Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = inert gas condensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2984 KiB  
Article
Comparative LCA Analysis of Selected Recycling Methods for Carbon Fibers and Socio-Economic Analysis
by Nikolina Poranek, Krzysztof Pikoń, Natalia Generowicz-Caba, Maciej Mańka, Joanna Kulczycka, Dimitrios Marinis, Ergina Farsari, Eleftherios Amanatides, Anna Lewandowska, Marcin Sajdak, Sebastian Werle and Szymon Sobek
Materials 2025, 18(11), 2660; https://doi.org/10.3390/ma18112660 - 5 Jun 2025
Viewed by 497
Abstract
Carbon fiber is essential in many industries. Since primary production is highly energy-intensive, recycling technologies are being sought. A goal of the research was to develop at a laboratory scale a chemical recycling method aimed at recovering carbon fiber. Two variants of the [...] Read more.
Carbon fiber is essential in many industries. Since primary production is highly energy-intensive, recycling technologies are being sought. A goal of the research was to develop at a laboratory scale a chemical recycling method aimed at recovering carbon fiber. Two variants of the method have been established and environmentally compared with a primary production version. Methods: The life cycle assessment methodology has been used to assess and quantify the environmental impacts. The cradle to gate analysis was performed with the functional unit defined as a production of 1 kg of carbon fiber. Results: The best environmental option turned out to be a developed chemical recycling technology named Scenario 1. It is a solvolysis performed using an ambient-pressure-operated batch reactor connected to a reflux condenser and an inert gas supply tank, using an ethylene glycol and potassium hydroxide solution. The worst case appeared to be the second variant of the chemical recycling, named Scenario 2 (plasma-enhanced nitric acid solvolysis). Conclusions: In Scenario 1, a production of the ethylene glycol was recognized as a key environmental driver, while in Scenarios 2 and 3 the energy-related impact was the most influential. Full article
(This article belongs to the Special Issue Advances in Waste Materials’ Valorization)
Show Figures

Figure 1

14 pages, 10364 KiB  
Article
SnO2-Based CMOS-Integrated Gas Sensor Optimized by Mono-, Bi-, and Trimetallic Nanoparticles
by Larissa Egger, Florentyna Sosada-Ludwikowska, Stephan Steinhauer, Vidyadhar Singh, Panagiotis Grammatikopoulos and Anton Köck
Chemosensors 2025, 13(2), 59; https://doi.org/10.3390/chemosensors13020059 - 8 Feb 2025
Cited by 1 | Viewed by 1195
Abstract
Chemical sensors, relying on electrical conductance changes in a gas-sensitive material due to the surrounding gas, have the (dis-)advantage of reacting with multiple target gases and humidity. In this work, we report CMOS-integrated SnO2 thin film-based gas sensors, which are functionalized with [...] Read more.
Chemical sensors, relying on electrical conductance changes in a gas-sensitive material due to the surrounding gas, have the (dis-)advantage of reacting with multiple target gases and humidity. In this work, we report CMOS-integrated SnO2 thin film-based gas sensors, which are functionalized with mono-, bi-, and trimetallic nanoparticles (NPs) to optimize the sensor performance. The spray pyrolysis technology was used to deposit the metal oxide sensing layer on top of a CMOS-fabricated micro-hotplate (µhp), and magnetron sputtering inert-gas condensation was employed to functionalize the sensing layer with metallic NPs, Ag-, Pd-, and Ru-NPs, and all combinations thereof were used as catalysts to improve the sensor response to carbon monoxide and to suppress the cross-sensitivity toward humidity. The focus of this work is the detection of toxic carbon monoxide and a specific hydrocarbon mixture (HCmix) in a concentration range of 5–50 ppm at different temperatures and humidity levels. The use of CMOS chips ensures low-power, integrated sensors, ready to apply in cell phones, watches, etc., for air quality-monitoring purposes. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

