Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = in vivo two-photon microscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 19590 KiB  
Review
Multiphoton Tomography in Cosmetic Research
by Karsten König and Aisada König
Cosmetics 2025, 12(2), 44; https://doi.org/10.3390/cosmetics12020044 - 4 Mar 2025
Cited by 1 | Viewed by 2407
Abstract
Background: Multiphoton tomography (MPT) is a femtosecond laser imaging technique that enables high-resolution virtual biopsies of human skin. It provides a non-invasive method for analyzing cellular metabolism, structural changes, and responses to cosmetic products, providing insights into cell–cosmetic interactions. This review explores the [...] Read more.
Background: Multiphoton tomography (MPT) is a femtosecond laser imaging technique that enables high-resolution virtual biopsies of human skin. It provides a non-invasive method for analyzing cellular metabolism, structural changes, and responses to cosmetic products, providing insights into cell–cosmetic interactions. This review explores the principles, historical development, and key applications of MPT in cosmetic research. Methods: The latest MPT device combines five modalities: (i) two-photon fluorescence: visualizes cells, elastin, and cosmetic ingredients; (ii) second harmonic generation (SHG): maps the collagen network; (iii) fluorescence lifetime imaging (FLIM): differentiates eumelanin from pheomelanin and evaluates the impact of cosmetics on cellular metabolic activity; (iv) reflectance confocal microscopy (RCM): images cell membranes and cosmetic particles; and (v) white LED imaging for dermoscopy. Results: MPT enables in-depth examination of extracellular matrix changes, cellular metabolism, and melanin production. It identifies skin responses to cosmetic products and tracks the intratissue distribution of sunscreen nanoparticles, nano- and microplastics, and other cosmetic components. Quantitative measurements, such as the elastin-to-collagen ratio, provide insights into anti-aging effects. Conclusions: MPT is a powerful in vivo imaging tool for the cosmetic industry. Its superior resolution and metabolic information facilitate the evaluation of product efficacy and support the development of personalized skincare solutions. Full article
Show Figures

Graphical abstract

18 pages, 6512 KiB  
Article
The Dose-Dependent Effects of Fluorocitrate on the Metabolism and Activity of Astrocytes and Neurons
by Huiling Zhuang, Deliang Yuan, Fuxiu Shi, Xujun Wu, Zhen Luo and Wenbiao Gan
Brain Sci. 2025, 15(2), 99; https://doi.org/10.3390/brainsci15020099 - 21 Jan 2025
Cited by 1 | Viewed by 1223
Abstract
Background: Fluorocitrate (FC) ranging from 5 μM to 5 mM is often used as a specific metabolic inhibitor of the astrocytes to study astrocytic functions. Whether FC at such concentrations may affect neuronal metabolism and function in vivo remains unclear. Methods: We examined [...] Read more.
Background: Fluorocitrate (FC) ranging from 5 μM to 5 mM is often used as a specific metabolic inhibitor of the astrocytes to study astrocytic functions. Whether FC at such concentrations may affect neuronal metabolism and function in vivo remains unclear. Methods: We examined the effects of FC on the ATP levels and Ca2+ activity of the astrocytes and neurons in the motor cortices of living mice using two-photon microscopy. Results: We found that 25 μM and 250 μM of FC decreased the intracellular ATP levels and Ca2+ activity in the astrocytes in the motor cortex. Equally, 250 μM of FC, but not 25 μM of FC, reduced the intracellular ATP levels in the dendritic processes of the layer 5 pyramidal neurons. However, 25 μM of FC increased the neuronal Ca2+ activity, whereas ≥250 μM of FC decreased it. To test whether the differential effects of FC on neuronal Ca2+ activity reflect the direct effect of FC on the neurons or its indirect effect on the astrocytes, we used the CNO-hM3Dq chemogenetic approach to block astrocytic Ca2+ activity and examined the effect of FC. In the absence of astrocytic Ca2+ activity, 25 μM of FC still increased and ≥250 μM of FC reduced the dendritic Ca2+ activity of the neurons, respectively, suggesting a direct effect of 250 μM of FC on inhibiting neuronal Ca2+ activity. Further, 250 μM, but not 25 μM, of FC increased the size of the dendritic spines over 2 h. Conclusions: Our findings suggest that FC at high concentrations (≥250 μM) is not a specific inhibitor of astrocytic functions, as it directly affects neuronal metabolism and synaptic plasticity in vivo. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

