, we start our investigation with a single eddy using analytical solutions derived from a linearized system. Compared to an eddy under pure rotation, the stratified eddy shows the physical manifestation of a known potential vorticity mode, appearing as a static stable vortex. In addition, the expected shift from inertial waves to inertial-gravity waves is observed. In our numerical simulations of the turbulent cloud, carried out at a constant Rossby number over a range of Froude numbers, stratification causes columnar structures to deviate from vertical alignment. This deviation increases with increasing stratification, slowing the expansion rate of the cloud. The observed characteristics of these columnar structures are consistent with the predictions of linear theory, particularly in their tilt angles and vertical growth rates, suggesting a significant influence of inertial-gravity waves. Using Lagrangian particle tracking, we have identified regions where wave activity dominates over turbulence. In scenarios of milder stratification, these inertial-gravity waves are responsible for a significant energy transfer away from the turbulent cloud, a phenomenon that attenuates with increasing stratification. Full article
Show Figures

Figure 1

24 pages, 30722 KiB  
Article
A Systematic Approach for Inertial Sensor Calibration of Gravity Recovery Satellites and Its Application to Taiji-1 Mission
by Haoyue Zhang, Peng Xu, Zongqi Ye, Dong Ye, Li-E Qiang, Ziren Luo, Keqi Qi, Shaoxin Wang, Zhiming Cai, Zuolei Wang, Jungang Lei and Yueliang Wu
Remote Sens. 2023, 15(15), 3817; https://doi.org/10.3390/rs15153817 - 31 Jul 2023
Cited by 8 | Viewed by 2005
Abstract
High-precision inertial sensors or accelerometers can provide references for free-falling motion in gravitational fields in space. They serve as the key payloads for gravity recovery missions such as CHAMP, the GRACE-type missions, and the planned Next-Generation Gravity Missions. In this work, a systematic [...] Read more.
High-precision inertial sensors or accelerometers can provide references for free-falling motion in gravitational fields in space. They serve as the key payloads for gravity recovery missions such as CHAMP, the GRACE-type missions, and the planned Next-Generation Gravity Missions. In this work, a systematic method for electrostatic inertial sensor calibration of gravity recovery satellites is suggested, which is applied to and verified with the Taiji-1 mission. With this method, the complete operating parameters including the scale factors, the center of mass offset vector, and the intrinsic biased acceleration can be precisely calibrated with only two sets of short-term in-orbit experiments. This could reduce the gaps in data that are caused by necessary in-orbit calibrations during the lifetime of related missions. Taiji-1 is the first technology-demonstration satellite of the “Taiji Program in Space”, which, in its final extended phase in 2022, could be viewed as operating in the mode of a high–low satellite-to-satellite tracking gravity mission. Based on the principles of calibration, swing maneuvers with time spans of approximately 200 s and rolling maneuvers for 19 days were conducted by Taiji-1 in 2022. Given the data of the actuation voltages of the inertial sensor, satellite attitude variations, precision orbit determinations, the inertial sensor’s operating parameters are precisely re-calibrated with Kalman filters and are relayed to the Taiji-1 science team. The relative errors of the calibrations are <1% for the linear scale factors, <3% for center of mass, and <0.1% for biased accelerations. Data from one of the sensitive axes are re-processed with the updated operating parameters, and the resulting performance is found to be slightly improved over the former results. This approach could be of high reference value for the accelerometer or inertial sensor calibrations of the GFO, the Chinese GRACE-type mission, and the Next-Generation Gravity Missions. This could also create some insight into the in-orbit calibrations of the ultra-precision inertial sensors for future GW space antennas because of the technological inheritance between these two generations of inertial sensors. Full article
(This article belongs to the Special Issue GRACE for Earth System Mass Change: Monitoring and Measurement)
Show Figures

