Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = in vivo oral infection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 14428 KiB  
Article
Bivalent Oral Vaccine Using Attenuated Salmonella Gallinarum Delivering HA and NA-M2e Confers Dual Protection Against H9N2 Avian Influenza and Fowl Typhoid in Chickens
by Muhammad Bakhsh, Amal Senevirathne, Jamal Riaz, Jun Kwon, Ram Prasad Aganja, Jaime C. Cabarles, Sang-Ik Oh and John Hwa Lee
Vaccines 2025, 13(8), 790; https://doi.org/10.3390/vaccines13080790 - 25 Jul 2025
Viewed by 414
Abstract
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lon [...] Read more.
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lonpagLasd) as a delivery system for H9N2 antigens to induce an immunoprotective response against both H9N2 and FT. To enhance immune protection against H9N2, a prokaryotic and eukaryotic dual expression plasmid, pJHL270, was employed. The hemagglutinin (HA) consensus sequence from South Korean avian influenza A virus (AIV) was cloned under the Ptrc promoter for prokaryotic expression, and the B cell epitope of neuraminidase (NA) linked with matrix protein 2 (M2e) was placed for eukaryotic expression. In vitro and in vivo expressions of the H9N2 antigens were validated by qRT-PCR and Western blot, respectively. Results: Oral immunization with JOL3121 induced a significant increase in SG and H9N2-specific serum IgY and cloacal swab IgA antibodies, confirming humoral and mucosal immune responses. Furthermore, FACS analysis showed increased CD4+ and CD8+ T cell populations. On day 28 post-immunization, there was a substantial rise in the hemagglutination inhibition titer in the immunized birds, demonstrating neutralization capabilities of immunization. Both IFN-γ and IL-4 demonstrated a significant increase, indicating a balance of Th1 and Th2 responses. Intranasal challenge with the H9N2 Y280 strain resulted in minimal to no clinical signs with significantly lower lung viral titer in the JOL3121 group. Upon SG wildtype challenge, the immunized birds in the JOL3121 group yielded 20% mortality, while 80% mortality was recorded in the PBS control group. Additionally, bacterial load in the spleen and liver was significantly lower in the immunized birds. Conclusions: The current vaccine model, designed with a host-specific pathogen, SG, delivers a robust immune boost that could enhance dual protection against FT and H9N2 infection, both being significant diseases in poultry, as well as ensure public health. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Graphical abstract

18 pages, 2562 KiB  
Article
Enhancing the Solubility and Oral Bioavailability of Trimethoprim Through PEG-PLGA Nanoparticles: A Comprehensive Evaluation of In Vitro and In Vivo Performance
by Yaxin Zhou, Guonian Dai, Jing Xu, Weibing Xu, Bing Li, Shulin Chen and Jiyu Zhang
Pharmaceutics 2025, 17(8), 957; https://doi.org/10.3390/pharmaceutics17080957 - 24 Jul 2025
Viewed by 283
Abstract
Background/Objectives: Trimethoprim (TMP), a sulfonamide antibacterial synergist, is widely used in antimicrobial therapy owing to its broad-spectrum activity and clinical efficacy in treating respiratory, urinary tract, and gastrointestinal infections. However, its application is limited due to poor aqueous solubility, a short elimination half-life [...] Read more.
Background/Objectives: Trimethoprim (TMP), a sulfonamide antibacterial synergist, is widely used in antimicrobial therapy owing to its broad-spectrum activity and clinical efficacy in treating respiratory, urinary tract, and gastrointestinal infections. However, its application is limited due to poor aqueous solubility, a short elimination half-life (t1/2), and low bioavailability. In this study, we proposed TMP loaded by PEG-PLGA polymer nanoparticles (NPs) to increase its efficacy. Methods: We synthesized and thoroughly characterized PEG-PLGA NPs loaded with TMP using an oil-in-water (O/W) emulsion solvent evaporation method, denoted as PEG-PLGA/TMP NPs. Drug loading capacity (LC) and encapsulation efficiency (EE) were quantified by ultra-performance liquid chromatography (UPLC). Comprehensive investigations were conducted on the stability of PEG-PLGA/TMP NPs, in vitro drug release profiles, and in vivo pharmacokinetics. Results: The optimized PEG-PLGA/TMP NPs displayed a high LC of 34.0 ± 1.6%, a particle size of 245 ± 40 nm, a polydispersity index (PDI) of 0.103 ± 0.019, a zeta potential of −23.8 ± 1.2 mV, and an EE of 88.2 ± 4.3%. The NPs remained stable at 4 °C for 30 days and under acidic conditions. In vitro release showed sustained biphasic kinetics and enhanced cumulative release, 86% at pH 6.8, aligning with first-order models. Pharmacokinetics in rats revealed a 2.82-fold bioavailability increase, prolonged half-life 2.47 ± 0.19 h versus 0.72 ± 0.08 h for free TMP, and extended MRT 3.10 ± 0.11 h versus 1.27 ± 0.11 h. Conclusions: PEG-PLGA NPs enhanced the solubility and oral bioavailability of TMP via high drug loading, stability, and sustained-release kinetics, validated by robust in vitro-in vivo correlation, offering a promising alternative for clinical antimicrobial therapy. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 485
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

