Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = in vivo mitochondrial transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1831 KB  
Article
Intestinal Epithelial-Derived Exosomes Under Cold Stimulation Promote Adipose Thermogenesis
by Xue Han, Tiange Feng, Yaxu Yang, Ziming Zhu, Fangyu Shao, Lijun Sun, Yue Yin and Weizhen Zhang
Metabolites 2025, 15(5), 324; https://doi.org/10.3390/metabo15050324 - 14 May 2025
Viewed by 595
Abstract
Background: Whether intestinal epithelial cells can regulate distant adipose tissue remains a mystery. Methods: Cold-stimulated intestinal epithelial cell-derived exosomes (Cold IEC-Exo) play a pivotal role in enhancing adipose thermogenesis and metabolic homeostasis, as demonstrated in this study. Results: IEC-Exo can [...] Read more.
Background: Whether intestinal epithelial cells can regulate distant adipose tissue remains a mystery. Methods: Cold-stimulated intestinal epithelial cell-derived exosomes (Cold IEC-Exo) play a pivotal role in enhancing adipose thermogenesis and metabolic homeostasis, as demonstrated in this study. Results: IEC-Exo can accumulate in adipose tissue. Compared with IEC-Exo derived from room temperature mice (RT IEC-Exo), Cold IEC-Exo significantly enhanced the thermogenesis of adipose. In vitro, Cold IEC-Exo directly stimulated thermogenesis in primary adipocytes by elevating oxygen consumption rate, proton leak, and fatty acid uptake, with no effect on glucose uptake. Small RNA sequencing identified miR-674-3p as a key mediator enriched in Cold IEC-Exo. miR-674-3p mimicry replicated Cold IEC-Exo effects, augmenting Ucp1 expression, mitochondrial uncoupling, and fatty acid utilization in adipocytes. Local overexpression of miR-674-3p in BAT and sWAT via AAV in vivo enhanced thermogenesis and attenuated diet-induced glucose intolerance. Conclusions: These findings establish that Cold IEC-Exo, via miR-674-3p transfer, drive adipose thermogenic activation and mitigate metabolic dysfunction, highlighting their therapeutic potential in obesity-related disorders. Full article
(This article belongs to the Special Issue Energy Metabolism in Brown Adipose Tissue)
Show Figures

Figure 1

16 pages, 16542 KB  
Article
Umbilical Cord Mesenchymal Stem Cell-Derived Apoptotic Extracellular Vesicles Improve 5-FU-Induced Delayed Wound Healing by Mitochondrial Transfer
by Hongbin Lai, Ling Lin, Yanrui Pan, Boqun Wang, Lan Ma and Wei Zhao
Pharmaceutics 2025, 17(4), 453; https://doi.org/10.3390/pharmaceutics17040453 - 1 Apr 2025
Viewed by 789
Abstract
Background/Objectives: This study aimed to explore the therapeutic potential of umbilical mesenchymal stem cell-derived apoptotic vesicles (UMSC-apoVs) in a 5-Fluorouracil (5-FU)-induced impairment in skin wound healing. Methods: UMSC-apoVs were isolated from UMSCs using differential centrifugation after the induction of apoptosis. A murine model [...] Read more.
Background/Objectives: This study aimed to explore the therapeutic potential of umbilical mesenchymal stem cell-derived apoptotic vesicles (UMSC-apoVs) in a 5-Fluorouracil (5-FU)-induced impairment in skin wound healing. Methods: UMSC-apoVs were isolated from UMSCs using differential centrifugation after the induction of apoptosis. A murine model was established by administering 5-FU via intravenous tail injection, followed by full-thickness skin wound creation. Mice received local injections of UMSC-apoVs at the lesion site. Wound healing was evaluated based on wound closure rates, histological analysis, and in vivo/in vitro functional assays. Rotenone (Rot)-pretreated UMSC-apoVs were used to explore the role of mitochondrial transfer between skin mesenchymal stem cells (SMSCs) and UMSC-apoVs in wound healing. Results: UMSC-apoVs significantly accelerated wound healing in 5-FU-treated mice, as demonstrated by enhanced wound closure rates and histological findings of reduced inflammatory infiltration and increased collagen deposition. UMSC-apoVs transferred mitochondria to SMSCs, enhancing viability, proliferation, and migration while reducing reactive oxygen species (ROS) production in SMSCs. Rot pretreatment inhibited the therapeutic effects of UMSC-apoVs on wound healing by inducing mitochondrial dysfunction in UMSC-apoVs. Conclusions: Our findings indicate that UMSC-apoVs improve 5-FU-induced impaired skin wound healing by facilitating mitochondrial transfer, suggesting a novel therapeutic strategy for alleviating chemotherapy-induced impairment in wound healing. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