Figure 1

16 pages, 32680 KiB  
Article
Anticipated Capabilities of the ODYSEA Wind and Current Mission Concept to Estimate Wind Work at the Air–Sea Interface
by Hector Torres, Alexander Wineteer, Patrice Klein, Tong Lee, Jinbo Wang, Ernesto Rodriguez, Dimitris Menemenlis and Hong Zhang
Remote Sens. 2023, 15(13), 3337; https://doi.org/10.3390/rs15133337 - 29 Jun 2023
Cited by 20 | Viewed by 3334
Abstract
The kinetic energy transfer between the atmosphere and oceans, called wind work, affects ocean dynamics, including near-inertial oscillations and internal gravity waves, mesoscale eddies, and large-scale zonal jets. For the most part, the recent numerical estimates of global wind work amplitude are almost [...] Read more.
The kinetic energy transfer between the atmosphere and oceans, called wind work, affects ocean dynamics, including near-inertial oscillations and internal gravity waves, mesoscale eddies, and large-scale zonal jets. For the most part, the recent numerical estimates of global wind work amplitude are almost five times larger than those reported 10 years ago. This large increase is explained by the impact of the broad range of spatial and temporal scales covered by winds and currents, the smallest of which has only recently been uncovered by increasingly high-resolution modeling efforts. However, existing satellite observations do not fully sample this broad range of scales. The present study assesses the capabilities of ODYSEA, a conceptual satellite mission to estimate the amplitude of wind work in the global ocean. To this end, we use an ODYSEA measurement simulator fed by the outputs of a km scale coupled ocean–atmosphere model to estimate wind work globally. The results indicate that compared with numerical truth estimates, the ODYSEA instrument performs well globally, except for latitudes north of 40N during summer due to unresolved storm evolution. This performance is explained by the wide-swath properties of ODYSEA (a 1700 km wide swath with 5 km posting for winds and surface currents), its twice-a-day (daily) coverage at mid-latitudes (low latitudes), and the insensitivity of the wind work to uncorrelated errors in the estimated wind and current. Full article
Show Figures

Figure 1

18 pages, 3376 KiB  
Article
Unsupervised Noise Reductions for Gravitational Reference Sensors or Accelerometers Based on the Noise2Noise Method
by Zhilan Yang, Haoyue Zhang, Peng Xu and Ziren Luo
Sensors 2023, 23(13), 6030; https://doi.org/10.3390/s23136030 - 29 Jun 2023
Cited by 2 | Viewed by 2202
Abstract
Onboard electrostatic suspension inertial sensors are important applications for gravity satellites and space gravitational-wave detection missions, and it is important to suppress noise in the measurement signal. Due to the complex coupling between the working space environment and the satellite platform, the process [...] Read more.
Onboard electrostatic suspension inertial sensors are important applications for gravity satellites and space gravitational-wave detection missions, and it is important to suppress noise in the measurement signal. Due to the complex coupling between the working space environment and the satellite platform, the process of noise generation is extremely complex, and traditional noise modeling and subtraction methods have certain limitations. With the development of deep learning, applying it to high-precision inertial sensors to improve the signal-to-noise ratio is a practically meaningful task. Since there is a single noise sample and unknown true value in the measured data in orbit, odd–even sub-samplers and periodic sub-samplers are designed to process general signals and periodic signals, and adds reconstruction layers consisting of fully connected layers to the model. Experimental analysis and comparison are conducted based on simulation data, GRACE-FO acceleration data, and Taiji-1 acceleration data. The results show that the deep learning method is superior to traditional data smoothing processing solutions. Full article
(This article belongs to the Collection Inertial Sensors and Applications)
Show Figures

Figure 1

16 pages, 3723 KiB  
Article
Interferometry Observations of the Gravity Wave Effect on the Sporadic E Layer
by Chane Moges Seid, Ching-Lun Su, Chien-Ya Wang and Yen-Hsyang Chu
Atmosphere 2023, 14(6), 987; https://doi.org/10.3390/atmos14060987 - 6 Jun 2023
Cited by 1 | Viewed by 1792
Abstract
On the basis of interferometry measurement made with the Chung-Li VHF radar, we investigated the effects of upward propagating gravity waves on the spatial structures and dynamic behavior of the 3 m field-aligned irregularities (FAIs) of the sporadic E (Es) layer. The results [...] Read more.
On the basis of interferometry measurement made with the Chung-Li VHF radar, we investigated the effects of upward propagating gravity waves on the spatial structures and dynamic behavior of the 3 m field-aligned irregularities (FAIs) of the sporadic E (Es) layer. The results demonstrate that the quasi-periodic gravity waves oscillating at a dominant wave period of about 46.3 min propagating from east-southeast to west-northwest not only modulated the Es layer but also significantly disturbed the Es layer. Interferometry analysis indicates that the plasma structures associated with gravity wave propagation were in clumpy or plume-like structures, while those not disturbed by the gravity waves were in a thin layer structure that descended over time at a rate of about 2.17 km/h. Observation reveals that the height of a thin Es layer with a thickness of about 2–4 km can be severely modulated by the gravity wave with a height as large as 10 km or more. Moreover, sharply inclined plume-like plasma irregularities with a tilted angle of about 55° or more with respect to the zonal direction were observed. In addition, concave and convex shapes of the Es layer caused by the gravity wave modulations were also found. Some of the wave-generated electric fields were so intense that the corresponding E × B drift velocities of the 3 m Es FAIs approximated 90 m s−1. Most interestingly, sharp Doppler velocity shear as large as 68 m/s/km of the Es FAIs at a height of around 108 km, which bore a strong association with the result of the gravity wave propagation, was provided. The plausible mechanisms responsible for this tremendously large Doppler velocity shear are discussed. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