16 pages, 8302 KiB  
Article
Complex Medium-Chain Triglycerides Mitigate Porcine Epidemic Diarrhea Virus Infection in Piglets by Enhancing Anti-Inflammation, Antioxidation, and Intestinal Barrier Function
by Tingting Hu, Yunhao Liu, Sihui Gao, Xiaonan Zhao, Huangzuo Cheng, Youjun Hu, Huaqiao Tang, Zhiwen Xu and Chunlin Fang
Viruses 2025, 17(7), 920; https://doi.org/10.3390/v17070920 - 27 Jun 2025
Viewed by 443
Abstract
Porcine epidemic diarrhea (PED), a highly contagious enteric disease caused by the porcine epidemic diarrhea virus (PEDV), is characterized by vomiting, diarrhea, and dehydration, leading to high mortality in newborn piglets and significant economic losses in the swine industry. The shortage of effective [...] Read more.
Porcine epidemic diarrhea (PED), a highly contagious enteric disease caused by the porcine epidemic diarrhea virus (PEDV), is characterized by vomiting, diarrhea, and dehydration, leading to high mortality in newborn piglets and significant economic losses in the swine industry. The shortage of effective PED vaccines emphasizes the need to explore potent natural compounds for therapeutic intervention. It has been shown that glycerol monolaurate (GML) effectively inhibits PEDV replication in vivo and in vitro. Further investigation is needed to assess whether complex medium-chain triglycerides (CMCTs), composed of glyceryl tricaprylate/caprate (GTCC) and GML, offer an efficient anti-PEDV activity. In this study, piglets were orally infected with PEDV and exhibited typical clinical signs, including diarrhea and vomiting, accompanied by intestinal inflammation, oxidative stress, and tissue damage. CMCTs were administered orally twice daily for one week. In vivo findings indicate that CMCT treatment alleviated clinical signs and prevented weight loss. It significantly increased serum immunoglobulins (IgG, IgM, and IgA) and intestinal mucosal sIgA and MUC-2 levels, while reducing pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IL-17) and increasing antiviral interferons (IFN-α and IFN-γ), anti-inflammatory cytokines (IL-4 and IL-10), and IL-22. Antioxidant enzyme activities (T-AOC, SOD, GSH-Px, and CAT) were elevated, whereas oxidative stress markers (iNOS, NO, and MDA) were decreased. Expression of intestinal tight junction proteins claudin-1 and ZO-1 was restored. Moreover, CD4+ and CD8+ T cell populations increased, and the functions of regulatory T cells (Tregs) were restored. Gut microbiota analysis showed increased beneficial genera (Streptococcus and Ligilactobacillus) and decreased pathogenic Escherichia-Shigella. These results demonstrate that CMCTs mitigate PEDV infection by enhancing anti-inflammation, antioxidation, and intestinal barrier function, as well as modulating gut microbiota composition. This study improves the understanding of the pathogenesis of PEDV and highlights CMCTs as a promising therapeutic candidate for PED. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