23 pages, 3111 KB  
Article
HIV-1 Tat Impairment of Mitochondrial Respiration via Complexes I and II Can Be Ameliorated by Allopregnanolone in Opioid-Exposed or Opioid-Naïve Cells and Mice
by Fakhri Mahdi, Zia Shariat-Madar and Jason J. Paris
Antioxidants 2025, 14(4), 420; https://doi.org/10.3390/antiox14040420 - 31 Mar 2025
Viewed by 605
Abstract
HIV-associated neurocognitive disorders are prevalent despite antiretroviral intervention. Some HIV virotoxins, such as the trans-activator of transcription (Tat), are not targeted by antiretrovirals, and their neurotoxic actions may be exacerbated by opioids. Both Tat and morphine disrupt mitochondrial function, which may promote neurotoxicity, [...] Read more.
HIV-associated neurocognitive disorders are prevalent despite antiretroviral intervention. Some HIV virotoxins, such as the trans-activator of transcription (Tat), are not targeted by antiretrovirals, and their neurotoxic actions may be exacerbated by opioids. Both Tat and morphine disrupt mitochondrial function, which may promote neurotoxicity, but the mechanisms are poorly understood. Herein, we assess the capacity of HIV Tat and morphine to alter the fundamental ability of mitochondria to generate and transfer energy along the electron transport chain (ETC). We find that exposure to Tat inhibits mitochondrial respiration driven by ETC complexes I or II in a concentration-dependent manner. Findings were consistent across models of permeabilized neuroblastoma cells, murine-derived mitoplasts, and mitochondria derived from mice exposed to Tat in vivo. In cell culture models, Tat promoted Ca2+ influx and the generation of cytosolic reactive oxygen species (ROS). Acute exposure to morphine exerted no effect on mitochondrial respiration, but morphine modestly offset Tat-mediated effects on complex I and some effects for the generation of ROS. Morphine did not exert any protective effects when acutely administered in vivo. The mitoprotective steroid, allopregnanolone (AlloP), increased mitochondrial respiration in neuroblastoma cells (complex I) or mitoplasts (complex II) and attenuated Tat-mediated impairment of complexes I and II in neuroblastoma cells or mice exposed to Tat in vivo. AlloP further attenuated Tat-mediated intracellular Ca2+ influx and cytosolic ROS production. Taken together, these results suggest that HIV Tat compromises mitochondrial function through the impairment of respiratory complexes I and II and that physiological AlloP may exert protective effects. Full article
Show Figures

Figure 1

20 pages, 4538 KB  
Article
In Vivo and In Vitro Evaluation of the Feasibility and Safety Profiles of Intraarticular Transplantation of Mitochondria for Future Use as a Therapy for Osteoarthritis
by Carlos Vaamonde-Garcia, Tamara Hermida-Gómez, Sara Paniagua-Barro, Elena F. Burguera, Francisco J. Blanco and Mercedes Fernández-Moreno
Cells 2025, 14(3), 151; https://doi.org/10.3390/cells14030151 - 21 Jan 2025
Viewed by 1896
Abstract
Osteoarthritis (OA) is the most common rheumatologic disease and a major cause of pain and disability in older adults. No efficient treatment is currently available. Mitochondrial dysfunction in chondrocytes drives molecular dysregulation in OA pathogenesis. Recently, mitochondrial transfer to chondrocytes had been described, [...] Read more.
Osteoarthritis (OA) is the most common rheumatologic disease and a major cause of pain and disability in older adults. No efficient treatment is currently available. Mitochondrial dysfunction in chondrocytes drives molecular dysregulation in OA pathogenesis. Recently, mitochondrial transfer to chondrocytes had been described, enabling transplant of mitochondria as a new avenue to modify the OA process, although evidence on its feasibility and safety remains limited.The primary objective of this study was to demonstrate the feasibility and safety of intra-articular mitochondrial transplantation. Mitochondria were isolated from liver using the procedure described by Preble and coworkers combined with magnetic beads coupled to anti-TOM22 antibodies. The organelles obtained were analyzed to determine their purity and viability. The safety and viability of the administration of the isolated mitochondria into articular tissues as well as the integration and distribution of the transplanted mitochondria within joint tissues were analyzed using both in vitro and in vivo models. We established an efficient, reproducible, effective, and rapid protocol for isolating mitochondria from liver. We obtained mitochondria with high viability, yield, and purity. The isolated mitochondria were injected into joint tissue using both in vitro and in vivo models. Functional mitochondria were detected in the extracellular matrix of the cartilage, menisci and synovium. Our results establish a safe and viable protocol for mitochondrial isolation and intra-articular injection. The methodology and findings presented here pave the way for future studies in osteoarthritis models to validate mitochondrial transplantation as a potentially effective treatment for OA. Full article
Show Figures