19 pages, 4130 KiB  
Article
The Impact of Internal Gravity Waves on the Spectra of Turbulent Fluctuations of Vertical Wind Velocity in the Stable Atmospheric Boundary Layer
by Viktor A. Banakh and Igor N. Smalikho
Remote Sens. 2023, 15(11), 2894; https://doi.org/10.3390/rs15112894 - 1 Jun 2023
Cited by 9 | Viewed by 2453
Abstract
The wave turbulence interactions in the stable boundary layer (SBL) of the atmosphere are studied based on data from lidar measurements of the vertical component of wind velocity during the propagation of internal gravity waves (IGWs). It is shown that as an IGW [...] Read more.
The wave turbulence interactions in the stable boundary layer (SBL) of the atmosphere are studied based on data from lidar measurements of the vertical component of wind velocity during the propagation of internal gravity waves (IGWs). It is shown that as an IGW appears, the amplitude of the spectra of turbulent fluctuations of vertical wind velocity nearby the frequency of quasi-harmonic oscillations induced by an IGW increases significantly, sometimes by several orders of magnitude, compared to the spectra in the absence of an IGW. Since IGW energy is transferred to small-scale turbulence, the amplitude of spectra with the Kolmogorov–Obukhov −5/3 power-law frequency dependence in the inertial frequency range increases. The slope of the spectra in the low-frequency range between the frequency of IGW-induced oscillations and the frequency of the lower boundary of the inertial range exceeds the slope, corresponding to the −5/3 power-law dependence. In this frequency range, the spectra obey the power-law dependence on the frequency with the exponent ranging from −4.2 to −1.9. The average value of the exponent −3 is consistent with a low-frequency slope caused by IGWs in turbulent spectra in the lower SBL. Full article
(This article belongs to the Special Issue Observation of Atmospheric Boundary-Layer Based on Remote Sensing)
Show Figures

Graphical abstract

17 pages, 8857 KiB  
Article
Observation of Near-Inertial Internal Gravity Waves in the Southern South China Sea
by Qian Liu, Jian Cui, Xiaodong Shang, Xiaohui Xie, Xiangbai Wu, Junliang Gao and Huan Mei
Remote Sens. 2023, 15(2), 368; https://doi.org/10.3390/rs15020368 - 7 Jan 2023
Cited by 6 | Viewed by 2714
Abstract
Two sets of more than 850 days of mooring records and satellite altimeter data are used to explore the features and spatiotemporal evolution of near-inertial waves (NIWs) near Nansha Island in the southern South China Sea (SCS). The observed NIWs are dominated by [...] Read more.
Two sets of more than 850 days of mooring records and satellite altimeter data are used to explore the features and spatiotemporal evolution of near-inertial waves (NIWs) near Nansha Island in the southern South China Sea (SCS). The observed NIWs are dominated by clockwise (downward energy propagation) motions and show a clear blue shift with a distinct peak frequency of 1.09 f during two large NIW events. The near-inertial kinetic energy (NIKE) is primarily concentrated in the upper layer and radiated downward. The largest value of depth-integrated NIKE reaches 3.5 KJ/m2. Besides, the NIWs are dominated by the first three modes, which account for 80% of the total NIKE. Moreover, the depth-integrated NIKE exhibits an apparent seasonal variation, with the largest NIKE in winter, which is almost three times larger than that in other seasons. Every large NIKE event is attributed to the passage of storms and is dominated by mode-2 NIWs. The dominance of the mode-2 NIWs is likely caused by the interaction between NIWs and mesoscale eddies. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