21 pages, 3621 KiB  
Article
Dual-Mode Antibacterial Orthodontic Composite: Contact-Killing QACs and Sustained CHX Release via Large-Pore Mesoporous Silica Nanoparticles
by Xiaotian Teng, Yingguang Cao, Jing Mao and Xiaojuan Luo
Int. J. Mol. Sci. 2025, 26(13), 6172; https://doi.org/10.3390/ijms26136172 - 26 Jun 2025
Viewed by 393
Abstract
This study develops a dual-mode antibacterial orthodontic adhesive by integrating quaternary ammonium salt-modified large-pore mesoporous silica nanoparticles (QLMSN@CHX). The material integrates two antibacterial mechanisms: (1) contact killing via covalently anchored quaternary ammonium salts (QACs) and (2) sustained release of chlorhexidine (CHX) from radially [...] Read more.
This study develops a dual-mode antibacterial orthodontic adhesive by integrating quaternary ammonium salt-modified large-pore mesoporous silica nanoparticles (QLMSN@CHX). The material integrates two antibacterial mechanisms: (1) contact killing via covalently anchored quaternary ammonium salts (QACs) and (2) sustained release of chlorhexidine (CHX) from radially aligned macropores. The experimental results demonstrated that QLMSN@CHX (5 wt%) achieved rapid biofilm eradication (near-complete biofilm eradication at 24 h) and prolonged antibacterial activity, while maintaining shear bond strength comparable to commercial adhesives (6.62 ± 0.09 MPa after 30-day aging). The large-pore structure enabled controlled CHX release without burst effects, and covalent grafting ensured negligible QAC leaching over 30 days. The composite demonstrated good biocompatibility with human dental pulp mesenchymal stem cells at clinically relevant concentrations. This dual-mode design provides a clinically viable strategy to combat bacterial contamination in orthodontic treatments, with potential applications in other oral infections. Future studies will focus on validating efficacy in complex in vivo biofilm models. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

21 pages, 3425 KiB  
Article
Antibacterial and Anti-Adherence Efficacy of Silver Nanoparticles Against Endodontic Biofilms: An In Vitro and Ex Vivo Study
by Mariana Goretti Pérez-Sáenz, Rita Elizabeth Martínez-Martínez, Erasto Armando Zaragoza-Contreras, Rubén Abraham Domínguez-Pérez, Simón Yobanny Reyes-López, Alejandro Donohue-Cornejo, Juan Carlos Cuevas-González, Karla Lizette Tovar-Carrillo, Erika de Lourdes Silva-Benítez, José Luis Ayala-Herrera and León Francisco Espinosa-Cristóbal
Pharmaceutics 2025, 17(7), 831; https://doi.org/10.3390/pharmaceutics17070831 - 26 Jun 2025
Viewed by 365
Abstract
Background/Objectives: Root canal infections represent a serious challenge to the success of endodontic treatment. The most commonly used antimicrobial irrigants, such as sodium hypochlorite (NaOCl), have certain limitations, while endodontic biofilms pose a significant microbiological complexity in the endodontic field. Silver nanoparticles (AgNPs) [...] Read more.
Background/Objectives: Root canal infections represent a serious challenge to the success of endodontic treatment. The most commonly used antimicrobial irrigants, such as sodium hypochlorite (NaOCl), have certain limitations, while endodontic biofilms pose a significant microbiological complexity in the endodontic field. Silver nanoparticles (AgNPs) have emerged as a promising irrigant option in root canal treatments; however, few studies are focusing on endodontic biofilms. This work aimed to evaluate the antimicrobial and anti-adherence properties of AgNPs against clinically isolated bacteria taken directly from patients with various pulp and periapical diseases. Methods: AgNPs of two sizes were synthesized and characterized. The bactericidal and anti-adherence activities of AgNPs were evaluated through microbiological assays using experimental in vitro and ex vivo tests on oral biofilms taken from patients with symptomatic apical periodontitis (AAP) and pulp necrosis (PN). NaOCl solution was used as the gold standard. Results: The size of AgNPs was uniformly distributed (13.2 ± 0.4 and 62.6 ± 14.9 nm, respectively) with a spherical shape. Both types of nanoparticles exhibited good antimicrobial and anti-adherence activities in all microbiological assays, with a significant difference from NaOCl for in vitro and ex vivo models (p < 0.05). The inhibitory activity of AgNPs is mainly related to the type of microbiological sample and the exposure time. The antibacterial substantivity of both nanoparticle sizes was time-dependent. Conclusions: AgNPs may represent a promising antimicrobial option as an endodontic irrigant during conventional root canal treatments to prevent and control endodontic infections. Full article
Show Figures

