Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = inelastic neutron scattering spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5790 KiB  
Article
Pagodane—Solution and Solid-State Vibrational Spectra
by Stewart F. Parker, Hannah E. Mason, Campbell T. Wilson and Adam J. Jackson
Physchem 2024, 4(4), 524-535; https://doi.org/10.3390/physchem4040036 - 6 Dec 2024
Viewed by 1130
Abstract
In the present study, we report infrared and Raman spectra in both solution and the solid state, together with a state-of-the art inelastic neutron scattering spectrum, of the unusual molecule pagodane. Periodic DFT calculations have enabled a complete assignment of all the modes. [...] Read more.
In the present study, we report infrared and Raman spectra in both solution and the solid state, together with a state-of-the art inelastic neutron scattering spectrum, of the unusual molecule pagodane. Periodic DFT calculations have enabled a complete assignment of all the modes. The isolated molecule has D2h symmetry, which is reduced to Ci in the solid state. However, the preservation of the centre of symmetry means that the selection rules for infrared and Raman spectroscopy are almost unchanged. The exceptions are the D2hAu modes that are forbidden in the isolated molecule but become allowed in the solid state. These have been located in the solid-state spectra. Full article
(This article belongs to the Section Experimental and Computational Spectroscopy)
Show Figures

Graphical abstract

33 pages, 1938 KiB  
Review
Handheld In Situ Methods for Soil Organic Carbon Assessment
by Nancy Loria, Rattan Lal and Ranveer Chandra
Sustainability 2024, 16(13), 5592; https://doi.org/10.3390/su16135592 - 29 Jun 2024
Cited by 9 | Viewed by 5387
Abstract
Soil organic carbon (SOC) assessment is crucial for evaluating soil health and supporting carbon sequestration efforts. Traditional methods like wet digestion and dry combustion are time-consuming and labor-intensive, necessitating the development of non-destructive, cost-efficient, and real-time in situ measurements. This review focuses on [...] Read more.
Soil organic carbon (SOC) assessment is crucial for evaluating soil health and supporting carbon sequestration efforts. Traditional methods like wet digestion and dry combustion are time-consuming and labor-intensive, necessitating the development of non-destructive, cost-efficient, and real-time in situ measurements. This review focuses on handheld in situ methodologies for SOC estimation, underscoring their practicality and reasonable accuracy. Spectroscopic techniques, like visible and near-infrared, mid-infrared, laser-induced breakdown spectroscopy, and inelastic neutron scattering each offer unique advantages. Preprocessing techniques, such as external parameter orthogonalization and standard normal variate, are employed to eliminate soil moisture content and particle size effects on SOC estimation. Calibration methods, like partial least squares regression and support vector machine, establish relationships between spectral reflectance, soil properties, and SOC. Among the 32 studies selected in this review, 14 exhibited a coefficient of determination (R2) of 0.80 or higher, indicating the potential for accurate SOC content estimation using in situ approaches. Each study meticulously adjusted factors such as spectral range, pretreatment method, and calibration model to improve the accuracy of SOC content, highlighting both the methodological diversity and a continuous pursuit of precision in direct field measurements. Continued research and validation are imperative to ensure accurate in situ SOC assessment across diverse environments. Thus, this review underscores the potential of handheld devices for in situ SOC estimation with good accuracy and leveraging factors that influence its precision. Crucial for optimizing carbon farming, these devices offer real-time soil measurements, empowering land managers to enhance carbon sequestration and promote sustainable land management across diverse agricultural landscapes. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

