Numerical Investigation of a Two-Phase Ejector Operation Taking into Account Steam Condensation with the Presence of CO2
Abstract
:1. Introduction
- -
- Ejector operating with primary and secondary fluid in the same phase.
- -
- Ejector operating with primary and secondary fluid in various phases, but phase change does not occur.
- -
- Ejector operating with primary and secondary fluid in various phases, and phase change phenomenon occurs.
2. Object of the Research
3. CFD Model of Two-Phase Ejector
3.1. Multiphase Flow Modeling—Mixture Multiphase Model (MMP)
3.2. Turbulence Modeling—K-Epsilon Model
3.3. Condensation—Boiling/Condensation Model
3.4. Geometrical Model and Numerical Mesh
3.5. Assumptions and Boundary Conditions
3.6. Numerical Solutions
4. Results and Discussion
4.1. The Influence of the Suction Pressure on the Ejector Performance
4.2. The Influence of the CO2 Content on the Ejector Performance
5. Conclusions
- A correlation exists between the inlet gas pressure and the inlet mass flow rate of the sucked-in gas: the lower the gas inlet pressure, the lower the entrained gas stream. Decreasing the gas inlet pressure causes a reduction in the mixture velocity as well as a reduction in the outlet temperature.
- The presence of CO2 has an impact on the inlet ejector pressure. For the cases with pure steam, the gas inlet pressure is smaller than for the case with the steam and CO2 mixture: 0.5 bar and 0.8 bar, respectively. The reason is the lower (around 2.5 times smaller) specific volume of CO2 (0.798 m3/kg) in comparison with H2O (1.937 m3/kg).
- For all the considered cases, the condensation rate difference is directly connected to the mass flow rate of the sucked-in exhaust gas. For the highest exhaust gas mass flow rate (25 g/s), which corresponds to the inlet pressure (0.9 bar), the steam is fully condensed in the last part of the two-phase ejector (diffuser part).
- Future work connected with the modeling of condensing two-phase ejectors should focus on improving the condensation sub-model and the CO2 presence impact on the condensation phenomenon.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
surface area vector, m2 | |
interfacial area per unit volume/interaction area density, 1/m | |
coefficient | |
coefficients | |
body force vector, N/m3 | |
dumping functions | |
heat transfer coefficient, W/m2k | |
phase change heat, J/kg | |
total enthalpy of the mixture, m2/s2 | |
unity tensor | |
turbulent kinetic energy, J/kg | |
interaction length scale, m | |
mass rate of boiling/condensation, kg/m3s | |
Nusselt number | |
pressure, Pa | |
turbulent kinetic energy production term, W/m3 | |
turbulent dissipation rate production term, W/m3 | |
unity tensor | |
heat transfer rate, W/m3 | |
energy source term, W/m3 | |
turbulent kinetic energy source term, W/m3 | |
phase source term, 1/s | |
temperature, K | |
large eddy time scale, s | |
specific time scale, s | |
viscous stress tensor, Pa | |
turbulent time scale, s | |
mean velocity, m/s | |
the mass-averaged velocity, m/s | |
volume, m3 | |
volume fraction of phase | |
turbulent dissipation rate, J/kg s | |
ambient value of turbulent dissipation rate that counteracts turbulence decay [53], J/kg s | |
conductivity, W/mK | |
dynamic viscosity, Pa s | |
turbulent dynamic viscosity, Pa s | |