Figure 1

16 pages, 5071 KB  
Article
The Autophagic Activator GHF-201 Can Alleviate Pathology in a Mouse Model and in Patient Fibroblasts of Type III Glycogenosis
by Kumudesh Mishra, Sahar Sweetat, Saja Baraghithy, Uri Sprecher, Monzer Marisat, Sultan Bastu, Hava Glickstein, Joseph Tam, Hanna Rosenmann, Miguel Weil, Edoardo Malfatti and Or Kakhlon
Biomolecules 2024, 14(8), 893; https://doi.org/10.3390/biom14080893 - 24 Jul 2024
Cited by 2 | Viewed by 2124
Abstract
Glycogen storage disease type III (GSDIII) is a hereditary glycogenosis caused by deficiency of the glycogen debranching enzyme (GDE), an enzyme, encoded by Agl, enabling glycogen degradation by catalyzing alpha-1,4-oligosaccharide side chain transfer and alpha-1,6-glucose cleavage. GDE deficiency causes accumulation of phosphorylase-limited [...] Read more.
Glycogen storage disease type III (GSDIII) is a hereditary glycogenosis caused by deficiency of the glycogen debranching enzyme (GDE), an enzyme, encoded by Agl, enabling glycogen degradation by catalyzing alpha-1,4-oligosaccharide side chain transfer and alpha-1,6-glucose cleavage. GDE deficiency causes accumulation of phosphorylase-limited dextrin, leading to liver disorder followed by fatal myopathy. Here, we tested the capacity of the new autophagosomal activator GHF-201 to alleviate disease burden by clearing pathogenic glycogen surcharge in the GSDIII mouse model Agl−/−. We used open field, grip strength, and rotarod tests for evaluating GHF-201’s effects on locomotion, a biochemistry panel to quantify hematological biomarkers, indirect calorimetry to quantify in vivo metabolism, transmission electron microscopy to quantify glycogen in muscle, and fibroblast image analysis to determine cellular features affected by GHF-201. GHF-201 was able to improve all locomotion parameters and partially reversed hypoglycemia, hyperlipidemia and liver and muscle malfunction in Agl−/− mice. Treated mice burnt carbohydrates more efficiently and showed significant improvement of aberrant ultrastructural muscle features. In GSDIII patient fibroblasts, GHF-201 restored mitochondrial membrane polarization and corrected lysosomal swelling. In conclusion, GHF-201 is a viable candidate for treating GSDIII as it recovered a wide range of its pathologies in vivo, in vitro, and ex vivo. Full article
Show Figures