13 pages, 4032 KiB  
Article
Intermolecular Interactions in 3-Aminopropyltrimethoxysilane, N-Methyl-3-aminopropyltrimethoxysilane and 3-Aminopropyltriethoxysilane: Insights from Computational Spectroscopy
by Mariela M. Nolasco, Stewart F. Parker, Pedro D. Vaz and Paulo J. A. Ribeiro-Claro
Int. J. Mol. Sci. 2023, 24(23), 16634; https://doi.org/10.3390/ijms242316634 - 23 Nov 2023
Cited by 3 | Viewed by 1621
Abstract
In this work, a computational spectroscopy approach was used to provide a complete assignment of the inelastic neutron scattering spectra of three title alkoxysilane derivatives—3-aminopropyltrimethoxysilane (APTS), N-methyl-3-aminopropyltrimethoxysilane (MAPTS), and 3-aminopropyltriethoxysilane (APTES). The simulated spectra obtained from density functional theory (DFT) calculations exhibit a [...] Read more.
In this work, a computational spectroscopy approach was used to provide a complete assignment of the inelastic neutron scattering spectra of three title alkoxysilane derivatives—3-aminopropyltrimethoxysilane (APTS), N-methyl-3-aminopropyltrimethoxysilane (MAPTS), and 3-aminopropyltriethoxysilane (APTES). The simulated spectra obtained from density functional theory (DFT) calculations exhibit a remarkable match with the experimental spectra. The description of the experimental band profiles improves as the number of molecules considered in the theoretical model increases, from monomers to trimers. This highlights the significance of incorporating non-covalent interactions, encompassing classical NH···N, N–H···O, as well as C–H···N and C–H···O hydrogen bond contacts, to achieve a comprehensive understanding of the system. A distinct scenario emerges when considering optical vibrational techniques, infrared and Raman spectroscopy. In these instances, the monomer model provides a reasonable description of the experimental spectra, and no substantial alterations are observed in the simulated spectra when employing dimer and trimer models. This observation underscores the distinctive ability of neutron spectroscopy in combination with DFT calculations in assessing the structure and dynamics of molecular materials. Full article
(This article belongs to the Special Issue Noncovalent Interactions: New Developments in Experiment and Theory)
Show Figures

Figure 1

10 pages, 1003 KiB  
Article
Elucidation of Spin-Correlations, Fermi Surface and Pseudogap in a Copper Oxide Superconductor
by Hiroshi Kamimura, Masaaki Araidai, Kunio Ishida, Shunichi Matsuno, Hideaki Sakata, Kenji Sasaoka, Kenji Shiraishi, Osamu Sugino, Jaw-Shen Tsai and Kazuyoshi Yamada
Condens. Matter 2023, 8(2), 33; https://doi.org/10.3390/condmat8020033 - 4 Apr 2023
Cited by 2 | Viewed by 2672
Abstract
First-principles calculations for underdoped La2−xSrxCuO4 (LSCO) have revealed a Fermi surface consisting of spin-triplet (KS) particles at the antinodal Fermi-pockets and spin-singlet (SS) particles at the nodal Fermi-arcs in the presence of AF local order. By performing [...] Read more.
First-principles calculations for underdoped La2−xSrxCuO4 (LSCO) have revealed a Fermi surface consisting of spin-triplet (KS) particles at the antinodal Fermi-pockets and spin-singlet (SS) particles at the nodal Fermi-arcs in the presence of AF local order. By performing a unique method of calculating the electronic-spin state of overdoped LSCO and by measurement of the spin-correlation length by neutron inelastic scattering, the origin of the phase-diagram, including the pseudogap phase in the high temperature superconductor, Sr-doped copper-oxide LSCO, has been elucidated. We have theoretically solved the long-term problem as to why the angle-resolved photoemission spectroscopy (ARPES) has not been able to observe Fermi pockets in the Fermi surface of LSCO. As a result, we show that the pseudogap region is bounded below the characteristic temperature T*(x) and above the superconducting transition temperature Tc(x) in the T vs. x phase diagram, where both the AF order and the KS particles in the Fermi pockets vanish at T*(x), whilst KS particles contribute to d-wave superconductivity below Tc. We also show that the relationship T*(xc) = Tc(xc) holds at xc = 0.30, which is consistent with ARPES experiments. At T*(x), a phase transition occurs from the pseudogap phase to an unusual metallic phase in which only the SS particles exist. Full article
Show Figures