12 pages, 1818 KiB  
Article
Precise Serial Microregistration Enables Quantitative Microscopy Imaging Tracking of Human Skin Cells In Vivo
by Yunxian Tian, Zhenguo Wu, Harvey Lui, Jianhua Zhao, Sunil Kalia, InSeok Seo, Hao Ou-Yang and Haishan Zeng
Cells 2024, 13(13), 1158; https://doi.org/10.3390/cells13131158 - 7 Jul 2024
Viewed by 1539
Abstract
We developed an automated microregistration method that enables repeated in vivo skin microscopy imaging of the same tissue microlocation and specific cells over a long period of days and weeks with unprecedented precision. Applying this method in conjunction with an in vivo multimodality [...] Read more.
We developed an automated microregistration method that enables repeated in vivo skin microscopy imaging of the same tissue microlocation and specific cells over a long period of days and weeks with unprecedented precision. Applying this method in conjunction with an in vivo multimodality multiphoton microscope, the behavior of human skin cells such as cell proliferation, melanin upward migration, blood flow dynamics, and epidermal thickness adaptation can be recorded over time, facilitating quantitative cellular dynamics analysis. We demonstrated the usefulness of this method in a skin biology study by successfully monitoring skin cellular responses for a period of two weeks following an acute exposure to ultraviolet light. Full article
(This article belongs to the Special Issue Advanced Technology for Cellular Imaging)
Show Figures

Graphical abstract

18 pages, 7858 KiB  
Article
Development of a Mouse-Adapted Reporter SARS-CoV-2 as a Tool for Two-Photon In Vivo Imaging
by Hiroshi Ueki, Maki Kiso, Yuri Furusawa, Shun Iida, Seiya Yamayoshi, Noriko Nakajima, Masaki Imai, Tadaki Suzuki and Yoshihiro Kawaoka
Viruses 2024, 16(4), 537; https://doi.org/10.3390/v16040537 - 29 Mar 2024
Cited by 2 | Viewed by 2048
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often causes severe viral pneumonia. Although many studies using mouse models have examined the pathogenicity of SARS-CoV-2, COVID-19 pathogenesis remains poorly understood. In vivo imaging analysis using two-photon excitation microscopy (TPEM) is useful for elucidating the [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often causes severe viral pneumonia. Although many studies using mouse models have examined the pathogenicity of SARS-CoV-2, COVID-19 pathogenesis remains poorly understood. In vivo imaging analysis using two-photon excitation microscopy (TPEM) is useful for elucidating the pathology of COVID-19, providing pathological insights that are not available from conventional histological analysis. However, there is no reporter SARS-CoV-2 that demonstrates pathogenicity in C57BL/6 mice and emits sufficient light intensity for two-photon in vivo imaging. Here, we generated a mouse-adapted strain of SARS-CoV-2 (named MASCV2-p25) and demonstrated its efficient replication in the lungs of C57BL/6 mice, causing fatal pneumonia. Histopathologic analysis revealed the severe inflammation and infiltration of immune cells in the lungs of MASCV2-p25-infected C57BL/6 mice, not unlike that observed in COVID-19 patients with severe pneumonia. Subsequently, we generated a mouse-adapted reporter SARS-CoV-2 (named MASCV-Venus-p9) by inserting the fluorescent protein-encoding gene Venus into MASCV2-p25 and sequential lung-to-lung passages in C57BL/6 mice. C57BL/6 mice infected with MASCV2-Venus-p9 exhibited severe pneumonia. In addition, the TPEM of the lungs of the infected C57BL/6J mice showed that the infected cells emitted sufficient levels of fluorescence for easy observation. These findings suggest that MASCV2-Venus-p9 will be useful for two-photon in vivo imaging studies of the pathogenesis of severe COVID-19 pneumonia. Full article
Show Figures