Figure 1

15 pages, 2400 KB  
Article
The Simulated Physiological Oocyte Maturation (SPOM) System Enhances Cytoplasmic Maturation and Oocyte Competence in Cattle
by Micaela Navarro, Tomás Fanti, Nicolas Matias Ortega, Magalí Waremkraut, Francisco Guaimas, Adrian Ángel Mutto and Carolina Blüguermann
Animals 2024, 14(13), 1893; https://doi.org/10.3390/ani14131893 - 27 Jun 2024
Viewed by 1706
Abstract
In vitro embryo production is a widely applied technique that allows the expansion of genetics and accelerated breeding programs. However, in cattle, this technique still needs improvement in order to reach quality and pregnancy rates comparable to in vivo-derived embryos. One of the [...] Read more.
In vitro embryo production is a widely applied technique that allows the expansion of genetics and accelerated breeding programs. However, in cattle, this technique still needs improvement in order to reach quality and pregnancy rates comparable to in vivo-derived embryos. One of the limitations of this technique is related to in vitro maturation, where a heterogeneous population of oocytes is harvested from follicles and cultured in vitro in the presence of gonadotropic hormones to induce maturation. As a result, oocytes with different degrees of competence are obtained, resulting in a decrease in the quality and quantity of embryos obtained. A novel system based on the use of cyclic adenosine monophosphate (cAMP) modulators was developed to enhance bovine oocyte competence, although controversial results were obtained depending on the in vitro embryo production (IVP) system used in each laboratory. Thus, in the present work, we employed a reported cAMP protocol named Simulated Physiological Oocyte Maturation (SPOM) under our IVP system and analysed its effect on cytoplasmic maturation by measuring levels of stress-related genes and evaluating the activity and distribution of mitochondria as a marker for cytoplasmic maturation Moreover, we studied the effect of the cAMP treatment on nuclear maturation, cleavage, and blastocyst formation. Finally, we assessed the embryo quality by determining the hatching rates, total cell number per blastocyst, cryopreservation tolerance, and embryo implantation. We found that maturing oocytes in the presence of cAMP modulators did not affect nuclear maturation, although they changed the dynamic pattern of mitochondrial activity along maturation. Additionally, we found that oocytes subjected to cAMP modulators significantly improved blastocyst formation (15.5% vs. 22.2%, p < 0.05). Blastocysts derived from cAMP-treated oocytes did not improve cryopreservation tolerance but showed an increased hatching rate, a higher total cell number per blastocyst and, when transferred to hormonally synchronised recipients, produced pregnancies. These results reflect that the use of cAMP modulators during IVM results in competent oocytes that, after fertilisation, can develop in more blastocysts with a better quality than standard IVM conditions. Full article
(This article belongs to the Special Issue Livestock Reproduction: Reproductive Technologies in Animal Science)
Show Figures

Figure 1

21 pages, 3637 KB  
Article
Postovulatory Aging of Mouse Oocytes Impairs Offspring Behavior by Causing Oxidative Stress and Damaging Mitochondria
by Ming-Tao Xu, Min Zhang, Guo-Liang Wang, Shuai Gong, Ming-Jiu Luo, Jie Zhang, Hong-Jie Yuan and Jing-He Tan
Cells 2024, 13(9), 758; https://doi.org/10.3390/cells13090758 - 28 Apr 2024
Cited by 1 | Viewed by 1750
Abstract
Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) [...] Read more.
Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring. Full article
Show Figures

Figure 1

16 pages, 4241 KB  
Article
Mitochondrial Transfer to Host Cells from Ex Vivo Expanded Donor Hematopoietic Stem Cells
by Hiroki Kawano, Yuko Kawano, Chen Yu, Mark W. LaMere, Matthew J. McArthur, Michael W. Becker, Scott W. Ballinger, Satoshi Gojo, Roman A. Eliseev and Laura M. Calvi
Cells 2023, 12(11), 1473; https://doi.org/10.3390/cells12111473 - 25 May 2023
Cited by 3 | Viewed by 3629
Abstract
Mitochondrial dysfunction is observed in various conditions, from metabolic syndromes to mitochondrial diseases. Moreover, mitochondrial DNA (mtDNA) transfer is an emerging mechanism that enables the restoration of mitochondrial function in damaged cells. Hence, developing a technology that facilitates the transfer of mtDNA can [...] Read more.
Mitochondrial dysfunction is observed in various conditions, from metabolic syndromes to mitochondrial diseases. Moreover, mitochondrial DNA (mtDNA) transfer is an emerging mechanism that enables the restoration of mitochondrial function in damaged cells. Hence, developing a technology that facilitates the transfer of mtDNA can be a promising strategy for the treatment of these conditions. Here, we utilized an ex vivo culture of mouse hematopoietic stem cells (HSCs) and succeeded in expanding the HSCs efficiently. Upon transplantation, sufficient donor HSC engraftment was attained in-host. To assess the mitochondrial transfer via donor HSCs, we used mitochondrial-nuclear exchange (MNX) mice with nuclei from C57BL/6J and mitochondria from the C3H/HeN strain. Cells from MNX mice have C57BL/6J immunophenotype and C3H/HeN mtDNA, which is known to confer a higher stress resistance to mitochondria. Ex vivo expanded MNX HSCs were transplanted into irradiated C57BL/6J mice and the analyses were performed at six weeks post transplantation. We observed high engraftment of the donor cells in the bone marrow. We also found that HSCs from the MNX mice could transfer mtDNA to the host cells. This work highlights the utility of ex vivo expanded HSC to achieve the mitochondrial transfer from donor to host in the transplant setting. Full article
(This article belongs to the Special Issue Mitochondria at the Crossroad of Health and Disease)
Show Figures