Figure 1

15 pages, 1337 KiB  
Review
Incoherent Neutron Scattering and Terahertz Time-Domain Spectroscopy on Protein and Hydration Water
by Hiroshi Nakagawa and Naoki Yamamoto
Life 2023, 13(2), 318; https://doi.org/10.3390/life13020318 - 23 Jan 2023
Cited by 3 | Viewed by 2391
Abstract
Incoherent inelastic and quasi-elastic neutron scattering (INS) and terahertz time-domain spectroscopy (THz-TDS) are spectroscopy methods that directly detect molecular dynamics, with an overlap in the measured energy regions of each method. Due to the different characteristics of their probes (i.e., neutron and light), [...] Read more.
Incoherent inelastic and quasi-elastic neutron scattering (INS) and terahertz time-domain spectroscopy (THz-TDS) are spectroscopy methods that directly detect molecular dynamics, with an overlap in the measured energy regions of each method. Due to the different characteristics of their probes (i.e., neutron and light), the information obtained and the sample conditions suitable for each method differ. In this review, we introduce the differences in the quantum beam properties of the two methods and their associated advantages and disadvantages in molecular spectroscopy. Neutrons are scattered via interaction with nuclei; one characteristic of neutron scattering is a large incoherent scattering cross-section of a hydrogen atom. INS records the auto-correlation functions of atomic positions. By using the difference in neutron scattering cross-sections of isotopes in multi-component systems, some molecules can be selectively observed. In contrast, THz-TDS observes the cross-correlation function of dipole moments. In water-containing biomolecular samples, the absorption of water molecules is particularly large. While INS requires large-scale experimental facilities, such as accelerators and nuclear reactors, THz-TDS can be performed at the laboratory level. In the analysis of water molecule dynamics, INS is primarily sensitive to translational diffusion motion, while THz-TDS observes rotational motion in the spectrum. The two techniques are complementary in many respects, and a combination of the two is very useful in analyzing the dynamics of biomolecules and hydration water. Full article
(This article belongs to the Special Issue Biomolecular Dynamics Explored by Incoherent Neutron Spectroscopy)
Show Figures

Figure 1

34 pages, 771 KiB  
Review
Methods of Modeling of Strongly Correlated Electron Systems
by Roman Kuzian
Nanomaterials 2023, 13(2), 238; https://doi.org/10.3390/nano13020238 - 5 Jan 2023
Cited by 3 | Viewed by 2706
Abstract
The discovery of high-Tc superconductivity in cuprates in 1986 moved strongly correlated systems from exotic worlds interesting only for pure theorists to the focus of solid-state research. In recent decades, the majority of hot topics in condensed matter physics (high- [...] Read more.
The discovery of high-Tc superconductivity in cuprates in 1986 moved strongly correlated systems from exotic worlds interesting only for pure theorists to the focus of solid-state research. In recent decades, the majority of hot topics in condensed matter physics (high-Tc superconductivity, colossal magnetoresistance, multiferroicity, ferromagnetism in diluted magnetic semiconductors, etc.) have been related to strongly correlated transition metal compounds. The highly successful electronic structure calculations based on density functional theory lose their predictive power when applied to such compounds. It is necessary to go beyond the mean field approximation and use the many-body theory. The methods and models that were developed for the description of strongly correlated systems are reviewed together with the examples of response function calculations that are needed for the interpretation of experimental information (inelastic neutron scattering, optical conductivity, resonant inelastic X-ray scattering, electron energy loss spectroscopy, angle-resolved photoemission, electron spin resonance, and magnetic and magnetoelectric properties). The peculiarities of (quasi-) 0-, 1-, 2-, and 3- dimensional systems are discussed. Full article
Show Figures

Figure 1

9 pages, 1757 KiB  
Article
Structural Dynamics of Chloromethanes through Computational Spectroscopy: Combining INS and DFT
by Mariela M. Nolasco, Mariana Matos Coimbra, Stewart F. Parker, Pedro D. Vaz and Paulo J. A. Ribeiro-Claro
Molecules 2022, 27(21), 7661; https://doi.org/10.3390/molecules27217661 - 7 Nov 2022
Cited by 5 | Viewed by 2066
Abstract
In this work, the structural dynamics of the chloromethanes CCl4, CHCl3 and CH2Cl2 were evaluated through a computational spectroscopy approach by comparing experimental inelastic neutron scattering (INS) spectra with the corresponding simulated spectra obtained from periodic DFT [...] Read more.
In this work, the structural dynamics of the chloromethanes CCl4, CHCl3 and CH2Cl2 were evaluated through a computational spectroscopy approach by comparing experimental inelastic neutron scattering (INS) spectra with the corresponding simulated spectra obtained from periodic DFT calculations. The overall excellent agreement between experimental and calculated spectra allows a confident assignment of the vibrational features, including not only the molecular fundamental modes but also lattice and combination modes. In particular, an impressive overtone sequence for CHCl3 is fully described by the simulated INS spectrum. In the CCl4 spectrum, the splitting of the ν3 mode at ca. 765–790 cm−1 is discussed on the basis of the Fermi resonance vs. crystal splitting controversy. Full article
Show Figures