8 pages, 286 KiB  
Article
Schrödinger–Newton Equation with Spontaneous Wave Function Collapse
by Lajos Diósi
Quantum Rep. 2022, 4(4), 566-573; https://doi.org/10.3390/quantum4040041 - 5 Dec 2022
Cited by 2 | Viewed by 2445
Abstract
Based on the assumption that the standard Schrödinger equation becomes gravitationally modified for massive macroscopic objects, two independent proposals have survived from the 1980s. The Schrödinger–Newton equation (1984) provides well-localized solitons for free macro-objects but lacks the mechanism of how extended wave functions [...] Read more.
Based on the assumption that the standard Schrödinger equation becomes gravitationally modified for massive macroscopic objects, two independent proposals have survived from the 1980s. The Schrödinger–Newton equation (1984) provides well-localized solitons for free macro-objects but lacks the mechanism of how extended wave functions collapse on solitons. The gravity-related stochastic Schrödinger equation (1989) provides the spontaneous collapse, but the resulting solitons undergo a tiny diffusion, leading to an inconvenient steady increase in the kinetic energy. We propose the stochastic Schrödinger–Newton equation, which contains the above two gravity-related modifications together. Then, the wave functions of free macroscopic bodies will gradually and stochastically collapse to solitons, which perform inertial motion without momentum diffusion: conservation of momentum and energy is restored. Full article
28 pages, 471 KiB  
Review
The Role of Longitudinal Polarizations in Horndeski and Macroscopic Gravity: Introducing Gravitational Plasmas
by Fabio Moretti, Flavio Bombacigno and Giovanni Montani
Universe 2021, 7(12), 496; https://doi.org/10.3390/universe7120496 - 15 Dec 2021
Cited by 9 | Viewed by 2563
Abstract
We discuss some general and relevant features of longitudinal gravitational modes in Horndeski gravity and their interaction with matter media. Adopting a gauge-invariant formulation, we clarify how massive scalar and vector fields can induce additional transverse and longitudinal excitations, resulting in breathing, vector, [...] Read more.
We discuss some general and relevant features of longitudinal gravitational modes in Horndeski gravity and their interaction with matter media. Adopting a gauge-invariant formulation, we clarify how massive scalar and vector fields can induce additional transverse and longitudinal excitations, resulting in breathing, vector, and longitudinal polarizations. We review, then, the interaction of standard gravitational waves with a molecular medium, outlining the emergence of effective massive gravitons, induced by the net quadrupole moment due to molecule deformation. Finally, we investigate the interaction of the massive mode in Horndeski gravity with a noncollisional medium, showing that Landau damping phenomenon can occur in the gravitational sector as well. That allows us to introduce the concept of “gravitational plasma”, where inertial forces associated with the background field play the role of cold ions in electromagnetic plasma. Full article
(This article belongs to the Special Issue Gravitational Waves in Modified Gravity)
Show Figures

Figure 1

23 pages, 12762 KiB  
Article
Structural Modeling and Failure Assessment of Spar-Type Substructure for 5 MW Floating Offshore Wind Turbine under Extreme Conditions in the East Sea
by Kwangtae Ha, Jun-Bae Kim, Youngjae Yu and Hyoung-Seock Seo
Energies 2021, 14(20), 6571; https://doi.org/10.3390/en14206571 - 12 Oct 2021
Cited by 17 | Viewed by 5660
Abstract
Not only the driving for offshore wind energy capacity of 12 GW by Korea’s Renewable Energy 2030 plan but also the need for the rejuvenation of existing world-class shipbuilders’ infrastructures is drawing much attention to offshore wind energy in Korea, especially to the [...] Read more.
Not only the driving for offshore wind energy capacity of 12 GW by Korea’s Renewable Energy 2030 plan but also the need for the rejuvenation of existing world-class shipbuilders’ infrastructures is drawing much attention to offshore wind energy in Korea, especially to the diverse substructures. Considering the deep-sea environment in the East Sea, this paper presents detailed modeling and analysis of spar-type substructure for a 5 MW floating offshore wind turbine (FOWT). This process uses a fully coupled integrated load analysis, which was carried out using FAST, a widely used integrated load analysis software developed by NREL, coupled with an in-house hydrodynamic code (UOU code). The environmental design loads were calculated from data recorded over three years at the Ulsan Marine buoy point according to the ABS and DNVGL standards. The total 12 maximum cases from DLC 6.1 were selected to evaluate the structural integrity of the spar-type substructure under the three co-directional conditions (45°, 135°, and 315°) of wind and wave. A three-dimensional (3D) structural finite element (FE) model incorporating the wind turbine tower and floating structure bolted joint connection was constructed in FEGate (pre/post-structural analysis module based on MSC NASTRAN for ship and offshore structures). The FEM analysis applied the external loads such as the structural loads due to the inertial acceleration, buoyancy, and gravity, and the environmental loads due to the wind, wave, and current. The three-dimensional FE analysis results from the MSC Nastran software showed that the designed spar-type substructure had enough strength to endure the extreme limitation in the East Sea based on the von Mises criteria. The current process of this study would be applicable to the other substructures such as the submersible type. Full article
(This article belongs to the Special Issue Advancement in Wind Turbine Technology)
Show Figures