density of the mixture, kg/m3 | |
model coefficients | |
turbulent Schmidt number |
References
- Goliński, J.; Troskolański, A. Strumienice Teoria i Konstrukcja; WNT: Warszawa, Poland, 1979. [Google Scholar]
- Sokolov, E.; Zinger, N. Jet Devices; Energoatomizdat: Moscow, Russia, 1989. (In Russian) [Google Scholar]
- Grazzini, G.; Milazzo, A.; Mazzelli, F. Ejector for Efficient Refrigeration. Design, Applications and Computational Fluid Dynamics; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Besagni, G. Ejectors on the cutting edge: The past, the present and the perspective. Energy 2019, 170, 998–1003. [Google Scholar] [CrossRef]
- Śmierciew, K.; Butrymowicz, D.; Kwidziński, R.; Przybyliński, T. Analysis of application of two-phase injector in ejector refrigeration systems for isobutane. Appl. Therm. Eng. 2015, 78, 630–639. [Google Scholar] [CrossRef]
- Banasiak, K.; Hafner, A. 1D Computational model of a two-phase R744 ejector for expansion work recovery. Int. J. Therm. Sci. 2011, 50, 2235–2247. [Google Scholar] [CrossRef]
- Angielczyk, W.; Bartosiewicz, Y.; Butrymowicz, D.; Jean-Marie, S. 1-D Modeling of Supersonic Carbon Dioxide Two-Phase Flow Through Ejector Motive Nozzle. In Proceeding of the International Refrigeration and Air Conditioning Conferences, West Lafayette, IN, USA, 12–15 July 2010. Paper 1102. [Google Scholar]
- Liu, Y.; Ozbayoglu, E.M.; Upchurch, E.R.; Baldino, S. Computational fluid dynamics simulations of Taylor bubbles rising in vertical and inclined concentric annuli. Int. J. Multiph. Flow 2023, 159, 104333. [Google Scholar] [CrossRef]
- Liu, Y.; Mitchell, T.; Upchurch, E.R.; Ozbayoglu, E.M.; Baldino, S. Investigation of Taylor bubble dynamics in annular conduits with counter-current flow. Int. J. Multiph. Flow 2024, 170, 104626. [Google Scholar] [CrossRef]
- Yan, Q.; Li, D.; Wang, K.; Zheng, G. Study on the Hydrodynamic Evolution Mechanism and Drift Flow Patterns of Pipeline Gas–Liquid Flow. Processes 2024, 12, 695. [Google Scholar] [CrossRef]
- Zheng, G.; Xu, P.; Li, L.; Fan, X. Investigations of the Formation Mechanism and Pressure Pulsation Characteristics of Pipeline Gas-Liquid Slug Flows. J. Mar. Sci. Eng. 2024, 12, 590. [Google Scholar] [CrossRef]
- Bartosiewicz, Y.; Aidoun, Z.; Mercadier, Y. Numerical assessment of ejector operation for refrigeration applications based on CFD. Appl. Therm. Eng. 2006, 26, 604–612. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.Z. Investigation of entrainment behavior and characteristics of gas-liquid ejectors based on CFD simulation. Chem. Eng. Sci. 2011, 66, 405–416. [Google Scholar] [CrossRef]
- Smolka, J.; Bulinski, Z.; Fic, A.; Nowak, A.J.; Banasiak, K.; Hafner, A. A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach. Appl. Math. Model. 2013, 37, 1208–1224. [Google Scholar] [CrossRef]
- Haida, M.; Smolka, J.; Hafner, A.; Ostrowski, Z.; Palacz, M.; Nowak, A.J.; Banasiak, K. System model derivation of the CO2 two-phase ejector based on the CFD-based reduced-order model. Energy 2018, 144, 941–956. [Google Scholar] [CrossRef]
- Palacz, M.; Smolka, J.; Fic, A.; Bulinski, Z.; Nowak, A.J.; Banasiak, K.; Hafner, A. Application range of the HEM approach for CO2 expansion inside two-phase ejectors for supermarket refrigeration systems. Int. J. Refrig. 2015, 59, 251–258. [Google Scholar] [CrossRef]