Graphical abstract

19 pages, 1126 KiB  
Review
Exploring the Efficacy of Low-Temperature Plasmas on Oral Biofilms: A Scoping Review
by Carson C. Davis, Fabrízio Dias Panariello and Beatriz Panariello
Med. Sci. 2025, 13(2), 79; https://doi.org/10.3390/medsci13020079 - 18 Jun 2025
Viewed by 645
Abstract
The rise of antibiotic resistance and the limitations of conventional therapies for managing biofilm-related oral infections highlight the urgent need for novel solutions, with low-temperature plasma (LTP) emerging as a promising alternative due to its potent antimicrobial effects, tissue-safety, and reduced risk of [...] Read more.
The rise of antibiotic resistance and the limitations of conventional therapies for managing biofilm-related oral infections highlight the urgent need for novel solutions, with low-temperature plasma (LTP) emerging as a promising alternative due to its potent antimicrobial effects, tissue-safety, and reduced risk of fostering resistance. This scoping review investigates the efficacy of LTP application for the management of oral biofilms associated with dental caries, peri-implantitis, endodontic infections, and oral candidiasis. This review was conducted in accordance with the PRISMA-ScR guidelines and registered with the Open Science Framework (OSF). Studies were identified through comprehensive searches of PubMed/MEDLINE, EBSCO (Medline Ultimate and e-journals), and Google Scholar, with no publication date restrictions, and were supplemented by manual reference screening. Eligible studies included original research, published in English, examining LTP’s effectiveness in oral biofilms. After systematically screening the literature, 51 studies were included in this scoping review, comprising mostly in vitro research, alongside ex vivo, in situ, and clinical studies. Data extraction revealed LTP’s broad-spectrum antimicrobial potential and promising clinical implications for dentistry. This review highlights key findings, identifies research gaps, and underscores the therapeutic potential of LTP in managing complex oral biofilm-related infections. Full article
Show Figures

Figure 1

25 pages, 4481 KiB  
Article
Pharmacokinetics and Metabolism of Broad-Spectrum Antivirals Remdesivir and Obeldesivir with a Consideration to Metabolite GS-441524: Same, Similar, or Different?
by Darius Babusis, Cynthia Kim, Jesse Yang, Xiaofeng Zhao, Guoju Geng, Carmen Ip, Nathan Kozon, Hoa Le, Jennifer Leung, Jared Pitts, Dustin S. Siegel, Rao Kalla, Bernard Murray, John P. Bilello, Roy Bannister, Richard L. Mackman and Raju Subramanian
Viruses 2025, 17(6), 836; https://doi.org/10.3390/v17060836 - 10 Jun 2025
Viewed by 1729
Abstract
RNA viruses with pandemic potential pose a significant global health risk. The adenosine nucleoside analog GS-441524 is metabolized to its active GS-443902 triphosphate metabolite to inhibit a broad spectrum of RNA viruses. Intravenous (IV) remdesivir (RDV) and oral obeldesivir (ODV) are phosphoramidate and [...] Read more.
RNA viruses with pandemic potential pose a significant global health risk. The adenosine nucleoside analog GS-441524 is metabolized to its active GS-443902 triphosphate metabolite to inhibit a broad spectrum of RNA viruses. Intravenous (IV) remdesivir (RDV) and oral obeldesivir (ODV) are phosphoramidate and isobutyryl-ester prodrugs of GS-441524, respectively. Following administration, both RDV and ODV show rapid and broad tissue distribution, form the same GS-443902 metabolite in target tissues, and demonstrate promising in vivo efficacy across several RNA virus infection models. In an African green monkey SARS-CoV-2 infection model, respective RDV and ODV treatments yielded similar antiviral efficacy. Here, we compare the in vitro and in vivo pharmacokinetics (PK) and metabolism of RDV and ODV to highlight both similarities and differences in their absorption, metabolism, distribution, and excretion profiles. The distinct route of administration and metabolic fate of each prodrug produced in vivo PK and metabolism profiles with differential GS-441524 to tissue GS-443902 relationships, thereby supporting alternate methods for predicting human efficacious doses. Overall, a metabolism-directed prodrug design enabled optimized delivery of the identical active GS-443902 metabolite through different routes of administration, supporting broader applications of the same nucleoside analog across an expanded spectrum of potential antiviral indications. Full article
(This article belongs to the Special Issue Viral Replication Inhibitors)
Show Figures