Figure 1

12 pages, 2400 KB  
Article
Hemicyanine-Based Near-Infrared Fluorescence Off–On Probes for Imaging Intracellular and In Vivo Nitroreductase Activity
by Sun Hyeok Lee, Chul Soon Park, Kyung Kwan Lee, Tae-Hee Han, Hyun Seung Ban and Chang-Soo Lee
Int. J. Mol. Sci. 2023, 24(7), 6074; https://doi.org/10.3390/ijms24076074 - 23 Mar 2023
Cited by 7 | Viewed by 2931
Abstract
Nitroreductase (NTR) has the ability to activate nitro group-containing prodrugs and decompose explosives; thus, the evaluation of NTR activity is specifically important in pharmaceutical and environmental areas. Numerous studies have verified effective fluorescent methods to detect and image NTR activity; however, near-infrared (NIR) [...] Read more.
Nitroreductase (NTR) has the ability to activate nitro group-containing prodrugs and decompose explosives; thus, the evaluation of NTR activity is specifically important in pharmaceutical and environmental areas. Numerous studies have verified effective fluorescent methods to detect and image NTR activity; however, near-infrared (NIR) fluorescence probes for biological applications are lacking. Thus, in this study, we synthesized novel NIR probes (NIR-HCy-NO2 1–3) by introducing a nitro group to the hemicyanine skeleton to obtain fluorescence images of NTR activity. Additionally, this study was also designed to propose a different water solubility and investigate the catalytic efficiency of NTR. NIR-HCy-NO2 inherently exhibited a low fluorescence background due to the interference of intramolecular charge transfer (ICT) by the nitro group. The conversion from the nitro to amine group by NTR induced a change in the absorbance spectra and lead to the intense enhancement of the fluorescence spectra. When assessing the catalytic efficiency and the limit of detection (LOD), including NTR activity imaging, it was demonstrated that NIR-HCy-NO2 1 was superior to the other two probes. Moreover, we found that NIR-HCy-NO2 1 reacted with type I mitochondrial NTR in live cell imaging. Conclusively, NIR-HCy-NO2 demonstrated a great potential for application in various NTR-related fields, including NTR activity for cell imaging in vivo. Full article
(This article belongs to the Special Issue Research Progress of Bioimaging Materials)
Show Figures

Figure 1

23 pages, 2906 KB  
Review
Mitochondrial Transplantation in Mitochondrial Medicine: Current Challenges and Future Perspectives
by Marco D’Amato, Francesca Morra, Ivano Di Meo and Valeria Tiranti
Int. J. Mol. Sci. 2023, 24(3), 1969; https://doi.org/10.3390/ijms24031969 - 19 Jan 2023
Cited by 46 | Viewed by 8620
Abstract
Mitochondrial diseases (MDs) are inherited genetic conditions characterized by pathogenic mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Current therapies are still far from being fully effective and from covering the broad spectrum of mutations in mtDNA. For example, unlike heteroplasmic conditions, [...] Read more.
Mitochondrial diseases (MDs) are inherited genetic conditions characterized by pathogenic mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Current therapies are still far from being fully effective and from covering the broad spectrum of mutations in mtDNA. For example, unlike heteroplasmic conditions, MDs caused by homoplasmic mtDNA mutations do not yet benefit from advances in molecular approaches. An attractive method of providing dysfunctional cells and/or tissues with healthy mitochondria is mitochondrial transplantation. In this review, we discuss what is known about intercellular transfer of mitochondria and the methods used to transfer mitochondria both in vitro and in vivo, and we provide an outlook on future therapeutic applications. Overall, the transfer of healthy mitochondria containing wild-type mtDNA copies could induce a heteroplasmic shift even when homoplasmic mtDNA variants are present, with the aim of attenuating or preventing the progression of pathological clinical phenotypes. In summary, mitochondrial transplantation is a challenging but potentially ground-breaking option for the treatment of various mitochondrial pathologies, although several questions remain to be addressed before its application in mitochondrial medicine. Full article
Show Figures