12 pages, 1378 KiB  
Article
Effects of an Inertization System on Waste Plastic Pyrolysis in a Fixed Bed Reactor
by Saša Papuga, Stefano Vecchio Ciprioti, Milica Djurdjevic and Aleksandra Kolundzija
Recycling 2025, 10(1), 2; https://doi.org/10.3390/recycling10010002 - 1 Jan 2025
Cited by 1 | Viewed by 1241
Abstract
This paper reports the results of a study on the significance of the inertization system configuration of a laboratory-scale fixed bed batch reactor with regard to the yield of pyrolysis oil and reactor conversion. Two typical reactor inertization systems were investigated depending on [...] Read more.
This paper reports the results of a study on the significance of the inertization system configuration of a laboratory-scale fixed bed batch reactor with regard to the yield of pyrolysis oil and reactor conversion. Two typical reactor inertization systems were investigated depending on whether the carrier gas (nitrogen in this study) was added from the top or from the bottom of the reactor. Polypropylene (PP) packaging waste (100 g) was used as a model sample. A factorial experimental design was adopted for one categorical parameter, the arrangement of parts of the reactor inertization system. All experiments were conducted at 475 °C, with a carrier gas flow rate of 0.1 L/min and a reaction time of 90 min. Statistical analysis and processing of the results showed that the configuration of the inertization system had a remarkable impact on the pyrolysis oil and gas yield, while its impact on the overall reactor conversion was negligible. When applying the two observed methods of reactor inertization, the average yields of pyrolysis oil and gas differed by 1.7% and 1.8%, respectively. All of the applied statistical treatments had a significance level of 0.05, i.e., there was only a 5% chance of incorrectly rejecting the hypothesis of equality of arithmetic means of pyrolysis yields when the two different methods of reactor inertization were applied. The explanation of this behavior is attributed to the temperature change inside the reactor, which shows that this particular fixed bed reactor suffers from local overheating in its middle part. Local overheating of the middle part of the reactor is more pronounced in the case of inerting the reactor from the bottom, which leads to greater excessive cracking of volatile products compared to the mode of inerting the reactor from the top part and thus greater formation of non-condensable gases, i.e., a reduction in the yield of pyrolytic oil. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Figure 1

13 pages, 3997 KiB  
Article
Reliable Atom Probe Tomography of Cu Nanoparticles Through Tailored Encapsulation by an Electrodeposited Film
by Aydan Çiçek, Florian Knabl, Maximilian Schiester, Helene Waldl, Lidija D. Rafailović, Michael Tkadletz and Christian Mitterer
Nanomaterials 2025, 15(1), 43; https://doi.org/10.3390/nano15010043 - 30 Dec 2024
Viewed by 1102
Abstract
Nanoparticles are essential for energy storage, catalysis, and medical applications, emphasizing their accurate chemical characterization. However, atom probe tomography (APT) of nanoparticles sandwiched at the interface between an encapsulating film and a substrate poses difficulties. Poor adhesion at the film-substrate interface can cause [...] Read more.
Nanoparticles are essential for energy storage, catalysis, and medical applications, emphasizing their accurate chemical characterization. However, atom probe tomography (APT) of nanoparticles sandwiched at the interface between an encapsulating film and a substrate poses difficulties. Poor adhesion at the film-substrate interface can cause specimen fracture during APT, while impurities may introduce additional peaks in the mass spectra. We demonstrate preparing APT specimens with strong adhesion between nanoparticles and film/substrate matrices for successful analysis. Copper nanoparticles were encapsulated at the interface between nickel film and cobalt substrate using electrodeposition. Cobalt and nickel were chosen to match their evaporation fields with copper, minimizing peak overlaps and aiding nanoparticle localization. Copper nanoparticles were deposited via magnetron sputter inert gas condensation with varying deposition times to yield suitable surface coverages, followed by encapsulation with the nickel film. In-plane and cross-plane APT specimens were prepared by femtosecond laser ablation and focused ion beam milling. Longer deposition times resulted in agglomerated nanoparticles as well as pores and voids, causing poor adhesion and specimen failure. In contrast, shorter deposition times provided sufficient surface coverage, ensuring strong adhesion and reducing void formation. This study emphasizes controlled surface coverage for reliable APT analysis, offering insights into nanoparticle chemistry. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