Figure 1

11 pages, 515 KiB  
Article
Systemic Antifolate Chemotherapy Does Not Select for Fluconazole-Resistant Candida: A Multicenter Clinical Study
by Dawid Żyrek, Joanna Nowicka, Magdalena Pajączkowska, Mariola Paściak, Katarzyna Machnik, Tomasz Werner, Zygmunt Konieczny, Piotr Jędrzejczak, Dominika Raźniewska, Gabriela Fijałkowska, Michał Piątek, Barbara Radecka, Kinga Żyrek, Elżbieta Woźniak-Grygiel and Iwona Dzieńdziora-Urbińska
Pathogens 2025, 14(6), 574; https://doi.org/10.3390/pathogens14060574 - 7 Jun 2025
Viewed by 763
Abstract
Previous studies have demonstrated that Candida spp. isolates exposed in vitro to the folic acid antagonist methotrexate may develop multidrug cross-resistance to azole antifungals. The aim of this study was to determine whether systemic therapy with antineoplastic antifolates—pemetrexed or methotrexate—constitutes a risk factor [...] Read more.
Previous studies have demonstrated that Candida spp. isolates exposed in vitro to the folic acid antagonist methotrexate may develop multidrug cross-resistance to azole antifungals. The aim of this study was to determine whether systemic therapy with antineoplastic antifolates—pemetrexed or methotrexate—constitutes a risk factor for colonization or infection with fluconazole-resistant yeasts. The study group comprised 44 cancer patients who received high-dose systemic antifolate therapy, while the control group consisted of 48 patients without prior exposure to either methotrexate or pemetrexed. Oral swabs and relevant clinical data were collected from all participants. In total, 109 fungal strains representing 13 species were isolated, identified, and subsequently tested for fluconazole susceptibility. Fluconazole-resistant isolates were identified in 4 out of 44 (9.1%) antifolate-treated patients and in 3 out of 48 (6.3%) control patients. Our findings suggest that, although this phenomenon occurs in vitro, systemic antineoplastic antifolate therapy does not induce azole resistance among endogenous yeast species in vivo. Full article
Show Figures

Figure 1

19 pages, 974 KiB  
Article
Design, Synthesis and Antiplasmodial Activities of a Library of Fluorine-Based 3-Benzylmenadiones
by Matthieu Roignant, Jimmy Richard, Maxime Donzel, Matthias Rottmann, Pascal Mäser and Elisabeth Davioud-Charvet
Molecules 2025, 30(11), 2446; https://doi.org/10.3390/molecules30112446 - 3 Jun 2025
Viewed by 544
Abstract
Plasmodione is a potent early antiplasmodial compound. A metabolic study on mice treated with plasmodione revealed that 6-hydroxy–plasmodione was the main metabolite eliminated in the urine of treated mice. To block the metabolic pathway in the host, the introduction of fluorine at C-6 [...] Read more.
Plasmodione is a potent early antiplasmodial compound. A metabolic study on mice treated with plasmodione revealed that 6-hydroxy–plasmodione was the main metabolite eliminated in the urine of treated mice. To block the metabolic pathway in the host, the introduction of fluorine at C-6 of the 3-benzylmenadione core was applied and showed potent antiplasmodial activity similar to that of the plasmodione analogue in vitro. In this work, a library of 38 6-fluoro-3-benzylmenadione analogues (a series) was constructed by incorporating structurally diverse groups in place of the 4-(trifluoromethyl) substituent present in the antiplasmodial plasmodione, via three synthetic routes. All new compounds were tested against the P. falciparum NF54 strain and for cytotoxicity with the rat L6 line. With a fluorine atom at C-6, A-a-21 was revealed to be the only compound from the a series, superior to the 6-H- analogue from the b series, with an IC50 value of 70 nM versus 200 nM. Then, five other fluorine-based 3-benzylmenadiones, in which the fluorine was introduced in various positions of the 3-benzylmenadione core, were synthetized to assist our understanding of the impact of fluorine on antiplasmodial potencies in vitro; in particular, the aim here was to compare the effects of human serum and P. berghei species in these drug screens. This was also conducted in vivo with the P. berghei-infected mouse model. In the P. berghei species assay, PD and the 4′-fluoro-3′-trifluoromethyl-benzylmenadione A-b-9 exhibited a similar antiplasmodial behavior toward P. falciparum versus P. berghei. In the human serum versus Albumax assays, only the 6-fluoro–plasmodione showed a lower shift factor between Albumax assays and human serum conditions, suggesting a lower protein binding for the 6-F-PD compared to plasmodione or A-b-9. In vivo, 6-fluoro–plasmodione proved to be the most potent 3-benzylmenadione, reducing parasitemia by 50% after oral administration at 50 mg/kg. Full article
(This article belongs to the Special Issue Synthesis of Bioactive Compounds, 3rd Edition)
Show Figures