Figure 1

11 pages, 6829 KiB  
Communication
A 20 MHz Repetition Rate, Sub-Picosecond Ti–Sapphire Laser for Fiber Delivery in Nonlinear Microscopy of the Skin
by Ádám Krolopp, Luca Fésűs, Gergely Szipőcs, Norbert Wikonkál and Róbert Szipőcs
Life 2024, 14(2), 231; https://doi.org/10.3390/life14020231 - 7 Feb 2024
Viewed by 1562
Abstract
Nonlinear microscopy (NM) enables us to investigate the morphology or monitor the physiological processes of the skin through the use of ultrafast lasers. Fiber (or fiber-coupled) lasers are of great interest because they can easily be combined with a handheld, scanning nonlinear microscope. [...] Read more.
Nonlinear microscopy (NM) enables us to investigate the morphology or monitor the physiological processes of the skin through the use of ultrafast lasers. Fiber (or fiber-coupled) lasers are of great interest because they can easily be combined with a handheld, scanning nonlinear microscope. This latter feature greatly increases the utility of NM for pre-clinical applications and in vivo tissue imaging. Here, we present a fiber-coupled, sub-ps Ti–sapphire laser system being optimized for in vivo, stain-free, 3D imaging of skin alterations with a low thermal load of the skin. The laser is pumped by a low-cost, 2.1 W, 532 nm pump laser and delivers 0.5–1 ps, high-peak-power pulses at a ~20 MHz repetition rate. The spectral bandwidth of the laser is below 2 nm, which results in a low sensitivity for dispersion during fiber delivery. The reduction in the peak intensity due to the increased pulse duration is compensated by the lower repetition rate of our laser. In our proof-of-concept imaging experiments, a ~1.8 m long, commercial hollow-core photonic bandgap fiber was used for fiber delivery. Fresh and frozen skin biopsies of different skin alterations (e.g., adult hemangioma, basal cell cancer) and an unaffected control were used for high-quality, two-photon excitation fluorescence microscopy (2PEF) and second-harmonic generation (SHG) z-stack (3D) imaging. Full article
(This article belongs to the Special Issue Non-invasive Skin Imaging Development and Applications)
Show Figures

Figure 1

18 pages, 5728 KiB  
Article
Simultaneous Two- and Three-Photon Deep Imaging of Autofluorescence in Bacterial Communities
by Alma Fernández, Anton Classen, Nityakalyani Josyula, James T. Florence, Alexei V. Sokolov, Marlan O. Scully, Paul Straight and Aart J. Verhoef
Sensors 2024, 24(2), 667; https://doi.org/10.3390/s24020667 - 20 Jan 2024
Cited by 4 | Viewed by 2478
Abstract
The intrinsic fluorescence of bacterial samples has a proven potential for label-free bacterial characterization, monitoring bacterial metabolic functions, and as a mechanism for tracking the transport of relevant components through vesicles. The reduced scattering and axial confinement of the excitation offered by multiphoton [...] Read more.
The intrinsic fluorescence of bacterial samples has a proven potential for label-free bacterial characterization, monitoring bacterial metabolic functions, and as a mechanism for tracking the transport of relevant components through vesicles. The reduced scattering and axial confinement of the excitation offered by multiphoton imaging can be used to overcome some of the limitations of single-photon excitation (e.g., scattering and out-of-plane photobleaching) to the imaging of bacterial communities. In this work, we demonstrate in vivo multi-photon microscopy imaging of Streptomyces bacterial communities, based on the excitation of blue endogenous fluorophores, using an ultrafast Yb-fiber laser amplifier. Its parameters, such as the pulse energy, duration, wavelength, and repetition rate, enable in vivo multicolor imaging with a single source through the simultaneous two- and three-photon excitation of different fluorophores. Three-photon excitation at 1040 nm allows fluorophores with blue and green emission spectra to be addressed (and their corresponding ultraviolet and blue single-photon excitation wavelengths, respectively), and two-photon excitation at the same wavelength allows fluorophores with yellow, orange, or red emission spectra to be addressed (and their corresponding green, yellow, and orange single-photon excitation wavelengths). We demonstrate that three-photon excitation allows imaging over a depth range of more than 6 effective attenuation lengths to take place, corresponding to an 800 micrometer depth of imaging, in samples with a high density of fluorescent structures. Full article
(This article belongs to the Special Issue Recent Advances in Biophotonics Sensors)
Show Figures