Figure 1

12 pages, 4028 KB  
Article
Preferred Migration of Mitochondria toward Cells and Tissues with Mitochondrial Damage
by Seo-Eun Lee, Young Cheol Kang, Yujin Kim, Soomin Kim, Shin-Hye Yu, Jong Hyeok Park, In-Hyeon Kim, Hyeon-Young Kim, Kyuboem Han, Hong Kyu Lee, Sung-Hwan Kim and Chun-Hyung Kim
Int. J. Mol. Sci. 2022, 23(24), 15734; https://doi.org/10.3390/ijms232415734 - 12 Dec 2022
Cited by 19 | Viewed by 4239
Abstract
Mitochondria are organelles that play a vital role in cellular survival by supplying ATP and metabolic substrates via oxidative phosphorylation and the Krebs cycle. Hence, mitochondrial dysfunction contributes to many human diseases, including metabolic syndromes, neurodegenerative diseases, cancer, and aging. Mitochondrial transfer between [...] Read more.
Mitochondria are organelles that play a vital role in cellular survival by supplying ATP and metabolic substrates via oxidative phosphorylation and the Krebs cycle. Hence, mitochondrial dysfunction contributes to many human diseases, including metabolic syndromes, neurodegenerative diseases, cancer, and aging. Mitochondrial transfer between cells has been shown to occur naturally, and mitochondrial transplantation is beneficial for treating mitochondrial dysfunction. In this study, the migration of mitochondria was tracked in vitro and in vivo using mitochondria conjugated with green fluorescent protein (MTGFP). When MTGFP were used in a coculture model, they were selectively internalized into lung fibroblasts, and this selectivity depended on the mitochondrial functional states of the receiving fibroblasts. Compared with MTGFP injected intravenously into normal mice, MTGFP injected into bleomycin-induced idiopathic pulmonary fibrosis model mice localized more abundantly in the lung tissue, indicating that mitochondrial homing to injured tissue occurred. This study shows for the first time that exogenous mitochondria are preferentially trafficked to cells and tissues in which mitochondria are damaged, which has implications for the delivery of therapeutic agents to injured or diseased sites. Full article
(This article belongs to the Special Issue Mitochondria in Human Health and Disease)
Show Figures

