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Abstract: Nitroreductase (NTR) has the ability to activate nitro group-containing prodrugs and
decompose explosives; thus, the evaluation of NTR activity is specifically important in pharmaceutical
and environmental areas. Numerous studies have verified effective fluorescent methods to detect and
image NTR activity; however, near-infrared (NIR) fluorescence probes for biological applications are
lacking. Thus, in this study, we synthesized novel NIR probes (NIR-HCy-NO2 1–3) by introducing a
nitro group to the hemicyanine skeleton to obtain fluorescence images of NTR activity. Additionally,
this study was also designed to propose a different water solubility and investigate the catalytic
efficiency of NTR. NIR-HCy-NO2 inherently exhibited a low fluorescence background due to the
interference of intramolecular charge transfer (ICT) by the nitro group. The conversion from the
nitro to amine group by NTR induced a change in the absorbance spectra and lead to the intense
enhancement of the fluorescence spectra. When assessing the catalytic efficiency and the limit of
detection (LOD), including NTR activity imaging, it was demonstrated that NIR-HCy-NO2 1 was
superior to the other two probes. Moreover, we found that NIR-HCy-NO2 1 reacted with type I
mitochondrial NTR in live cell imaging. Conclusively, NIR-HCy-NO2 demonstrated a great potential
for application in various NTR-related fields, including NTR activity for cell imaging in vivo.

Keywords: nitroreductase; fluorescent probes; near-infrared; bioimaging; mitochondria

1. Introduction

Reductase is a kind of enzyme that chemically reduces a substrate. Nitroreductase
(NTR) is a type of reductase and a type of flavoenzyme, which involves a nicotinamide
adenine dinucleotide (phosphate) hydrate (NAD(P)H)-dependent reduction for nitro group-
containing compounds, such as nitroaromatic and nitroheterocyclic molecules [1]. The
determination of NTR activity is especially significant in vivo because most nitro group-
containing compounds exhibit high cytotoxicity [2]. NTR has attracted great attention
since it has started to be used as an activator of nitro group-containing prodrugs and a
decomposer of explosives, such as trinitrotoluene (TNT) [3,4]. Therefore, the detection of
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NTR is highly significant in pharmaceutical and environmental areas. NTR is expressed in
some bacteria and eukaryotic species, and it has been particularly utilized in therapeutic
technologies for tumor-targeted delivery, such as cancer chemotherapy, also known as
gene-directed enzyme prodrug therapy (GDEPT) [5–9].

NTR is classified into two different types: oxygen-insensitive type I NTR and oxygen-
sensitive type II NTR. Type I NTR is mainly used as a nitroaromatic prodrug activator in
GDEPT, and type II NTR is used for the selective imaging of hypoxic tumors because of its
overexpression and the little interference that oxygen has under hypoxic conditions [10–19].
Further, previous studies on NTR activity fluorescence imaging have mostly focused on
type II NTR [7–9] because fluorescence imaging for the activity of type I NTR is relatively
insufficient. Previous reports have suggested the possibility of the mitochondrial existence
of type I NTR based on the bacterial origin of mitochondria in fluorescence imaging [20–22].
As a prodrug activator, type I NTR can potentially present activity for nitroaromatic
prodrugs when employing fluorescence imaging.

Functional fluorescent probes have the ability to identify and distinguish species of
interest (SOI) in complex systems, such as intracellular or in vivo systems [23]. To utilize
the advantages of functional fluorescent probes, various SOI have been applied to sensors
and bioimaging, including for the detection and imaging of NTR. The probes for NTR
detection are enzymatically activated by NTR, reducing the nitro group to the amine group,
which induces a conversion from the electron-withdrawing group (EWG) to the electron-
donating group (EDG) [2,24,25]. The enzymatic reduction induced by the activity of NTR
results in a remarkable enhancement in the fluorescence spectra due to the intramolecular
charge transfer (ICT) of the amine group, known as a strong EDG, utilizing the change in
the functional group induced by NTR. However, most of the probes still suffer from the
limitations of a high fluorescence background and a slow response, making the majority
of probes useful only for the detection and imaging of NTR in cytoplasm. Moreover, the
fluorescence probes proposed in previous studies were mostly viable in the visible range in
order to assess the detection and imaging of NTR activities; however, fluorescence in the
visible region is unfavorable for in vivo imaging due to the transmission and absorbance of
biomolecules [26]. Therefore, near-infrared (NIR) probes are much more suitable for in vivo
imaging due to their relatively low absorbance and good transmission in the NIR region.

In this study, we describe the novel NIR fluorescence probe NIR-HCy-NO2 for the
intracellular and in vivo imaging of NTR activity through the highly selective enzymatic
reaction of NTR (Figure 1). We used a hemicyanine skeleton as a fluorogenic backbone,
introducing a nitro group as a selective NTR-responsive moiety and fluorescence quencher.
NIR-HCy-NO2 derivatives (NIR-HCy-NO2 2 and NIR-HCy-NO2 3) are also designed to
increase water solubility, which was achieved by introducing a sulfonate (-SO3

−) and qua-
ternary ammonium group to the indolium part of NIR-HCy-NO2 [27,28]. NIR-HCy-NO2
showed a low fluorescence because of the interference of ICT by the nitro group and the
reduction induced by NTR, which induced an enhancement in the fluorescence spectra
due to the effect of ICT on the amine group. According to previous studies, indolium
cation as a mitochondria tracker enables the verification of mitochondrial NTR [29]. This
approach, which utilizes indolium cation in NIR-HCy-NO2, can be also applied to the
mitochondrial imaging of NTR activity. Previously reported NTR probes have shown that
the 4-nitrobenzene group, as an enzyme response moiety, should be introduced to the fluo-
rophore backbone, and an additional elimination reaction is essential for the enhancement
of the fluorescence [30,31]. In our newly synthesized NIR-HCy-NO2 derivatives, the nitro
group, the enzymatically reactive part, was directly conjugated to the NIR fluorophore
backbone in order to achieve a fast response. The hemicyanine skeleton-based NIR probe
has been previously applied to live zebrafish larvae for in vivo imaging. However, larval
zebrafish have limitations in the in vivo imaging model due to their nonmammalian status
and relatively thin skin, which is highly penetrable by light. Thus, fast responsive NIR-
emitted NTR sensors should be used in NTR activity-related practical applications, such as
in live cell and animal imaging.
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Figure 1. Reduction mechanism of NIR-HCy-NO2 probe triggered by NTR.