Figure 1

14 pages, 3270 KiB  
Article
Neutron-Enhanced Information on the Laboratory Characterization of Ancient Egyptian Leathers: Hydration and Preservation Status
by Giovanni Romanelli, Carla Andreani, Enrico Ferraris, Christian Greco, Salima Ikram, Silvia Licoccia, Giuseppe Paladini, Stewart F. Parker, Enrico Preziosi, Roberto Senesi, Lucy Skinner, André J. Veldmeijer, Valentina Venuti and Valentina Turina
Information 2022, 13(10), 467; https://doi.org/10.3390/info13100467 - 29 Sep 2022
Viewed by 2340
Abstract
The Museo Egizio’s collection contains 200 precious and unique leather artifacts belonging to different historical periods. The materials used during the tanning and curing procedures affect the chemical and elemental composition of the surface of the samples as well as their preservation status, [...] Read more.
The Museo Egizio’s collection contains 200 precious and unique leather artifacts belonging to different historical periods. The materials used during the tanning and curing procedures affect the chemical and elemental composition of the surface of the samples as well as their preservation status, specifically through the hydration level within the bulk. Here we provide an experimental characterization of a series of samples from Museo Egizio that document an extensive denaturation phenomenon (gelatinization), by combining non-destructive techniques including surface probes (X-ray fluorescence, Raman scattering, and scanning electron microscopy enhanced by X-ray energy spectroscopy) and neutron-based bulk techniques (inelastic and deep-inelastic neutron scattering). Results show partial dehydration of the samples in the bulk, affecting the morphology of their surface, the presence of potassium alum, and iron oxides, as well as phosphates and hydroxides related to the tanning and curing procedures. Finally, we briefly discuss the need for a versatile and adaptable software package that is capable of combining quantitative analyses with complementary techniques including morphological, elemental, and chemical composition. Full article
(This article belongs to the Special Issue Techniques and Data Analysis in Cultural Heritage)
Show Figures

Figure 1

8 pages, 981 KiB  
Article
Assignment of the Vibrational Spectra of Diiron Nonacarbonyl, Fe2(CO)9
by Stewart F. Parker
Physchem 2022, 2(2), 108-115; https://doi.org/10.3390/physchem2020008 - 5 Apr 2022
Cited by 1 | Viewed by 4884
Abstract
Diiron nonacarbonyl, Fe2(CO)9, was discovered in 1905 and was the third metal carbonyl to be found. It was the first to be synthesized by a photochemical route. This is a challenging material to study: it is insoluble in virtually [...] Read more.
Diiron nonacarbonyl, Fe2(CO)9, was discovered in 1905 and was the third metal carbonyl to be found. It was the first to be synthesized by a photochemical route. This is a challenging material to study: it is insoluble in virtually all solvents and decomposes at 373 K before melting. This means that only solid-state spectroscopic data are available. New infrared, Raman and inelastic neutron scattering (INS) spectra have been measured and used to generate a complete assignment of the vibrational spectra of Fe2(CO)9. Density functional theory (DFT) calculations are used to support the assignments; however, for this material, they are much less useful than expected, although the calculated intensities provide crucial information. Full article
Show Figures