- Ringstad, K.E.; Allouche, Y.; Gullo, P.; Ervik, A.; Banasiak, K.; Hafner, A. A Detailed Review on CO2 Two-Phase Ejector Flow Modeling. Therm. Sci. Eng. Prog. 2020, 20, 100647. [Google Scholar] [CrossRef]
- Colarossi, M.; Trask, N.; Schmidt, D.P.; Bergander, M.J. Multidimensional Modeling of Condensing Two-Phase Ejector Flow. Int. J. Refrig. 2012, 35, 290–299. [Google Scholar] [CrossRef]
- Muhammad, H.A.; Abdullah, H.M.; Rehman, Z.; Lee, M.; Baik, Y.-J.; Cho, J.; Imran, M.; Masud, M.; Saleem, M.; Butt, M.S. Numerical Modeling of Ejector and Development of Improved Methods for the Design of Ejector-Assisted Refrigeration System. Energies 2020, 13, 5835. [Google Scholar] [CrossRef]
- Zheng, P.; Li, B.; Qin, J. CFD simulation of two-phase ejector performance influenced by different operation conditions. Energy 2018, 15, 1129–1145. [Google Scholar] [CrossRef]
- Giacomelli, F.; Mazzelli, F.; Banasiak, K.; Hafner, A.; Milazzo, A. Experimental and computational analysis of a R744 flashing ejector. Int. J. Refrig. 2019, 107, 326–343. [Google Scholar] [CrossRef]
- Yazdani, M.; Alahyari, A.A.; Radcliff, T.D. Numerical modeling of two-phase supersonic ejectors for work-recovery applications. Int. J. Heat Mass Transf. 2022, 55, 5744–5753. [Google Scholar] [CrossRef]
- Balamurugan, S.; Gaikar, V.G.; Patwardhan, A.W. Effect of ejector configuration on hydrodynamic characteristics of gas–liquid ejectors. Chem. Eng. Sci. 2008, 63, 721–731. [Google Scholar] [CrossRef]
- Yuan, G.; Zhang, L.; Zhang, H.; Wang, Z. Numerical and experimental investigation of performance of the liquid–gas and liquid jet pumps in desalination systems. Desalination 2011, 276, 89–95. [Google Scholar] [CrossRef]
- Assari, M.R.; Basirat Tabrizi, H.; Jafar Gholi Beik, A.; Shamesri, K. Numerical Study of Water-air Ejector using Mixture and Two-phase Models. Int. J. Eng. 2022, 35, 307–318. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Jin, Z.; Dykas, S.; Cai, X. A novel carbon dioxide capture technology (CCT) based on non-equilibrium condensation characteristics: Numerical modelling, nozzle design and structure optimization. Energy 2024, 281, 129603. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Y.; Chen, J.; Jin, Z.; Dykas, S. Numerical study of heterogeneous condensation in the de Laval nozzle to guide the compressor performance optimization in a compressed air energy storage system. Appl. Energy 2024, 356, 122361. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, X.; Chen, J.; Tang, S.; Smołka, K.; Majkut, M.; Jin, Z.; Dykas, S. Supersonic nozzle performance prediction considering the homogeneous-heterogeneous coupling spontaneous non-equilibrium condensation. Energy 2023, 284, 129274. [Google Scholar] [CrossRef]
- Edathol, J.; Brezgin, D.; Aronson, K.E.; Kim, H.D. Prediction of non-equilibrium homogeneous condensation in supersonic nozzle flows using Eulerian-Eulerian models. Int. J. Heat Mass Transf. 2020, 152, 119451. [Google Scholar] [CrossRef]
- Sharma, D.; Patwardhan, A.; Renade, V. Effect of turbulent dispersion on hydrodynamic characteristics in a liquid jet ejector. Energy 2018, 164, 10–20. [Google Scholar] [CrossRef]
- Cramers, P.H.M.R.; Beenacfkers, A.A.C.M. Influence of ejector configuration, scale and the gas density on the mass transfer characteristics of gas-liquid ejectors. Chem. Eng. J. 2001, 82, 131–141. [Google Scholar] [CrossRef]