Figure 1

11 pages, 10802 KiB  
Article
Simultaneous 3D Construction and Imaging of Plant Cells Using Plasmonic Nanoprobe-Assisted Multimodal Nonlinear Optical Microscopy
by Kun Liu, Yutian Lei and Dawei Li
Nanomaterials 2023, 13(19), 2626; https://doi.org/10.3390/nano13192626 - 23 Sep 2023
Cited by 1 | Viewed by 1633
Abstract
Nonlinear optical (NLO) imaging has emerged as a promising plant cell imaging technique due to its large optical penetration, inherent 3D spatial resolution, and reduced photodamage; exogenous nanoprobes are usually needed for nonsignal target cell analysis. Here, we report in vivo, simultaneous 3D [...] Read more.
Nonlinear optical (NLO) imaging has emerged as a promising plant cell imaging technique due to its large optical penetration, inherent 3D spatial resolution, and reduced photodamage; exogenous nanoprobes are usually needed for nonsignal target cell analysis. Here, we report in vivo, simultaneous 3D labeling and imaging of potato cell structures using plasmonic nanoprobe-assisted multimodal NLO microscopy. Experimental results show that the complete cell structure can be imaged via the combination of second-harmonic generation (SHG) and two-photon luminescence (TPL) when noble metal silver or gold ions are added. In contrast, without the noble metal ion solution, no NLO signals from the cell wall were acquired. The mechanism can be attributed to noble metal nanoprobes with strong nonlinear optical responses formed along the cell walls via a femtosecond laser scan. During the SHG-TPL imaging process, noble metal ions that crossed the cell wall were rapidly reduced to plasmonic nanoparticles with the fs laser and selectively anchored onto both sides of the cell wall, thereby leading to simultaneous 3D labeling and imaging of the potato cells. Compared with the traditional labeling technique that needs in vitro nanoprobe fabrication and cell labeling, our approach allows for one-step, in vivo labeling of plant cells, thus providing a rapid, cost-effective method for cellular structure construction and imaging. Full article
(This article belongs to the Special Issue Nonlinear Optics in Low-Dimensional Nanomaterials)
Show Figures

Figure 1

35 pages, 7519 KiB  
Review
Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies
by Maxim E. Darvin
Pharmaceutics 2023, 15(9), 2272; https://doi.org/10.3390/pharmaceutics15092272 - 3 Sep 2023
Cited by 17 | Viewed by 5140
Abstract
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk [...] Read more.
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment—a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted. Full article
Show Figures

Graphical abstract

9 pages, 970 KiB  
Communication
New Highly Selective BACE1 Inhibitors and Their Effects on Dendritic Spine Density In Vivo
by Katrin Pratsch, Chie Unemura, Mana Ito, Stefan F. Lichtenthaler, Naotaka Horiguchi and Jochen Herms
Int. J. Mol. Sci. 2023, 24(15), 12283; https://doi.org/10.3390/ijms241512283 - 31 Jul 2023
Cited by 7 | Viewed by 2983
Abstract
β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is considered a therapeutic target to combat Alzheimer’s disease by reducing β-amyloid in the brain. To date, all clinical trials involving the inhibition of BACE1 have been discontinued due to a lack of efficacy or undesirable [...] Read more.
β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is considered a therapeutic target to combat Alzheimer’s disease by reducing β-amyloid in the brain. To date, all clinical trials involving the inhibition of BACE1 have been discontinued due to a lack of efficacy or undesirable side effects such as cognitive worsening. The latter could have been the result of the inhibition of BACE at the synapse where it is expressed in high amounts. We have previously shown that prolonged inhibition of BACE interferes with structural synaptic plasticity, most likely due to the diminished processing of the physiological BACE substrate Seizure protein 6 (Sez6) which is exclusively processed by BACE1 and is required for dendritic spine plasticity. Given that BACE1 has significant amino acid similarity with its homolog BACE2, the inhibition of BACE2 may cause some of the side effects, as most BACE inhibitors do not discriminate between the two. In this study, we used newly developed BACE inhibitors that have a different chemotype from previously developed inhibitors and a high selectivity for BACE1 over BACE2. By using longitudinal in vivo two-photon microscopy, we investigated the effect on dendritic spine dynamics of pyramidal layer V neurons in the somatosensory cortex in mice treated with highly selective BACE1 inhibitors. Treatment with those inhibitors showed a reduction in soluble Sez6 (sSez6) levels to 27% (elenbecestat, Biogen, Eisai Co., Ltd., Tokyo, Japan), 17% (Shionogi compound 1) and 39% (Shionogi compound 2), compared to animals fed with vehicle pellets. We observed a significant decrease in the number of dendritic spines with Shionogi compound 1 after 21 days of treatment but not with Shionogi compound 2 or with elenbecestat, which did not show cognitive worsening in clinical trials. In conclusion, highly selective BACE1 inhibitors do alter dendritic spine density similar to non-selective inhibitors if soluble (sSez6) levels drop too much. Low-dose BACE1 inhibition might be reasonable if dosing is carefully adjusted to the amount of Sez6 cleavage, which can be easily monitored during the first week of treatment. Full article
(This article belongs to the Special Issue Advance on the Research of Alzheimer's Disease)
Show Figures