Figure 1

16 pages, 3330 KiB  
Article
Understanding the Surface Characteristics of Biochar and Its Catalytic Activity for the Hydrodeoxygenation of Guaiacol
by Indri Badria Adilina, Robert Ronal Widjaya, Luthfiana Nurul Hidayati, Edi Supriadi, Muhammad Safaat, Ferensa Oemry, Elvi Restiawaty, Yazid Bindar and Stewart F. Parker
Catalysts 2021, 11(12), 1434; https://doi.org/10.3390/catal11121434 - 25 Nov 2021
Cited by 16 | Viewed by 3542
Abstract
Biochar (BCR) was obtained from the pyrolysis of a palm-oil-empty fruit bunch at 773 K for 2 h and used as a catalyst for the hydrodeoxygenation (HDO) of guaiacol (GUA) as a bio-oil model compound. Brunauer–Emmet–Teller surface area analysis, NH3 and CO [...] Read more.
Biochar (BCR) was obtained from the pyrolysis of a palm-oil-empty fruit bunch at 773 K for 2 h and used as a catalyst for the hydrodeoxygenation (HDO) of guaiacol (GUA) as a bio-oil model compound. Brunauer–Emmet–Teller surface area analysis, NH3 and CO2-temperature-programmed desorption, scanning electron microscope–dispersive X-ray spectroscopy, CHN analysis and X-ray fluorescence spectroscopy suggested that macroporous and mesoporous structures were formed in BCR with a co-presence of hydrophilic and hydrophobic sites and acid–base behavior. A combination of infrared, Raman and inelastic neutron scattering (INS) was carried out to achieve a complete vibrational assignment of BCR. The CH–OH ratio in BCR is ~5, showing that the hydroxyl functional groups are a minority species. There was no evidence for any aromatic C–H stretch modes in the infrared, but they are clearly seen in the INS and are the majority species, with a ratio of sp3–CH:sp2–CH of 1:1.3. The hydrogen bound to sp2–C is largely present as isolated C–H bonds, rather than adjacent C–H bonds. The Raman spectrum shows the characteristic G band (ideal graphitic lattice) and three D bands (disordered graphitic lattice, amorphous carbon, and defective graphitic lattice) of sp2 carbons. Adsorbed water in BCR is present as disordered layers on the surface rather than trapped in voids in the material and could be removed easily by drying prior to catalysis. Catalytic testing demonstrated that BCR was able to catalyze the HDO of GUA, yielding phenol and cresols as the major products. Phenol was produced both from the direct demethoxylation of GUA, as well as through the demethylation pathway via the formation of catechol as the intermediate followed by deoxygenation. Full article
Show Figures

Figure 1

25 pages, 29144 KiB  
Article
Structural, Thermal, and Vibrational Properties of N,N-Dimethylglycine–Chloranilic Acid—A New Co-Crystal Based on an Aliphatic Amino Acid
by Joanna Hetmańczyk, Łukasz Hetmańczyk, Joanna Nowicka-Scheibe, Andrzej Pawlukojć, Jan K. Maurin and Wojciech Schilf
Materials 2021, 14(12), 3292; https://doi.org/10.3390/ma14123292 - 14 Jun 2021
Cited by 1 | Viewed by 2573
Abstract
The new complex of N,N-Dimethylglycine (DMG) with chloranilic acid (CLA) was synthesized and examined for thermal, structural, and dynamical properties. The structure of the reaction product between DMG and CLA was investigated in a deuterated dimethyl sulfoxide (DMSO-d6) solution and in the solid [...] Read more.
The new complex of N,N-Dimethylglycine (DMG) with chloranilic acid (CLA) was synthesized and examined for thermal, structural, and dynamical properties. The structure of the reaction product between DMG and CLA was investigated in a deuterated dimethyl sulfoxide (DMSO-d6) solution and in the solid state by Nuclear Magnetic Resonance (NMR) (Cross Polarization Magic Angle Spinning-CPMAS NMR). The formation of the 1:1 complex of CLA and DMG in the DMSO solution was also confirmed by diffusion measurement. X-ray single crystal diffraction results revealed that the N,N-dimethylglycine–chloranilic acid (DMG+–CLA) complex crystallizes in the centrosymmetric triclinic P-1 space group. The X-ray diffraction and NMR spectroscopy show the presence of the protonated form of N,N-dimethylglycine and the deprotonated form of chloranilic acid molecules. The vibrational properties of the co-crystal were investigated by the use of neutron (INS), infrared (IR), and Raman (RS) spectroscopies, as well as the density functional theory (DFT) with periodic boundary conditions. From the band shape analysis of the N–CH3 bending vibration, we can conclude that the CH3 groups perform fast (τR ≈ 10−11 to 10‒13 s) reorientational motions down to a temperature of 140 K, with activation energy at ca. 6.7 kJ mol−1. X-ray diffraction and IR investigations confirm the presence of a strong N+–H···O hydrogen bond in the studied co-crystal. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

