Schrödinger–Newton Equation with Spontaneous Wave Function Collapse
Abstract
:1. Introduction
2. Semiclassical Schrödinger–Newton Equation
3. Gravity-Related Wavefunction Collapse
4. Schrödinger–Newton Equation with Wave Function Collapse
5. Solitons with Energy Conservation
6. Final Remarks
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References and Note
- Diósi, L. Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 1984, 105, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Diósi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 1987, 120, 377–381. [Google Scholar] [CrossRef]
- Diósi, L. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 1989, 40, 1165. [Google Scholar] [CrossRef] [PubMed]
- Diósi, L. Spontaneous Wave Function Collapse with Frame Dragging and Induced Gravity. Quantum Rep. 2019, 1, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Diósi, L. Notes on certain Newton gravity mechanisms of wavefunction localization and decoherence. J. Phys. A Math. Theor. 2007, 40, 2989–2995. [Google Scholar] [CrossRef]
- The parameter ωG is fully classical, has nothing to do with the quantum. It is in the mHz-range (weak G-related effects) if f(r) does not resolve the microscopic structure. It can grow up to the kHz-range in case of deep subatomic resolution (strong G-related effects).
- Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 1996, 28, 581–600. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. Quantum computation, entanglement and state reduction. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 356, 1927–1937. [Google Scholar] [CrossRef]
- Penrose, R. On the gravitization of quantum mechanics 1: Quantum state reduction. Found. Phys. 2014, 44, 557–575. [Google Scholar] [CrossRef] [Green Version]
- Gisin, N. Stochastic quantum dynamics and relativity. Helv. Phys. Acta 1989, 62, 363–371. [Google Scholar]
- Diósi, L. Nonlinear Schrödinger equation in foundations: Summary of 4 catches. J. Phys. Conf. Ser. 2016, 701, 012019. [Google Scholar] [CrossRef] [Green Version]
- Großardt, A. Three little paradoxes: Making sense of semiclassical gravity. AVS Quantum Sci. 2022, 4, 010502. [Google Scholar] [CrossRef]
- Nimmrichter, S.; Hornberger, K. Stochastic extensions of the regularized Schrödinger-Newton equation. Phys. Rev. D 2015, 91, 024016. [Google Scholar] [CrossRef] [Green Version]
- Tilloy, A.; Diósi, L. Sourcing semiclassical gravity from spontaneously localized quantum matter. Phys. Rev. D 2016, 93, 024026. [Google Scholar] [CrossRef] [Green Version]
- Bassi, A.; Lochan, K.; Satin, S.; Singh, T.; Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 2013, 85, 471. [Google Scholar] [CrossRef]
- Helou, B.; Slagmolen, B.; McClelland, D.; Chen, Y. LISA pathfinder appreciably constrains collapse models. Phys. Rev. D 2017, 95, 084054. [Google Scholar] [CrossRef] [Green Version]
- Donadi, S.; Piscicchia, K.; Curceanu, C.; Diósi, L.; Laubenstein, M.; Bassi, A. Underground test of gravity-related wave function collapse. Nat. Phys. 2021, 17, 74–78. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diósi, L. Schrödinger–Newton Equation with Spontaneous Wave Function Collapse. Quantum Rep. 2022, 4, 566-573. https://doi.org/10.3390/quantum4040041
Diósi L. Schrödinger–Newton Equation with Spontaneous Wave Function Collapse. Quantum Reports. 2022; 4(4):566-573. https://doi.org/10.3390/quantum4040041
Chicago/Turabian StyleDiósi, Lajos. 2022. "Schrödinger–Newton Equation with Spontaneous Wave Function Collapse" Quantum Reports 4, no. 4: 566-573. https://doi.org/10.3390/quantum4040041
APA StyleDiósi, L. (2022). Schrödinger–Newton Equation with Spontaneous Wave Function Collapse. Quantum Reports, 4(4), 566-573. https://doi.org/10.3390/quantum4040041