Figure 1

14 pages, 2870 KiB  
Article
Extended Depth of Focus Two-Photon Light-Sheet Microscopy for In Vivo Fluorescence Imaging of Large Multicellular Organisms at Cellular Resolution
by Takashi Saitou and Takeshi Imamura
Int. J. Mol. Sci. 2023, 24(12), 10186; https://doi.org/10.3390/ijms241210186 - 15 Jun 2023
Cited by 5 | Viewed by 2629
Abstract
Two-photon excitation in light-sheet microscopy advances applications to live imaging of multicellular organisms. In a previous study, we developed a two-photon Bessel beam light-sheet microscope with a nearly 1-mm field of view and less than 4-μm axial resolution, using a low magnification (10×), [...] Read more.
Two-photon excitation in light-sheet microscopy advances applications to live imaging of multicellular organisms. In a previous study, we developed a two-photon Bessel beam light-sheet microscope with a nearly 1-mm field of view and less than 4-μm axial resolution, using a low magnification (10×), middle numerical aperture (NA 0.5) detection objective. In this study, we aimed to construct a light-sheet microscope with higher resolution imaging while maintaining the large field of view, using low magnification (16×) with a high NA 0.8 objective. To address potential illumination and detection mismatch, we investigated the use of a depth of focus (DOF) extension method. Specifically, we used a stair-step device composed of five-layer annular zones that extended DOF two-fold, enough to cover the light-sheet thickness. Resolution measurements using fluorescent beads showed that the reduction in resolutions was small. We then applied this system to in vivo imaging of medaka fish and found that image quality degradation at the distal site of the beam injection could be compensated. This demonstrates that the extended DOF system combined with wide-field two-photon light-sheet microscopy offers a simple and easy setup for live imaging application of large multicellular organism specimens with sub-cellular resolution. Full article
(This article belongs to the Special Issue Applications of Fluorescence Microscopy in Molecular Biology)
Show Figures

Figure 1

20 pages, 13024 KiB  
Article
Preliminary In Vitro Assessment of Decellularized Porcine Descending Aorta for Clinical Purposes
by Martina Casarin, Tiago Moderno Fortunato, Saima Jalil Imran, Martina Todesco, Deborah Sandrin, Massimo Marchesan, Gino Gerosa, Filippo Romanato, Andrea Bagno, Fabrizio Dal Moro and Alessandro Morlacco
J. Funct. Biomater. 2023, 14(3), 141; https://doi.org/10.3390/jfb14030141 - 2 Mar 2023
Cited by 2 | Viewed by 3056
Abstract
Conduit substitutes are increasingly in demand for cardiovascular and urological applications. In cases of bladder cancer, radical cystectomy is the preferred technique: after removing the bladder, a urinary diversion has to be created using autologous bowel, but several complications are associated with intestinal [...] Read more.
Conduit substitutes are increasingly in demand for cardiovascular and urological applications. In cases of bladder cancer, radical cystectomy is the preferred technique: after removing the bladder, a urinary diversion has to be created using autologous bowel, but several complications are associated with intestinal resection. Thus, alternative urinary substitutes are required to avoid autologous intestinal use, preventing complications and facilitating surgical procedures. In the present paper, we are proposing the exploitation of the decellularized porcine descending aorta as a novel and original conduit substitute. After being decellularized with the use of two alternative detergents (Tergitol and Ecosurf) and sterilized, the porcine descending aorta has been investigated to assess its permeability to detergents through methylene blue dye penetration analysis and to study its composition and structure by means of histomorphometric analyses, including DNA quantification, histology, two-photon microscopy, and hydroxyproline quantification. Biomechanical tests and cytocompatibility assays with human mesenchymal stem cells have been also performed. The results obtained demonstrated that the decellularized porcine descending aorta preserves its major features to be further evaluated as a candidate material for urological applications, even though further studies have to be carried out to demonstrate its suitability for the specific application, by performing in vivo tests in the animal model. Full article
(This article belongs to the Special Issue Biocompatibility of Functional Biomaterials)
Show Figures