11 pages, 2437 KiB  
Article
Polymorphism and Conformational Equilibrium of Nitro-Acetophenone in Solid State and under Matrix Conditions
by Łukasz Hetmańczyk, Przemysław Szklarz, Agnieszka Kwocz, Maria Wierzejewska, Magdalena Pagacz-Kostrzewa, Mikhail Ya. Melnikov, Peter M. Tolstoy and Aleksander Filarowski
Molecules 2021, 26(11), 3109; https://doi.org/10.3390/molecules26113109 - 22 May 2021
Cited by 7 | Viewed by 3495
Abstract
Conformational and polymorphic states in the nitro-derivative of o-hydroxy acetophenone have been studied by experimental and theoretical methods. The potential energy curves for the rotation of the nitro group and isomerization of the hydroxyl group have been calculated by density functional theory [...] Read more.
Conformational and polymorphic states in the nitro-derivative of o-hydroxy acetophenone have been studied by experimental and theoretical methods. The potential energy curves for the rotation of the nitro group and isomerization of the hydroxyl group have been calculated by density functional theory (DFT) to estimate the barriers of the conformational changes. Two polymorphic forms of the studied compound were obtained by the slow and fast evaporation of polar and non-polar solutions, respectively. Both of the polymorphs were investigated by Infrared-Red (IR) and Raman spectroscopy, Incoherent Inelastic Neutron Scattering (IINS), X-ray diffraction, nuclear quadrupole resonance spectroscopy (NQR), differential scanning calorimetry (DSC) and density functional theory (DFT) methods. In one of the polymorphs, the existence of a phase transition was shown. The position of the nitro group and its impact on the crystal cell of the studied compound were analyzed. The conformational equilibrium determined by the reorientation of the hydroxyl group was observed under argon matrix isolation. An analysis of vibrational spectra was achieved for the interpretation of conformational equilibrium. The infrared spectra were measured in a wide temperature range to reveal the spectral bands that were the most sensitive to the phase transition and conformational equilibrium. The results showed the interrelations between intramolecular processes and macroscopic phenomena in the studied compound. Full article
(This article belongs to the Special Issue Intramolecular Hydrogen Bonding 2021)
Show Figures

Graphical abstract

11 pages, 1918 KiB  
Article
Looking for Minor Phenolic Compounds in Extra Virgin Olive Oils Using Neutron and Raman Spectroscopies
by Roberto Senesi, Carla Andreani, Piero Baglioni, Luis A. E. Batista de Carvalho, Silvia Licoccia, Maria P. M. Marques, Giulia Moretti, Annalisa Noce, Roberto Paolesse, Stewart F. Parker, Enrico Preziosi, Giovanni Romanelli, Annalisa Romani and Nicola Di Daniele
Antioxidants 2021, 10(5), 643; https://doi.org/10.3390/antiox10050643 - 22 Apr 2021
Cited by 7 | Viewed by 3212
Abstract
Extra virgin olive oil (EVOO) is defined as a functional food as it contains numerous phenolic components with well-recognized health-beneficial properties, such as high antioxidant and anti-inflammatory capacity. These characteristics depend on their structural/conformational behavior, which is largely determined by intra- and intermolecular [...] Read more.
Extra virgin olive oil (EVOO) is defined as a functional food as it contains numerous phenolic components with well-recognized health-beneficial properties, such as high antioxidant and anti-inflammatory capacity. These characteristics depend on their structural/conformational behavior, which is largely determined by intra- and intermolecular H-bond interactions. While the vibrational dynamics of isolated compounds have been studied in a number of recent investigations, their signal in a real-life sample of EVOO is overwhelmed by the major constituent acids. Here, we provide a full characterization of the vibrational spectroscopic signal from commercially available EVOO samples using Inelastic Neutron Scattering (INS) and Raman spectroscopies. The spectra are dominated by CH2 vibrations, especially at about 750 cm−1 and 1300 cm−1. By comparison with the spectra from hydroxytyrosol and other minor phenolic compounds, we show that the best regions in which to look for the structure–activity information related to the minor polar compounds is at 675 and 1200 cm−1 for hydroxytyrosol, and around 450 cm−1 for all minor polar compounds used as reference, especially if a selectively deuterated sample is available. The regional origin of the EVOO samples investigated appears to be related to the different amount of phenolic esters versus acids as reflected by the relative intensities of the peaks at 1655 and 1747 cm−1. Full article
Show Figures