Graphical abstract

19 pages, 1630 KiB  
Article
A Plant-Based Dietary Supplement Exhibits Significant Effects on Markers of Oxidative Stress, Inflammation, and Immune Response in Subjects Recovering from Respiratory Viral Infection: A Randomized, Double-Blind Clinical Study Using Vitamin C as a Positive Control
by Bruno Fink, John M. Hunter, Zbigniew Pietrzkowski, Richard Fink, Coy Brunssen, Henning Morawietz and Boris Nemzer
Int. J. Mol. Sci. 2025, 26(11), 5209; https://doi.org/10.3390/ijms26115209 - 29 May 2025
Viewed by 1294
Abstract
Respiratory viruses continue to present serious health challenges to human wellness. Growing evidence suggests that the more severe and damaging effects and symptoms of influenza, rhinovirus (RV), respiratory syncytial virus (RSV), and COVID-19 may primarily result from their common ability to disorganize the [...] Read more.
Respiratory viruses continue to present serious health challenges to human wellness. Growing evidence suggests that the more severe and damaging effects and symptoms of influenza, rhinovirus (RV), respiratory syncytial virus (RSV), and COVID-19 may primarily result from their common ability to disorganize the body’s healthy immune response. The simultaneous over-stimulation of several reactive oxygen species (ROS) pathways and concurrent suppression of bioavailable Nitic Oxide (NO) contribute to an immune disbalance that can lead to cellular oxidative distress and an excessive inflammatory response. This study evaluated the real-time, acute ability of a single, orally administered 50 mg encapsulated dose of a plant-based dietary supplement (“PB-Blend”), compared to 1000 mg of Vitamin C as a positive control, to modulate multiple ROS associated with a dampened immune response, as well as NO and other markers of inflammation, in a cohort recovering from a moderate course of COVID-19. This randomized, double-blind study was performed on 28 individuals 18–24 days after a moderate COVID-19 infection. Participants were orally supplemented with a single encapsulated dose of either 50 mg of PB-Blend or 1000 mg Vitamin C as a positive control. Changes in the levels of bioavailable NO (measured as circulating NOHb) were assessed, as well as the ex vivo cellular formation of mitochondrial, NOX2-, iNOS-, and TNFα-dependent ROS. All parameters were measured in real time before ingestion (baseline), and then at 30, 60, 120, and 180 min after administration. ROS were measured using a portable electron paramagnetic resonance (EPR) spectrometer. Inflammatory, immunity (hsCRP and TNFα plasma levels), interleukin (IL1, IL6, IL8, and IL10), cytokine (IFNγ, TNFα, and NF-κB), and immunoglobulin (IgA, IgM, IgG, and IgE) profiles were also followed. In addition to laboratory and cell function investigations, we performed clinical cardio ergometry, blood O2 saturation, and respirometry examinations. As hypothesized, the collected baseline data from this study group confirmed that mitochondrial, NOX2, and iNOS enzymatic systems were strongly involved in the generation of ROS at 18–24 days following a positive COVID-19 PCR test. Acute single-dose supplementation of 50 mg PB-Blend had a multifunctional impact on ROS and significantly inhibited the following: (a.) mitochondrial ROS levels by up to 56%; (b.) iNOS by up to 60%; and (c.) NOX2-dependent ROS generation by up to 49%. Moreover, 1000 mg Vitamin C supplementation exhibited narrower ROS-mitigating activity by solely inhibiting NOX2-dependent ROS generation by 45%. Circulating NOHb levels were significantly increased after PB-Blend administration (33%), but not after Vitamin C administration. PB-Blend and Vitamin C exhibited similar potential to reduce ex vivo high dose TNFα (200 ng/mL)-induced H2O2 formation. These results suggest that 50 mg of PB-Blend has the potential to modulate disbalanced mitochondria, iNOS, and NOX2 enzymatic systems that can be engendered during respiratory viral infection and subsequent recovery. Moreover, PB-Blend, but not Vitamin C, showed potential to upregulate bioavailable NO, which is known to decline under these conditions. Based upon these observations, PB-Blend could be considered an alternative to, or to be used in tandem with Vitamin C in applications that promote immune support and recovery during seasons of heightened respiratory viral risk (e.g., “flu season”). Full article
(This article belongs to the Special Issue Effects of Bioactive Compounds in Oxidative Stress and Inflammation)
Show Figures