- Dirix, C.A.M.C.; van der Wiele, K. Mass transfer in jet loop reactors. Chem. Eng. Sci. 1990, 45, 2333–2340. [Google Scholar] [CrossRef]
- Pangarkar, V.G. Design of Multiphase Reactors, 1st ed.; John Wiley and Sons: Hoboken, NJ, USA, 2015; p. 429. [Google Scholar]
- Madejski, P.; Kuś, T.; Michalak, P.; Karch, M.; Subramanian, N. Direct Contact Condensers: A Comprehensive Review of Experimental and Numerical Investigations on Direct-Contact Condensation. Energies 2022, 15, 9312. [Google Scholar] [CrossRef]
- Shah, A.; Chughtai, I.R.; Inayat, M.H. Experimental and numerical analysis of steam jet pump. Int. J. Multiph. Flow 2011, 37, 1305–1314. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, X.; Zhang, G.; Leng, X.; Tian, M. Effect of non-condensable gas on the performance of steam-water ejector in a trigeneration system for hydrogen production: An experimental and numerical study. Int. J. Hydrogen Energy 2020, 45, 20266–20281. [Google Scholar] [CrossRef]
- Koirala, R.; Inthavong, K.; Date, A. Numerical study of flow and direct contact condensation of entrained vapor in water jet eductor. Exp. Comput. Multiph. Flow 2021, 4, 291–303. [Google Scholar] [CrossRef]
- Koirala, R.; Linh Ve, Q.; Rupakheti, E.; Inthavong, K.; Date, A. Design Enhancement of Eductor for Active Vapor Transport and Condensation during Two-Phase Single-Species Flow. Energies 2023, 16, 1265. [Google Scholar] [CrossRef]
- Siemens Industries Digital Software. Simcenter STAR-CCM+ Userguide; Version 2022.1.1; Siemens: Madison, WI, USA, 2022. [Google Scholar]
- Qu, X.; Sui, H.; Tian, M.-C. CFD simulation of steam–air jet condensation. Energy 2016, 297, 44–53. [Google Scholar] [CrossRef]
- Shah, A. Numerical simulation of direct contact condensation from a supersonic steam jet in subcooled water. Chin. J. Chem. Eng. 2010, 18, 577–587. [Google Scholar] [CrossRef]
- Mikielewicz, D.; Amiri, M.; Klugmann, M.; Mikielewicz, J. A novel concept of enhanced direct-contact condensation of vapour-inert gas mixture in a spray ejector condenser. Int. J. Heat Mass Transf. 2023, 216, 124576. [Google Scholar] [CrossRef]
- Wang, L.; Chen, P.; Zhou, Y.; Li, W.; Tang, C.; Miao, Y.; Meng, Z. Experimental Study on the Condensation of Steam with Air Out of the Vertical Tube Bundles. Front. Energy Res. 2018, 6, 32. [Google Scholar] [CrossRef]
- Ma, X.; Xiao, X.; Jia, H.; Li, J.; Ji, Y.; Lian, Z.; Guo, Y. Experimental research on steam condensation in presence of non-condensable gas under high pressure. Ann. Nucl. Energy 2021, 15, 108282. [Google Scholar] [CrossRef]
- Sutthivirode, K.; Thongtip, T. Experimental investigation of a two-phase ejector installed into the refrigeration system for performance enhancement. Energy Rep. 2022, 8, 7263–7273. [Google Scholar] [CrossRef]
- Ziółkowski, P.; Madejski, P.; Amiri, M.; Kuś, T.; Stasiak, K.; Subramanian, N.; Pawlak-Kruczek, H.; Badur, J.; Niedźwiecki, Ł.; Mikielewicz, D. Thermodynamic Analysis of Negative CO2 Emission Power Plant Using Aspen plus, Aspen Hysys, and Ebsilon Software. Energies 2021, 14, 6304. [Google Scholar] [CrossRef]