3 pages, 439 KiB  
Abstract
Using Mono-, Bi- and Tri-Metallic Nanoparticles to Improve Selectivity and Sensitivity of CMOS-Integrated SnO2 Thin-Film Gas Sensors
by Florentyna Sosada-Ludwikowska, Larissa Egger, Jerome Vernieres, Vidyadhar Singh, Panagiotis Grammatikopoulos, Stephan Steinhauer and Anton Köck
Proceedings 2024, 97(1), 224; https://doi.org/10.3390/proceedings2024097224 - 14 Jun 2024
Viewed by 1217
Abstract
We demonstrate the systematic optimization of SnO2-based thin-film chemical sensors by using mono-, bi- and tri metallic nanoparticles (NPs) composed of Ag, Pd, and Ru, which are deposited via magnetron sputtering inert gas condensation. The ultrathin SnO2 films are integrated [...] Read more.
We demonstrate the systematic optimization of SnO2-based thin-film chemical sensors by using mono-, bi- and tri metallic nanoparticles (NPs) composed of Ag, Pd, and Ru, which are deposited via magnetron sputtering inert gas condensation. The ultrathin SnO2 films are integrated on CMOS-based micro-hotplate devices, where each chip contains 16 sensor devices in total. We found that the response of the sensor device can be significantly tuned to specific target gases, such as CO and VOCs, by using various types of NPs. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

15 pages, 6032 KiB  
Article
Numerical Investigation of a Two-Phase Ejector Operation Taking into Account Steam Condensation with the Presence of CO2
by Tomasz Kuś and Paweł Madejski
Energies 2024, 17(9), 2236; https://doi.org/10.3390/en17092236 - 6 May 2024
Cited by 3 | Viewed by 1618
Abstract
The application of a two-phase ejector allows for the mixing of liquid and gas and provides effective heat transfer between phases. The aim of the study is a numerical investigation of the performance of a water-driven, condensing two-phase ejector. The research was performed [...] Read more.
The application of a two-phase ejector allows for the mixing of liquid and gas and provides effective heat transfer between phases. The aim of the study is a numerical investigation of the performance of a water-driven, condensing two-phase ejector. The research was performed using CFD methods, which can provide an opportunity to analyze this complex phenomenon in 2D or 3D. The 2D axisymmetric model was developed using CFD software Siemens StarCCM+ 2022.1.1. The Reynolds-Averaged Navier–Stokes (RANS) approach with the Realisable k-ε turbulence model was applied. The multiphase flow was calculated using the mixture model. The boiling/condensation model, where the condensation rate is limited by thermal diffusion, was applied to take into account direct contact condensation. Based on the mass balance calculations and developed pressure and steam volume fraction distributions, the ejector performance was analyzed for various boundary conditions. The influence of the suction pressure (range between 0.812 and 0.90) and the steam mass flow rate (range between 10 g/s and 25 g/s) is presented to investigate the steam condensation phenomenon inside the ejector condenser. The provided mixture of inert gas (CO2) with steam (H2O) in the ejector condenser was investigated also. The weakening of the steam condensation process by adding CO2 gas was observed, but it is still possible to achieve effective condensation despite the presence of inert gas. Full article
(This article belongs to the Special Issue Advances in Numerical Modeling of Multiphase Flow and Heat Transfer)
Show Figures

Figure 1

21 pages, 5967 KiB  
Article
Studying the Effects of Dissolved Noble Gases and High Hydrostatic Pressure on the Spherical DOPC Bilayer Using Molecular Dynamic Simulations
by Eugeny Pavlyuk, Irena Yungerman, Alice Bliznyuk and Yevgeny Moskovitz
Membranes 2024, 14(4), 89; https://doi.org/10.3390/membranes14040089 - 12 Apr 2024
Viewed by 2071
Abstract
Fine-grained molecular dynamics simulations have been conducted to depict lipid objects enclosed in water and interacting with a series of noble gases dissolved in the medium. The simple point-charge (SPC) water system, featuring a boundary composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules, maintained stability throughout [...] Read more.
Fine-grained molecular dynamics simulations have been conducted to depict lipid objects enclosed in water and interacting with a series of noble gases dissolved in the medium. The simple point-charge (SPC) water system, featuring a boundary composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules, maintained stability throughout the simulation under standard conditions. This allowed for the accurate modeling of the effects of hydrostatic pressure at an ambient pressure of 25 bar. The chosen pressure references the 240 m depth of seawater: the horizon frequently used by commercial divers, who comprise the primary patient population of the neurological complication of inert gas narcosis and the consequences of high-pressure neurological syndrome. To quantify and validate the neurological effects of noble gases and discriminate them from high hydrostatic pressure, we reduced the dissolved gas molar concentration to 1.5%, three times smaller than what we previously tested for the planar bilayer (3.5%). The nucleation and growth of xenon, argon and neon nanobubbles proved consistent with the data from the planar bilayer simulations. On the other hand, hyperbaric helium induces only a residual distorting effect on the liposome, with no significant condensed gas fraction observed within the hydrophobic core. The bubbles were distributed over a large volume—both in the bulk solvent and in the lipid phase—thereby causing substantial membrane distortion. This finding serves as evidence of the validity of the multisite distortion hypothesis for the neurological effect of inert gases at high pressure. Full article
(This article belongs to the Section Biological Membrane Dynamics and Computation)
Show Figures