Graphical abstract

24 pages, 10568 KiB  
Review
MEMS Enabled Miniature Two-Photon Microscopy for Biomedical Imaging
by Xiaomin Yu, Liang Zhou, Tingxiang Qi, Hui Zhao and Huikai Xie
Micromachines 2023, 14(2), 470; https://doi.org/10.3390/mi14020470 - 17 Feb 2023
Cited by 7 | Viewed by 5262
Abstract
Over the last decade, two-photon microscopy (TPM) has been the technique of choice for in vivo noninvasive optical brain imaging for neuroscientific study or intra-vital microendoscopic imaging for clinical diagnosis or surgical guidance because of its intrinsic capability of optical sectioning for imaging [...] Read more.
Over the last decade, two-photon microscopy (TPM) has been the technique of choice for in vivo noninvasive optical brain imaging for neuroscientific study or intra-vital microendoscopic imaging for clinical diagnosis or surgical guidance because of its intrinsic capability of optical sectioning for imaging deeply below the tissue surface with sub-cellular resolution. However, most of these research activities and clinical applications are constrained by the bulky size of traditional TMP systems. An attractive solution is to develop miniaturized TPMs, but this is challenged by the difficulty of the integration of dynamically scanning optical and mechanical components into a small space. Fortunately, microelectromechanical systems (MEMS) technology, together with other emerging micro-optics techniques, has offered promising opportunities in enabling miniaturized TPMs. In this paper, the latest advancements in both lateral scan and axial scan techniques and the progress of miniaturized TPM imaging will be reviewed in detail. Miniature TPM probes with lateral 2D scanning mechanisms, including electrostatic, electromagnetic, and electrothermal actuation, are reviewed. Miniature TPM probes with axial scanning mechanisms, such as MEMS microlenses, remote-focus, liquid lenses, and deformable MEMS mirrors, are also reviewed. Full article
(This article belongs to the Special Issue Optical MEMS, Volume III)
Show Figures

Figure 1

9 pages, 1280 KiB  
Technical Note
The LipoDerm Method for Regeneration and Reconstruction in Plastic Surgery: A Technical Experimental Ex Vivo Note
by Ziyad Alharbi, Sarah Qari, Maryam Bader, Sherif Khamis, Faris Almarzouqi, Michael Vogt and Christian Opländer
Med. Sci. 2023, 11(1), 16; https://doi.org/10.3390/medsci11010016 - 3 Feb 2023
Cited by 2 | Viewed by 3135
Abstract
The combination of adipose-derived stem cells (ASCs) and dermal scaffolds has been shown to be an approach with high potential in soft tissue reconstruction. The addition of dermal templates to skin grafts can increase graft survival through angiogenesis, improve regeneration and healing time, [...] Read more.
The combination of adipose-derived stem cells (ASCs) and dermal scaffolds has been shown to be an approach with high potential in soft tissue reconstruction. The addition of dermal templates to skin grafts can increase graft survival through angiogenesis, improve regeneration and healing time, and enhance the overall appearance. However, it remains unknown whether the addition of nanofat-containing ASCs to this construct could effectively facilitate the creation of a multi-layer biological regenerative graft, which could possibly be used for soft tissue reconstruction in the future in a single operation. Initially, microfat was harvested using Coleman’s technique, then isolated through the strict protocol using Tonnard’s technique. Finally, centrifugation, emulsification, and filtration were conducted to seed the filtered nanofat-containing ASCs onto Matriderm for sterile ex vivo cellular enrichment. After seeding, a resazurin-based reagent was added, and the construct was visualized using two-photon microscopy. Within 1 h of incubation, viable ASCs were detected and attached to the top layer of the scaffold. This experimental ex vivo note opens more dimensions and horizons towards the combination of ASCs and collagen–elastin matrices (i.e., dermal scaffolds) as an effective approach in soft tissue regeneration. The proposed multi-layered structure containing nanofat and dermal template (Lipoderm) may be used, in the future, as a biological regenerative graft for wound defect reconstruction and regeneration in a single operation and can also be combined with skin grafts. Such protocols may optimize the skin graft results by creating a multi-layer soft tissue reconstruction template, leading to more optimal regeneration and aesthetic outcomes. Full article
(This article belongs to the Collection Advances in Skin Wound Healing)
Show Figures