Figure 1

22 pages, 1321 KiB  
Article
Assessment of Innovative Dry Powders for Inhalation of a Synergistic Combination Against Mycobacterium tuberculosis in Infected Macrophages and Mice
by Faustine Ravon, Emilie Berns, Isaline Lambert, Céline Rens, Pierre-Yves Adnet, Mehdi Kiass, Véronique Megalizzi, Cédric Delporte, Alain Baulard, Vanessa Mathys, Samira Boarbi, Nathalie Wauthoz and Véronique Fontaine
Pharmaceutics 2025, 17(6), 705; https://doi.org/10.3390/pharmaceutics17060705 - 27 May 2025
Viewed by 568
Abstract
Background/Objectives: In vitro, vancomycin (VAN) and tetrahydrolipstatin (THL) together have been shown to synergistically inhibit Mycobacterium tuberculosis (Mtb), the world’s most infectious killer. The poor oral bioavailability of VAN and THL and predominant tropism of Mtb infection to the lungs and alveolar macrophages [...] Read more.
Background/Objectives: In vitro, vancomycin (VAN) and tetrahydrolipstatin (THL) together have been shown to synergistically inhibit Mycobacterium tuberculosis (Mtb), the world’s most infectious killer. The poor oral bioavailability of VAN and THL and predominant tropism of Mtb infection to the lungs and alveolar macrophages make pulmonary administration highly attractive. This study aimed to develop and assess the efficacy of dry powders for inhalation of VAN microparticles embedded with THL. Methods: The dry powders produced by spray-drying, with or without hydrogenated castor oil (HCO), were characterized for their physicochemical properties among others by HPLC-DAD. The fast-screening impactor was used to determine powder aerodynamic properties, and VAN and THL releases were established from the paddle over disk method. Biological activities were assessed in a new M. bovis-infected macrophage model and in Mtb-infected mice. Results and Discussion: The addition of 25% HCO enables co-deposition (fine particle dose) at the desired weight ratio and co-releasing of VAN and THL in aqueous media. Microparticles with 0% to 50% HCO drastically reduced cytoplasmic Mycobacterium bovis survival (99.9% to 62.5%, respectively), with higher efficacy at low HCO concentration. Consequently, VAN/THL with or without 25% HCO was evaluated in Mtb-infected mice. Although no decrease in Mtb lung burden was observed after two weeks of administration, the endotracheal administration of VAN 500 mg/kg and THL 50 mg/kg with 25% HCO administrated three times during five days concomitantly with daily oral rifampicin (10 mg/kg) demonstrated 2-fold bacterial burden reduction compared to the group treated with RIF alone. Conclusions: HCO was crucial for obtaining a fine particle dose at the synergistic weight ratio (VAN/THL 10:1) and for releasing both drugs in aqueous media. With oral administration of the first-line rifampicin, the dry powder VAN/THL/25% HCO was able to exert a potential anti-tubercular effect in vivo in Mtb-infected mice after five days. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections, 2nd Edition)
Show Figures

Figure 1

18 pages, 671 KiB  
Review
Evaluating the Efficacy of Rose Bengal as a Photosensitizer in Antimicrobial Photodynamic Therapy Against Candida albicans: A Systematic Review
by Jakub Fiegler-Rudol, Barbara Lipka, Katarzyna Kapłon, Magdalena Moś, Dariusz Skaba, Aleksandra Kawczyk-Krupka and Rafał Wiench
Int. J. Mol. Sci. 2025, 26(11), 5034; https://doi.org/10.3390/ijms26115034 - 23 May 2025
Viewed by 784
Abstract
Candida albicans is a significant pathogen in various fungal infections, including oral candidiasis and denture stomatitis. As antifungal resistance rises globally, there is an urgent need for alternative treatment strategies. Antimicrobial photodynamic therapy (aPDT), utilizing a photosensitizer and light to produce reactive oxygen [...] Read more.
Candida albicans is a significant pathogen in various fungal infections, including oral candidiasis and denture stomatitis. As antifungal resistance rises globally, there is an urgent need for alternative treatment strategies. Antimicrobial photodynamic therapy (aPDT), utilizing a photosensitizer and light to produce reactive oxygen species (ROS), has emerged as a promising approach. Rose Bengal (RB), a xanthene dye, exhibits a high singlet oxygen quantum yield, making it a candidate for aPDT. However, its efficacy in C. albicans treatment has been inconsistent, particularly against biofilm-associated infections, which are more resistant to conventional therapies. This systematic review evaluates the efficacy of Rose Bengal-mediated aPDT in combating C. albicans infections by synthesizing data from studies conducted over the past decade. We focus on the effectiveness of RB across different experimental conditions, including planktonic and biofilm forms of C. albicans. The review also explores the synergy between RB and other agents, such as potassium iodide, and compares the outcomes of RB-mediated aPDT to other photosensitizers and conventional antifungal treatments. Despite its potential, RB-aPDT shows variable effectiveness due to differences in experimental protocols, such as the photosensitizer concentration, incubation times, and light parameters. The review identifies the key limitations, such as RB’s poor biofilm penetration and high dark toxicity at elevated concentrations, which hinder its clinical applicability. The combination of RB with potassium iodide enhances its antifungal efficacy, suggesting that further optimization could improve its clinical potential. Overall, while Rose Bengal-mediated aPDT holds promise as a novel antifungal treatment, further research is needed to standardize protocols, enhance delivery systems, and validate its efficacy in vivo and clinical settings. Full article
(This article belongs to the Special Issue Photodynamic Therapy and Photodetection, 2nd Edition)
Show Figures