Figure 1

12 pages, 5116 KiB  
Article
Vibration Sensors on Flexible Substrates Based on Nanoparticle Films Grown by Physical Vapor Deposition
by Evangelos Aslanidis, Savvas Sarigiannidis, Evangelos Skotadis and Dimitris Tsoukalas
Materials 2024, 17(7), 1522; https://doi.org/10.3390/ma17071522 - 27 Mar 2024
Cited by 4 | Viewed by 1549
Abstract
Flexible electronics have gained a lot of attention in recent years due to their compatibility with soft robotics, artificial arms, and many other applications. Meanwhile, the detection of acoustic frequencies is a very useful tool for applications ranging from voice recognition to machine [...] Read more.
Flexible electronics have gained a lot of attention in recent years due to their compatibility with soft robotics, artificial arms, and many other applications. Meanwhile, the detection of acoustic frequencies is a very useful tool for applications ranging from voice recognition to machine condition monitoring. In this work, the dynamic response of Pt nanoparticles (Pt NPs)-based strain sensors on flexible substrates is investigated. the nanoparticles were grown in a vacuum by magnetron-sputtering inert-gas condensation. Nanoparticle sensors made on cracked alumina deposited by atomic layer deposition on the flexible substrate and reference nanoparticle sensors, without the alumina layer, were first characterized by their response to strain. The sensors were then characterized by their dynamic response to acoustic frequency vibrations between 20 Hz and 6250 Hz. The results show that alumina sensors outperformed the reference sensors in terms of voltage amplitude. Sensors on the alumina layer could accurately detect frequencies up to 6250 Hz, compared with the reference sensors, which were sensitive to frequencies up to 4250 Hz, while they could distinguish between two neighboring frequencies with a difference of no more than 2 Hz. Full article
(This article belongs to the Special Issue Physical Synthesis, Properties and Applications of Nanoparticles)
Show Figures

Graphical abstract

12 pages, 3298 KiB  
Article
Ag Nanocluster Production through DC Magnetron Sputtering and Inert Gas Condensation: A Study of Structural, Kelvin Probe Force Microscopy, and Optical Properties
by Ishaq Musa, Naser Qamhieh and Saleh T. Mahmoud
Nanomaterials 2023, 13(20), 2758; https://doi.org/10.3390/nano13202758 - 13 Oct 2023
Cited by 3 | Viewed by 1683
Abstract
Silver nanoclusters are valuable for a variety of applications. A combination of direct current (DC) magnetron sputtering and inert gas condensation methods, employed within an ultra-high vacuum (UHV) system, was used to generate Ag nanoclusters with an average size of 4 nm. Various [...] Read more.
Silver nanoclusters are valuable for a variety of applications. A combination of direct current (DC) magnetron sputtering and inert gas condensation methods, employed within an ultra-high vacuum (UHV) system, was used to generate Ag nanoclusters with an average size of 4 nm. Various analytical techniques, including Scanning Probe Microscopy (SPM), X-ray Diffraction (XRD), Kelvin Probe Force Microscopy (KPFM), UV-visible absorption, and Photoluminescence, were employed to characterize the produced Ag nanoclusters. AFM topographic imaging revealed spherical nanoparticles with sizes ranging from 3 to 6 nm, corroborating data from a quadrupole mass filter (QMF). The XRD analysis verified the simple cubic structure of the Ag nanoclusters. The surface potential was assessed using KPFM, from which the work function was calculated with a reference highly ordered pyrolytic graphite (HOPG). The UV-visible absorption spectra displayed peaks within the 350–750 nm wavelength range, with a strong absorption feature at 475 nm. Additionally, lower excitation wavelengths resulted in a sharp peak emission at 370 nm, which became weaker and broader when higher excitation wavelengths were used. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Optoelectronics: Second Edition)
Show Figures