Figure 1

19 pages, 3921 KB  
Article
GRP75 Modulates Endoplasmic Reticulum–Mitochondria Coupling and Accelerates Ca2+-Dependent Endothelial Cell Apoptosis in Diabetic Retinopathy
by Yan Li, Hong-Ying Li, Jun Shao, Lingpeng Zhu, Tian-Hua Xie, Jiping Cai, Wenjuan Wang, Meng-Xia Cai, Zi-Li Wang, Yong Yao and Ting-Ting Wei
Biomolecules 2022, 12(12), 1778; https://doi.org/10.3390/biom12121778 - 29 Nov 2022
Cited by 33 | Viewed by 5460
Abstract
Endoplasmic reticulum (ER) and mitochondrial dysfunction play fundamental roles in the pathogenesis of diabetic retinopathy (DR). However, the interrelationship between the ER and mitochondria are poorly understood in DR. Here, we established high glucose (HG) or advanced glycosylation end products (AGE)-induced human retinal [...] Read more.
Endoplasmic reticulum (ER) and mitochondrial dysfunction play fundamental roles in the pathogenesis of diabetic retinopathy (DR). However, the interrelationship between the ER and mitochondria are poorly understood in DR. Here, we established high glucose (HG) or advanced glycosylation end products (AGE)-induced human retinal vascular endothelial cell (RMEC) models in vitro, as well as a streptozotocin (STZ)-induced DR rat model in vivo. Our data demonstrated that there was increased ER–mitochondria coupling in the RMECs, which was accompanied by elevated mitochondrial calcium ions (Ca2+) and mitochondrial dysfunction under HG or AGE incubation. Mechanistically, ER–mitochondria coupling was increased through activation of the IP3R1–GRP75–VDAC1 axis, which transferred Ca2+ from the ER to the mitochondria. Elevated mitochondrial Ca2+ led to an increase in mitochondrial ROS and a decline in mitochondrial membrane potential. These events resulted in the elevation of mitochondrial permeability and induced the release of cytochrome c from the mitochondria into the cytoplasm, which further activated caspase-3 and promoted apoptosis. The above phenomenon was also observed in tunicamycin (TUN, ER stress inducer)-treated cells. Meanwhile, BAPTA-AM (calcium chelator) rescued mitochondrial dysfunction and apoptosis in DR, which further confirmed of our suspicions. In addition, 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, was shown to reverse retinal dysfunction in STZ-induced DR rats in vivo. Taken together, our findings demonstrated that DR fueled the formation of ER–mitochondria coupling via the IP3R1–GRP75–VDAC1 axis and accelerated Ca2+-dependent cell apoptosis. Our results demonstrated that inhibition of ER–mitochondrial coupling, including inhibition of GRP75 or Ca2+ overload, may be a potential therapeutic target in DR. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

20 pages, 4353 KB  
Article
Developmental Potency and Metabolic Traits of Extended Pluripotency Are Faithfully Transferred to Somatic Cells via Cell Fusion-Induced Reprogramming
by Jae-Hoon Song, Joonhyuk Choi, Yean-Ju Hong, Hyeonwoo La, Tae-Kyung Hong, Kwonho Hong and Jeong-Tae Do
Cells 2022, 11(20), 3266; https://doi.org/10.3390/cells11203266 - 17 Oct 2022
Cited by 3 | Viewed by 3112
Abstract
As a novel cell type from eight-cell-stage embryos, extended pluripotent stem cells (EPSCs) are known for diverse differentiation potency in both extraembryonic and embryonic lineages, suggesting new possibilities as a developmental research model. Although various features of EPSCs have been defined, their ability [...] Read more.
As a novel cell type from eight-cell-stage embryos, extended pluripotent stem cells (EPSCs) are known for diverse differentiation potency in both extraembryonic and embryonic lineages, suggesting new possibilities as a developmental research model. Although various features of EPSCs have been defined, their ability to directly transfer extended pluripotency to differentiated somatic cells by cell fusion remains to be elucidated. Here, we derived EPSCs from eight-cell mouse embryos and confirmed their extended pluripotency at the molecular level and extraembryonic differentiation ability. Then, they were fused with OG2+/− ROSA+/− neural stem cells (NSCs) by the polyethylene-glycol (PEG)-mediated method and further analyzed. The resulting fused hybrid cells exhibited pluripotential markers with upregulated EPSC-specific gene expression. Furthermore, the hybrid cells contributed to the extraembryonic and embryonic lineages in vivo and in vitro. RNA sequencing analysis confirmed that the hybrid cells showed distinct global expression patterns resembling EPSCs without parental expression of NSC markers, indicating the complete acquisition of extended pluripotency and the erasure of the somatic memory of NSCs. Furthermore, ultrastructural observation and metabolic analysis confirmed that the hybrid cells rearranged the mitochondrial morphology and bivalent metabolic profile to those of EPSCs. In conclusion, the extended pluripotency of EPSCs could be transferred to somatic cells through fusion-induced reprogramming. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