Figure 1

13 pages, 2116 KiB  
Article
Investigation of MoOx/Al2O3 under Cyclic Operation for Oxidative and Non-Oxidative Dehydrogenation of Propane
by Santhosh K. Matam, Caitlin Moffat, Pip Hellier, Michael Bowker, Ian P. Silverwood, C. Richard A. Catlow, S. David Jackson, James Craswell, Peter P. Wells, Stewart F. Parker and Emma K. Gibson
Catalysts 2020, 10(12), 1370; https://doi.org/10.3390/catal10121370 - 24 Nov 2020
Cited by 11 | Viewed by 3640
Abstract
A MoOx/Al2O3 catalyst was synthesised and tested for oxidative (ODP) and non-oxidative (DP) dehydrogenation of propane in a reaction cycle of ODP followed by DP and a second ODP run. Characterisation results show that the fresh catalyst contains [...] Read more.
A MoOx/Al2O3 catalyst was synthesised and tested for oxidative (ODP) and non-oxidative (DP) dehydrogenation of propane in a reaction cycle of ODP followed by DP and a second ODP run. Characterisation results show that the fresh catalyst contains highly dispersed Mo oxide species in the +6 oxidation state with tetrahedral coordination as [MoVIO4]2− moieties. In situ X-ray Absorption Spectroscopy (XAS) shows that [MoVIO4]2− is present during the first ODP run of the reaction cycle and is reduced to MoIVO2 in the following DP run. The reduced species are partly re-oxidised in the subsequent second ODP run of the reaction cycle. The partly re-oxidised species exhibit oxidation and coordination states that are lower than 6 but higher than 4 and are referred to as MoxOy. These species significantly improved propene formation (relatively 27% higher) in the second ODP run at similar propane conversion activity. Accordingly, the initial tetrahedral [MoVIO4]2− present during the first ODP run of the reaction cycle is active for propane conversion; however, it is unselective for propene. The reduced MoIVO2 species are relatively less active and selective for DP. It is suggested that the MoxOy species generated by the reaction cycle are active and selective for ODP. The vibrational spectroscopic data indicate that the retained surface species are amorphous carbon deposits with a higher proportion of aromatic/olefinic like species. Full article
(This article belongs to the Special Issue Characterization Analysis of Heterogeneous Catalysts)
Show Figures

Graphical abstract

26 pages, 5513 KiB  
Article
Symmetry/Asymmetry of the NHN Hydrogen Bond in Protonated 1,8-Bis(dimethylamino)naphthalene
by Patrycja Piękoś, Aneta Jezierska, Jarosław J. Panek, Eugene A. Goremychkin, Alexander F. Pozharskii, Alexander S. Antonov, Peter M. Tolstoy and Aleksander Filarowski
Symmetry 2020, 12(11), 1924; https://doi.org/10.3390/sym12111924 - 23 Nov 2020
Cited by 9 | Viewed by 3694
Abstract
Experimental and theoretical results are presented based on vibrational spectra and motional dynamics of 1,8-bis(dimethylamino)naphthalene (DMAN) and its protonated forms (DMANH+ and the DMANH+ HSO4 complex). The studies of these compounds have been performed in the gas phase and [...] Read more.
Experimental and theoretical results are presented based on vibrational spectra and motional dynamics of 1,8-bis(dimethylamino)naphthalene (DMAN) and its protonated forms (DMANH+ and the DMANH+ HSO4 complex). The studies of these compounds have been performed in the gas phase and solid-state. Spectroscopic investigations were carried out by infrared spectroscopy (IR), Raman, and incoherent inelastic neutron scattering (IINS) experimental methods. Density functional theory (DFT) and Car–Parrinello molecular dynamics (CPMD) methods were applied to support our experimental findings. The fundamental investigations of hydrogen bridge vibrations were accomplished on the basis of isotopic substitutions (NH → ND). Special attention was paid to the bridged proton dynamics in the DMANH+ complex, which was found to be affected by interactions with the HSO4 anion. Full article
(This article belongs to the Special Issue Quantum Chemistry)
Show Figures

Figure 1

Back to TopTop