Figure 1

20 pages, 2421 KiB  
Review
An Overview of Real Gas Brayton Power Cycles: Working Fluids Selection and Thermodynamic Implications
by Costante Mario Invernizzi and Gioele Di Marcoberardino
Energies 2023, 16(10), 3989; https://doi.org/10.3390/en16103989 - 9 May 2023
Cited by 4 | Viewed by 4159
Abstract
This paper discusses and reviews the main real gas effects on the thermodynamic performance of closed Brayton cycles. Cycles with carbon dioxide as working fluids are taken as a reference and a comparison of the thermodynamic cycle efficiencies that are made with other [...] Read more.
This paper discusses and reviews the main real gas effects on the thermodynamic performance of closed Brayton cycles. Cycles with carbon dioxide as working fluids are taken as a reference and a comparison of the thermodynamic cycle efficiencies that are made with other possible working fluids (pure fluids and fluid mixtures). We fixed the reduced operating conditions, in optimal conditions, so that all working fluids had the same thermodynamic global performances. Therefore, the choice of the working fluid becomes important for adapting the cycle to the different technological requirements. The positive effects of the real gas properties in supercritical cycles were approximately maximal at reduced minimum cycle temperatures of about 1.01 to 1.05, with maximum to minimum cycle temperatures of about 2.2. The use of mixtures furthers widens the application of the field of closed Brayton cycles, thereby allowing a continuous variation in the critical temperature of the resulting working fluid and, in some cases, also making it possible to take the condensation with a significant further increase in the thermodynamic cycle efficiency. The paper also demonstrates the thermodynamic convenience of resorting to mixtures of carbon dioxide and inert gases. Extensive measurements of vapour–liquid equilibria and analysis of the thermal stability and material compatibility are essential for a practical and full use of the real gas Brayton cycles. Full article
Show Figures

Figure 1

15 pages, 4508 KiB  
Article
Numerical and Experimental Study of Gas Phase Nanoparticle Synthesis Using NanoDOME
by Giorgio La Civita, Edoardo Ugolini, Nicola Patelli, Alberto Piccioni, Andrea Migliori, Luca Pasquini and Emanuele Ghedini
Nanomaterials 2023, 13(8), 1317; https://doi.org/10.3390/nano13081317 - 8 Apr 2023
Viewed by 1812
Abstract
Nowadays, with the rocketing of computational power, advanced numerical tools, and parallel computing, multi-scale simulations are becoming applied more and more to complex multi-physics industrial processes. One of the several challenging processes to be numerically modelled is gas phase nanoparticle synthesis. In an [...] Read more.
Nowadays, with the rocketing of computational power, advanced numerical tools, and parallel computing, multi-scale simulations are becoming applied more and more to complex multi-physics industrial processes. One of the several challenging processes to be numerically modelled is gas phase nanoparticle synthesis. In an applied industrial scenario, the possibility to correctly estimate the geometric properties of the mesoscopic entities population (e.g., their size distribution) and to more precisely control the results is a crucial step to improve the quality and efficiency of the production. The “NanoDOME” project (2015–2018) aims to be an efficient and functional computational service to be applied in such processes. NanoDOME has also been refactored and upscaled during the H2020 Project “SimDOME”. To prove its reliability, we present here an integrated study between experimental data and NanoDOME’s predictions. The main goal is to finely investigate the effect of a reactor’s thermodynamic conditions on the thermophysical history of mesoscopic entities along the computational domain. To achieve this goal, the production of silver nanoparticles has been assessed for five cases with different experimental operative conditions of the reactor. The time evolution and final size distribution of nanoparticles have been simulated with NanoDOME by exploiting the method of moments and population balance model. The validation is performed by comparing NanoDOME’s calculations with the experimental data. Full article
Show Figures