17 pages, 3758 KB  
Article
Supplementation of SDF1 during Pig Oocyte In Vitro Maturation Improves Subsequent Embryo Development
by Huaxing Zhao, Yazheng Dong, Yuxing Zhang, Xiao Wu, Xianjun Zhang, Yalin Liang, Yanan Li, Fang Zeng, Junsong Shi, Rong Zhou, Linjun Hong, Gengyuan Cai, Zhenfang Wu and Zicong Li
Molecules 2022, 27(20), 6830; https://doi.org/10.3390/molecules27206830 - 12 Oct 2022
Cited by 7 | Viewed by 3373
Abstract
The quality of in vitro matured oocytes is inferior to that of in vivo matured oocytes, which translates to low developmental capacity of embryos derived from in vitro matured oocytes. The developmental potential of in vitro matured oocytes is usually impaired due to [...] Read more.
The quality of in vitro matured oocytes is inferior to that of in vivo matured oocytes, which translates to low developmental capacity of embryos derived from in vitro matured oocytes. The developmental potential of in vitro matured oocytes is usually impaired due to oxidative stress. Stromal cell-derived factor-l (SDF1) can reduce oxidative stress and inhibit apoptosis. The aim of this study was to investigate the effects of SDF1 supplementation during pig oocyte in vitro maturation (IVM) on subsequent embryo development, and to explore the acting mechanisms of SDF1 in pig oocytes. We found that the IVM medium containing 20 ng/mL SDF1 improved the maturation rate of pig oocytes, as well as the cleavage rate and blastocyst rate of embryos generated by somatic cell nuclear transfer, in vitro fertilization, and parthenogenesis. Supplementation of 20 ng/mL SDF1 during IVM decreased the ROS level, increased the mitochondrial membrane potential, and altered the expression of apoptosis-related genes in the pig oocytes. The porcine oocyte transcriptomic data showed that SDF1 addition during IVM altered the expression of genes enriched in the purine metabolism and TNF signaling pathways. SDF1 supplementation during pig oocyte IVM also upregulated the mRNA and protein levels of YY1 and TET1, two critical factors for oocyte development. In conclusion, supplementation of SDF1 during pig oocyte IVM reduces oxidative stress, changes expression of genes involved in regulating apoptosis and oocyte growth, and enhances the ability of in vitro matured pig oocytes to support subsequent embryo development. Our findings provide a theoretical basis and a new method for improving the developmental potential of pig in vitro matured oocytes. Full article
Show Figures

Figure 1

16 pages, 8651 KB  
Article
A Short Promoter Region Containing Conserved Regulatory Motifs Is Required for Steroidogenic Acute Regulatory Protein (Star) Gene Expression in the Mouse Testis
by Marie France Bouchard, Julia Picard, Jacques J. Tremblay and Robert S. Viger
Int. J. Mol. Sci. 2022, 23(19), 12009; https://doi.org/10.3390/ijms231912009 - 9 Oct 2022
Cited by 3 | Viewed by 2681
Abstract
In the testis, Leydig cells produce steroid hormones that are needed to masculinize typical genetic males during fetal development and to initiate and maintain spermatogenesis at puberty and adulthood, respectively. Steroidogenesis is initiated by the transfer of cholesterol from the outer to the [...] Read more.
In the testis, Leydig cells produce steroid hormones that are needed to masculinize typical genetic males during fetal development and to initiate and maintain spermatogenesis at puberty and adulthood, respectively. Steroidogenesis is initiated by the transfer of cholesterol from the outer to the inner mitochondrial membrane through the action of steroidogenic acute regulatory protein (STAR). Given its importance for the steroidogenic process, the regulation of STAR gene expression has been the subject of numerous studies. These studies have involved the characterization of key promoter sequences through the identification of relevant transcription factors and the nucleotide motifs (regulatory elements) that they bind. This work has traditionally relied on in vitro studies carried out in cell cultures along with reconstructed promoter sequences. While this approach has been useful for developing models of how a gene might be transcriptionally regulated, one must ultimately validate that these modes of regulation occur in an endogenous context. We have used CRISPR/Cas9 genome editing to modify a short region of the mouse Star promoter (containing a subset of regulatory elements, including conserved CRE, C/EBP, AP1, and GATA motifs) that has been proposed to be critical for Star transcription. Analysis of the resultant mutant mice showed that this short promoter region is indeed required for maximal STAR mRNA and protein levels in the testis. Analysis also showed that both basal and hormone-activated testosterone production in mature mice was unaffected despite significant changes in Star expression. Our results therefore provide the first in vivo validation of regulatory sequences required for Star gene expression. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Steroid Hormone Biosynthesis and Action)
Show Figures

Figure 1

Back to TopTop