- Madejski, P.; Banasiak, K.; Ziółkowski, P.; Mikielewicz, D.; Mikielewicz, J.; Kuś, T.; Karch, M.; Michalak, P.; Amiri, M.; Dąbrowski, P.; et al. Development of a spray-ejector condenser for the use in a negative CO2 emission gas power plant. Energy 2023, 283, 129163. [Google Scholar] [CrossRef]
- Madejski, P.; Karch, M.; Michalak, P.; Banasiak, K. Conceptual Design of Experimental Test Rig for Research on Thermo-Flow Processes During Direct Contact Condensation in the Two-Phase Spray-Ejector Condenser. J. Energy Resour. Technol. 2024, 146, 030902. [Google Scholar] [CrossRef]
- Madejski, P.; Michalak, P.; Karch, M.; Kuś, T.; Banasiak, K. Monitoring of Thermal and Flow Processes in the Two-Phase Spray-Ejector Condenser for Thermal Power Plant Applications. Energies 2022, 15, 7151. [Google Scholar] [CrossRef]
- Kuś, T.; Madejski, P. Analysis of the Multiphase Flow With Condensation in the Two-Phase Ejector Condenser Using Computational Fluid Dynamics Modeling. J. Energy Resour. Technol. 2024, 146, 030901. [Google Scholar] [CrossRef]
- Wagner, W.; Kretzschmar, H.J. International Steam Tables. Properties of Water and Steam Based on the Industrial formulation IAPWS-IF97: Tables, Algorithms, Diagrams; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Linstrom, P.J.; Mallard, W.G. The NIST Chemistry WebBook: A Chemical Data Resource on the Internet. J. Chem. Eng. Data 2001, 46, 1059–1063. [Google Scholar] [CrossRef]
- Spalart, P.R.; Rumsey, C.L. Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations. AIAA J. 2017, 45, 2544–2553. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|---|---|
DMN_1 [mm] | 25.4 | DMIX [mm] | 25.4 | LMCH [mm] | 25 | γSN [°] | 45 |
DMN_2 [mm] | 3 | DDIF [mm] | 100 | γMN_1 [°] | 30 | γDIF [°] | 10 |
DMN_4 [mm] | 40 | LMIX [mm] | 1050 | γMN_3 [°] | 45 |
Localization | B.C. | Temperature | Analysis |
---|---|---|---|
Water inlet | Velocity: 0.67 m/s | 17 °C | Section 4.2 |
Pressure: 12.00 bar | Section 4.1 | ||
Exhaust gas inlet | Mass flow: 10 g/s | 150 °C | Section 4.2 |
Pressure: 0.90–0.84 bar | Section 4.1 | ||
Outlet | Pressure: 1.13 bar | Section 4.1 and Section 4.2 |
Relaxation Factor | Pressure | Velocity | Energy | Turbulence | Multiphase |
---|---|---|---|---|---|
Value | 0.3 | 0.7 | 0.9 | 0.8 | 0.9 |
Quantities | Water Inlet | Exhaust Inlet | Outlet |
---|---|---|---|
Pressure, bar | 12.0 | 0.9 | 1.12 |
Velocity, m/s | 0.65 | 12.04 | 0.60 |
Temperature, °C | 17.00 | 150.00 | 4.1, 4.2 |
Steam mass flow, g/s | 0.0 | 19.8 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuś, T.; Madejski, P. Numerical Investigation of a Two-Phase Ejector Operation Taking into Account Steam Condensation with the Presence of CO2. Energies 2024, 17, 2236. https://doi.org/10.3390/en17092236
Kuś T, Madejski P. Numerical Investigation of a Two-Phase Ejector Operation Taking into Account Steam Condensation with the Presence of CO2. Energies. 2024; 17(9):2236. https://doi.org/10.3390/en17092236
Chicago/Turabian StyleKuś, Tomasz, and Paweł Madejski. 2024. "Numerical Investigation of a Two-Phase Ejector Operation Taking into Account Steam Condensation with the Presence of CO2" Energies 17, no. 9: 2236. https://doi.org/10.3390/en17092236
APA StyleKuś, T., & Madejski, P. (2024). Numerical Investigation of a Two-Phase Ejector Operation Taking into Account Steam Condensation with the Presence of CO2. Energies, 17(9), 2236. https://doi.org/10.3390/en17092236