Figure 1

18 pages, 7826 KiB  
Article
Study on Flame Retardancy Behavior of Epoxy Resin with Phosphaphenanthrene Triazine Compound and Organic Zinc Complexes Based on Phosphonitrile
by Bo Xu, Menglin Wu, Yanting Liu and Simiao Wei
Molecules 2023, 28(7), 3069; https://doi.org/10.3390/molecules28073069 - 30 Mar 2023
Cited by 22 | Viewed by 2368
Abstract
A novel flame retardant phosphorus-containing organozinc complex (Zn-PDH) was prepared using zinc and iron as the metal center and 4-aminopyridine, with low steric hindrance, as the organic ligand, then using phosphazene to modify the organometallic complex (Zn-4APD). The flame retardant properties and mechanism [...] Read more.
A novel flame retardant phosphorus-containing organozinc complex (Zn-PDH) was prepared using zinc and iron as the metal center and 4-aminopyridine, with low steric hindrance, as the organic ligand, then using phosphazene to modify the organometallic complex (Zn-4APD). The flame retardant properties and mechanism of Zn-PDH/Tris-(3-DOPO-1-propyl)-triazinetrione (TAD) in epoxy resin (EP) were investigated. Flame inhibition behavior was studied by the vertical combustion test (UL94), while limiting oxygen index (LOI) measurement and flame retardant properties were studied by the cone calorimeter test (CONE). The flame retardant modes of action were explored by using the thermogravimetry–Fourier transform infrared (TG-FTIR) test, X-ray photoelectron spectrometer (XPS), and Raman spectroscopy (LRS). When TAD and Zn-PDH were added to the epoxy resin in the ratio of 3:1, the system achieved a balance between the gas-phase and condense-phase actions of the flame retardant effects, and the 3%TAD/1%Zn-PDH/EP composite system achieved not only good flame inhibition but also obtained good smoke and heat suppression performance, showing a comprehensive flame retardant performance. The gas phase and Zn-PDH mostly promoted charring with a barrier and protective effect in the condensed phase. As for the mechanism, TAD released the phosphorus-containing radicals and phenoxy radicals during decomposition and mainly exerted a gas-phase quenching effect. While in the condense phase, Zn-PDH promoted the decomposition of the polymer matrix to produce more aromatic structures and rapidly formed a complete and dense carbon layer rich in P-O-C crosslinked structures at high temperatures. Meanwhile, more N entered the gas phase in the form of inert gas, which diluted the concentration of the combustible fuel and helped to inhibit the combustion reaction. Full article
(This article belongs to the Special Issue Flame-Resistant Materials)
Show Figures

Figure 1

10 pages, 3984 KiB  
Article
Production of Size-Controlled Gold Nanoclusters for Vapor–Liquid–Solid Method
by Alam Saj, Shaikha Alketbi, Sumayya M. Ansari, Dalaver H. Anjum, Baker Mohammad and Haila M. Aldosari
Nanomaterials 2022, 12(5), 763; https://doi.org/10.3390/nano12050763 - 24 Feb 2022
Cited by 7 | Viewed by 2606
Abstract
This study demonstrated the deposition of size-controlled gold (Au) nanoclusters via direct-current magnetron sputtering and inert gas condensation techniques. The impact of different source parameters, namely, sputtering discharge power, inert gas flow rate, and aggregation length on Au nanoclusters’ size and yield was [...] Read more.
This study demonstrated the deposition of size-controlled gold (Au) nanoclusters via direct-current magnetron sputtering and inert gas condensation techniques. The impact of different source parameters, namely, sputtering discharge power, inert gas flow rate, and aggregation length on Au nanoclusters’ size and yield was investigated. Au nanoclusters’ size and size uniformity were confirmed via transmission electron microscopy. In general, Au nanoclusters’ average diameter increased by increasing all source parameters, producing monodispersed nanoclusters of an average size range of 1.7 ± 0.1 nm to 9.1 ± 0.1 nm. Among all source parameters, inert gas flow rate exhibited a strong impact on nanoclusters’ average size, while sputtering discharge power showed great influence on Au nanoclusters’ yield. Results suggest that Au nanoclusters nucleate via a three-body collision mechanism and grow through a two-body collision mechanism, wherein the nanocluster embryos grow in size due to atomic condensation. Ultimately, the usefulness of the produced Au nanoclusters as catalysts for a vapor–liquid–solid technique was put to test to synthesize the phase change material germanium telluride nanowires. Full article
Show Figures