Figure 1

16 pages, 54757 KiB  
Article
Accuracy Analysis of the Measurement of Centre of Gravity and Moment of Inertia with a Swing
by Roman Gabl, Thomas Davey, Edd Nixon and David M. Ingram
Appl. Sci. 2021, 11(12), 5345; https://doi.org/10.3390/app11125345 - 9 Jun 2021
Cited by 5 | Viewed by 4846
Abstract
Floating devices under wave and current loads are typically designed based on numerical methods followed by a validation with experimental investigations. This allows an independent check due to the comparison of two different modelling approaches based on different assumptions. At an early stage [...] Read more.
Floating devices under wave and current loads are typically designed based on numerical methods followed by a validation with experimental investigations. This allows an independent check due to the comparison of two different modelling approaches based on different assumptions. At an early stage of the project, numerical simulations are based on theoretical (ideal) values of the centre of gravity (CG) and moment of inertia (MI). The building process of a scaled model results very often in a requested simplification of certain parts, which can influence the CG and also the MI of the scaled model. Knowing those discrepancies allows us to improve the comparability of both approaches but the measurement of those values is connected with either a higher uncertainty or a high level of effort. A significant improvement of such measurements can be reached by the deployment of a specific experimental set-up. This paper presents the classification of the newly designed swing with a high accuracy inertial inclinometer, which was verified by the marker-based motion capturing system. The achieved experiences are useful for the future use of the set-up as well as similar investigations. The comparison with the theoretical values for the swing as well as an example model showed very good agreements and a high accuracy of few millimetres for the CG and an error smaller 1% for MI. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

16 pages, 3612 KiB  
Article
Observing Wind-Forced Flexural-Gravity Waves in the Beaufort Sea and Their Relationship to Sea Ice Mechanics
by Mark A. Johnson, Aleksey V. Marchenko, Dyre O. Dammann and Andrew R. Mahoney
J. Mar. Sci. Eng. 2021, 9(5), 471; https://doi.org/10.3390/jmse9050471 - 27 Apr 2021
Cited by 9 | Viewed by 4242
Abstract
We developed and deployed two inertial measurement units on mobile pack ice during a U.S. Navy drifting ice campaign in the Beaufort Sea. The ice camp was more than 1000 km from the nearest open water. The sensors were stationed on thick (>1 [...] Read more.
We developed and deployed two inertial measurement units on mobile pack ice during a U.S. Navy drifting ice campaign in the Beaufort Sea. The ice camp was more than 1000 km from the nearest open water. The sensors were stationed on thick (>1 m) first- and multi–year ice to record 3-D accelerations at 10 Hz for one week during March 2020. During this time, gale-force winds exceeded 21 m per second for several hours during two separate wind events and reached a maximum of 25 m per second. Our observations show similar sets of wave bands were excited during both wind events. One band was centered on a period of ~14 s. Another band arrived several hours later and was centered on ~3.5-s. We find that the observed wave bands match a model dispersion curve for flexural gravity waves in ~1.2-m ice with a Young’s modulus of 3.5 GPa under compressive stresses of ~0.3 MPa. We further evaluate the bending stress and load cycles of the individual wave bands and their potential role in break-up of sea ice. This work demonstrates how observations of waves in sea ice using these and similar sensors can potentially be a valuable field-based tool for evaluating ice mechanics. In particular, this approach can be used to observe and describe the combined mechanical behavior of consolidated floes relevant for understanding sea ice mechanical processes and model development. Full article
(This article belongs to the Special Issue The Ice-Ocean Boundary)
Show Figures

Figure 1

Back to TopTop