Figure 1

16 pages, 10148 KiB  
Article
Bioinspired Janus Membrane with Dopamine-ZnO Coating for Antibacterial Filtration in Oral Applications
by Yumeng Guo, Qian Wang, Guoming Sun and Ying Zheng
Polymers 2025, 17(10), 1356; https://doi.org/10.3390/polym17101356 - 15 May 2025
Viewed by 410
Abstract
Developing an oral fibrous barrier membrane that prevents bacterial invasion while possessing antibacterial properties and facilitating fluid decompression remains a significant clinical and scientific challenge. In this study, we developed a novel Janus membrane by modifying a polypropylene (PP) fibrous membrane with dopamine [...] Read more.
Developing an oral fibrous barrier membrane that prevents bacterial invasion while possessing antibacterial properties and facilitating fluid decompression remains a significant clinical and scientific challenge. In this study, we developed a novel Janus membrane by modifying a polypropylene (PP) fibrous membrane with dopamine and zinc oxide nanoparticles (ZnO-NPs). Fabricated via a simple floating immersion method, this asymmetric bilayer structure consists of a hydrophobic PP layer and a hydrophilic PP/dopamine@30 nm ZnO layer, providing both antibacterial properties and enhanced fluid filtration. The mechanical properties of the PP/ZnO membrane were significantly enhanced, with an increase in the Young’s modulus and ultimate tensile strength, indicating improved strength. Antibacterial activity against Streptococcus mutans (S. mutans) demonstrated a significant reduction in biofilm formation on the PP/dopamine@30 nm ZnO surface compared to unmodified PP. Water flux tests confirmed a stable, high filtration rate, with increased permeability under rising pressure. In vivo experiments with miniature pigs confirmed reduced bacterial presence on the sterile side of the membrane. These findings highlight the potential of the membrane for oral exudate filtration, extending filtration time and minimizing infection risks under strict sterility conditions. Further improvements in barrier properties are necessary to optimize its clinical performance. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Graphical abstract

18 pages, 3792 KiB  
Article
Porcine β-Defensin 2 Expressed in Pichia pastoris Alleviates Enterotoxigenic Escherichia coli-Induced Intestinal Injury and Inflammatory Response in Mice
by Shuaiyang Wang, Huaixia Li, Yaxue Huang, Wenxiao Zhuo, Tingting Li, Tingting Jiang, Qi Huang and Rui Zhou
Animals 2025, 15(10), 1389; https://doi.org/10.3390/ani15101389 - 11 May 2025
Viewed by 735
Abstract
Enterotoxigenic Escherichia coli (ETEC), a common intestinal pathogen, can colonize the intestines and induce diarrhea in piglets, which brings great economic losses to the swine industry. Antibiotics are recommended to the treatment for diarrhea caused by ETEC in weaned piglets. However, with the [...] Read more.
Enterotoxigenic Escherichia coli (ETEC), a common intestinal pathogen, can colonize the intestines and induce diarrhea in piglets, which brings great economic losses to the swine industry. Antibiotics are recommended to the treatment for diarrhea caused by ETEC in weaned piglets. However, with the emergence and spread of multidrug-resistant ETEC, there is an urgent need to develop alternatives to antibiotics. Due to the unique antibacterial mechanism of targeting bacterial membranes, antimicrobial peptides (AMPs) are promising candidates. In this study, the activity of crude recombinant porcine β-defensin 2 (rPBD2) expressed in Pichia pastoris (P. pastoris) was measured in vitro. Mice infected with ETEC were orally administered 16, 8, and 4 AU crude rPBD2 for 7 consecutive days to evaluate its anti-infective activity in vivo. The results showed that in addition to broad antibacterial activity against Gram-positive and -negative bacteria, crude rPBD2 displayed high tolerance to temperatures ranging from 20 to 60 °C, a broad range of pH, trypsin, pepsin, and physiological concentrations of salts. In an ETEC-induced mouse model, the oral administration of crude rPBD2 decreased diarrhea scores and the intestinal/carcass ratio and alleviated body weight loss. Additionally, crude rPBD2 decreased bacterial loads in stools and the colon (HP group), and the levels of serum pro-inflammatory cytokines IL-6 (HP group) and TNF-α (HP and MP groups), and increased the villus height and the ratio of villus height to crypt depth (VH/CD) in the ileum (HP and MP groups). Our study provides a cost-effective way for PBD2 production and identifies it as a promising candidate to combat ETEC-induced infection. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

Back to TopTop