Graphical abstract

18 pages, 7605 KiB  
Article
Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere
by Alexander Gorshkov, Nikolay Berezikov, Albert Kaltaev, Stanislav Yankovsky, Konstantin Slyusarsky, Roman Tabakaev and Kirill Larionov
Energies 2021, 14(23), 8075; https://doi.org/10.3390/en14238075 - 2 Dec 2021
Cited by 18 | Viewed by 3895
Abstract
The process of slow pyrolysis of seven nut shell samples, in a nitrogen-purged atmosphere, has been studied, as well as characteristics of biochar obtained. The heat carrier with a temperature of 400–600 °C (with a step of 100 °C) was supplied indirectly using [...] Read more.
The process of slow pyrolysis of seven nut shell samples, in a nitrogen-purged atmosphere, has been studied, as well as characteristics of biochar obtained. The heat carrier with a temperature of 400–600 °C (with a step of 100 °C) was supplied indirectly using a double-walled reactor. The heating rate was 60 °C/min. At increased temperature of the heating medium, a decrease in the amount of the resulting carbon residue averaged 6.2 wt%. The release of non-condensable combustible gas-phase compounds CO, CH4, and H2, with maximum concentrations of 12.7, 14.0, and 0.7 vol%, respectively, was registered. The features of the obtained biochar sample conversions were studied using thermal analysis in inert (nitrogen) and oxidative (air) mediums at 10 °C/min heating rate. Kinetic analysis was performed using Coats–Redfern method. Thermal analysis showed that the main weight loss (Δm = 32.8–43.0 wt%) occurs at temperatures ranging between 290 °C and 400 °C, which is due to cellulose decomposition. The maximum carbon content and, hence, heat value were obtained for biochars made from macadamia nut and walnut shells. An increased degree of coalification of the biochar samples affected their reactivity and, in particular, caused an increase in the initial temperature of intense oxidation (on average, by 73 °C). While technical and elemental composition of nut shell samples studied were quite similar, the morphology of obtained biochar was different. The morphology of particles was also observed to change as the heating medium temperature increased, which was expressed in the increased inhomogeneity of particle surface. The activation energy values, for biochar conversion in an inert medium, were found to vary in the range of 10–35 kJ/mol and, in an oxidative medium—50–80 kJ/mol. According to literature data, these values were characteristic for lignin fibers decomposition and oxidation, respectively. Full article
(This article belongs to the Special Issue Biomass by Low-Temperature Pyrolysis)
Show Figures

Figure 1

14 pages, 9024 KiB  
Article
Vaporization, Diffusion and Combustion of Laser-Induced Individual Magnesium Microparticles in Inert and Oxidizing Atmospheres
by Fan Yang, Shengji Li, Xunjie Lin, Jiankan Zhang, Heping Li, Xuefeng Huang and Jiangrong Xu
Processes 2021, 9(11), 2057; https://doi.org/10.3390/pr9112057 - 17 Nov 2021
Cited by 5 | Viewed by 2057
Abstract
Although the gas phase combustion of metallic magnesium (Mg) has been extensively studied, the vaporization and diffusive combustion behaviors of Mg have not been well characterized. This paper proposes an investigation of the vaporization, diffusion, and combustion characteristics of individual Mg microparticles in [...] Read more.
Although the gas phase combustion of metallic magnesium (Mg) has been extensively studied, the vaporization and diffusive combustion behaviors of Mg have not been well characterized. This paper proposes an investigation of the vaporization, diffusion, and combustion characteristics of individual Mg microparticles in inert and oxidizing gases by a self-built experimental setup based on laser-induced heating and microscopic high-speed cinematography. Characteristic parameters like vaporization and diffusion coefficients, diffusion ratios, flame propagation rates, etc., were obtained at high spatiotemporal resolutions (μm and tens of μs), and their differences in inert gases (argon, nitrogen) and in oxidizing gases (air, pure oxygen) were comparatively analyzed. More importantly, for the core–shell structure, during vaporization, a shock wave effect on the cracking of the porous magnesium oxide thin film shell-covered Mg core was first experimentally revealed in inert gases. In air, the combustion flame stood over the Mg microparticles, and the heterogeneous combustion reaction was controlled by the diffusion rate of oxygen in air. While in pure O2, the vapor-phase stand-off flame surrounded the Mg microparticles, and the reaction was dominated by the diffusion rate of Mg vapor. The diffusion coefficients of the Mg vapor in oxidizing gases are 1~2 orders of magnitude higher than those in inert gases. However, the diffusive ratios of condensed combustion residues in oxidizing gases are ~1/2 of those in inert gases. The morphology and the constituent contents analysis showed that argon would not dissolve into liquid Mg, while nitrogen would significantly dissolve into liquid Mg. In oxidizing gases of air or pure O2, Mg microparticles in normal pressure completely burned due to laser-induced heating. Full article
(This article belongs to the Special Issue New Controlled Combustion Processes with Gaseous and Liquid Fuels)
Show Figures

Figure 1

Back to TopTop