Figure 1

14 pages, 4343 KiB  
Article
Long-Term Repeatable In Vivo Monitoring of Amyloid-β Plaques and Vessels in Alzheimer’s Disease Mouse Model with Combined TPEF/CARS Microscopy
by Ziyi Luo, Hao Xu, Soham Samanta, Renlong Zhang, Guoquan Luo, Yiming Wang, Liwei Liu, Xiaoyu Weng, Jun He, Changrui Liao, Yiping Wang, Bingang Guo and Junle Qu
Biomedicines 2022, 10(11), 2949; https://doi.org/10.3390/biomedicines10112949 - 16 Nov 2022
Cited by 6 | Viewed by 2511
Abstract
Long-term, repeatable monitoring of the appearance and progress of Alzheimer’s disease (AD) in real time can be extremely beneficial to acquire highly reliable diagnostic insights, which is crucial for devising apt strategies towards effective AD treatment. Herein, we present an optimized innovative cranial [...] Read more.
Long-term, repeatable monitoring of the appearance and progress of Alzheimer’s disease (AD) in real time can be extremely beneficial to acquire highly reliable diagnostic insights, which is crucial for devising apt strategies towards effective AD treatment. Herein, we present an optimized innovative cranial window imaging method for the long-term repeatable imaging of amyloid-β (Aβ) plaques and vessels in an AD mouse model. Basically, two-photon excitation fluorescence (TPEF) microscopy was used to monitor the fluorescently labeled Aβ plaques, whereas the label-free blood vessels were studied using coherent anti-Stokes Raman scattering (CARS) microscopy in the live in vivo AD mouse model. It was possible to clearly observe the Aβ deposition and vascular structure in the target cortex localization for 31 weeks in the AD mouse model using this method. The combined TPEF/CARS imaging studies were also instrumental in realizing the relationship between the tendency of Aβ deposition and ageing. Essentially, the progression of cerebral amyloid angiopathy (CAA) in the AD mouse model was quantitatively characterized, which revealed that the proportion Aβ deposition in the unit vessel can increase from 13.63% to 28.80% upon increasing the age of mice from 8 months old to 14 months old. The proposed imaging method provided an efficient, safe, repeatable platform with simple target localization aptitude towards monitoring the brain tissues, which is an integral part of studying any brain-related physiological or disease conditions to extract crucial structural and functional information. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

19 pages, 5466 KiB  
Article
Cannabidiol Exerts a Neuroprotective and Glia-Balancing Effect in the Subacute Phase of Stroke
by Erika Meyer, Phillip Rieder, Davide Gobbo, Gabriella Candido, Anja Scheller, Rúbia Maria Weffort de Oliveira and Frank Kirchhoff
Int. J. Mol. Sci. 2022, 23(21), 12886; https://doi.org/10.3390/ijms232112886 - 25 Oct 2022
Cited by 9 | Viewed by 4027
Abstract
Pharmacological agents limiting secondary tissue loss and improving functional outcomes after stroke are still limited. Cannabidiol (CBD), the major non-psychoactive component of Cannabis sativa, has been proposed as a neuroprotective agent against experimental cerebral ischemia. The effects of CBD mostly relate to [...] Read more.
Pharmacological agents limiting secondary tissue loss and improving functional outcomes after stroke are still limited. Cannabidiol (CBD), the major non-psychoactive component of Cannabis sativa, has been proposed as a neuroprotective agent against experimental cerebral ischemia. The effects of CBD mostly relate to the modulation of neuroinflammation, including glial activation. To investigate the effects of CBD on glial cells after focal ischemia in vivo, we performed time-lapse imaging of microglia and astroglial Ca2+ signaling in the somatosensory cortex in the subacute phase of stroke by in vivo two-photon laser-scanning microscopy using transgenic mice with microglial EGFP expression and astrocyte-specific expression of the genetically encoded Ca2+ sensor GCaMP3. CBD (10 mg/kg, intraperitoneally) prevented ischemia-induced neurological impairment, reducing the neurological deficit score from 2.0 ± 1.2 to 0.8 ± 0.8, and protected against neurodegeneration, as shown by the reduction (more than 70%) in Fluoro-Jade C staining (18.8 ± 7.5 to 5.3 ± 0.3). CBD reduced ischemia-induced microglial activation assessed by changes in soma area and total branch length, and exerted a balancing effect on astroglial Ca2+ signals. Our findings indicate that the neuroprotective effects of CBD may occur in the subacute phase of ischemia, and reinforce its strong anti-inflammatory property. Nevertheless, its mechanism of action on glial cells still requires further studies. Full article
(This article belongs to the Special Issue CNS Drug Action in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Back to TopTop