Herein, the three derivatives of NIR-HCy-NO2 are applied to intracellular and in vivo
mouse imaging, respectively. It was hypothesized that NIR-HCy-NO2 has high sensitivity
and selectivity for NTR in the presence of NADH and that it would provide intracellular
and in vivo NTR activity imaging.

2. Results
2.1. Design and Synthesis of NIR-HCy-NO2 1–3

To design and synthesize NIR fluorophore for NTR detection, the hemicyanine skeleton
was chosen as a fluorescence unit because of its long wavelength (longer than λ = 650 nm)
and ability to minimize autofluorescence and biological damage [32,33]. First, the bottom-
up approach was reported to synthesize the NIR-emitted hemicyanine structure [34], and
the structural flexibility was one of the attractive points for the use of the bottom-up
approach. Previously, we developed novel alkaline phosphatase (ALP)-targeted NIR
fluorescent probes (NIR-Phos-1 and NIR-Phos-2) using the same synthesis approach, and
the hydroxyl group, which introduced the hemicyanine skeleton, was used as an NIR
fluorophore for the ALP activity bioimaging [35]. In this study, we designed NIR-HCy-NO2
derivatives, which are direct nitro group-modified hemicyanines. To achieve their synthesis,
the nitro group, containing a tricyclic compound as a core intermediate, was combined with
indolium derivatives which each have different functional groups (Scheme S1). NIR-HCy-
NO2 2 and NIR-Hcy-NO2 3 had a better water solubility than NIR-Hcy-NO2 1 due to the
introduction of sulfonate and quaternary ammonium to the indolium part in NIR-Hcy-NO2.
As expected, the introduction of polar functional groups increased the water solubility of
NIR-Hcy-NO2. NIR-Hcy-NO2 3 only reacted with NTR in PBS, and the NIR-Hcy-NO2 1
and NIR-Hcy-NO2 2 reactions were conducted in a cosolvent of PBS and ACN. However,
NIR-HCy-NO2 1, the most nonpolar probe, responded with the highest enhancement of
fluorescence by NTR in the developed probes (Figure 2).

2.2. Optical Properties of NIR-HCy-NO2 1–3

To confirm a change in the optical properties following the enzymatic reduction
induced by NTR, we examined the differences in the absorbance spectra in the absence
or presence of NTR. In the absorbance spectra, NIR-HCy-NO2 1–3 absorbed at λabs = 552,
594, and 600 nm in the absence of NTR, and the absorbance peak increased at λabs = 604,
662, and 658 nm in the presence of NTR and NADH (Figure S30) [36]. To explain the
relationship between the change in the absorbance spectra and the enhancement in the
fluorescence spectra, the reduction of NIR-HCy-NO2 1–3 by NTR was carried out under the
same conditions, and the fluorescence signals of all NIR-HCy-NO2 1–3 were enhanced 15-,
7-, and 9-fold, respectively, compared to the absence of NTR (Figure 2B–D). Additionally,
following the reduction induced by NTR, the color of the NIR-HCy-NO2 1 solution changed
from violet to blue, NIR-HCy-NO2 2 changed from navy blue to blue, and NIR-HCy-NO2
3 changed from navy blue to emerald. These color changes in NIR-HCy-NO2 1–3 were
caused by the bathochromic effect (i.e., redshift), as confirmed in the absorbance spectra.
Additionally, the red light-absorbed fluorophores were generally observed as a blue-green
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color in the solution; a similar trend was observed in NIR-HCy-NO2 1–3. High-resolution
mass spectrometry (HR-MS) was used to show that the bathochromic effect was caused by
the change from the nitro group to the amine group; NIR-HCy-NO2 1–3 were converted to
hydroxylamine (NIR-HCy-NHOH) as the intermediate and were then reduced to amine
(NIR-HCy-NH2) as the final product. The hydroxylamine intermediate m/z values of
NIR-HCy-NO2 1–3 were calculated at 413.2224 ([NIR-HCy-NHOH 1]+), 515.1611 ([NIR-
HCy-NHOH 2 + Na]+), and 293.6209 ([NIR-HCy-NHOH 3 + Na]2+) and observed to be
413.2231, 515.1613, and 293.6211, respectively. The amine product m/z values of NIR-
HCy-NO2 1–3 were also calculated at 397.2274 ([NIR-Hcy-NH2 1]+), 499.1662 ([NIR-Hcy-
NH2 2 + Na]+), and 285.6235 ([NIR-Hcy-NH2 3 + Na]2+) and were found to be 397.2226,
499.1636, and 285.6252, respectively. Additionally, the azoxy form of NIR-HCy-NO2 1
was found at 403.2112 ([NIR-HCy 1-N=NO-NIR-HCy 1]2+ calculated m/z = 403.2092).
NIR-HCy-NO2 1–3 were reduced, which was in line with the expected process (Figure 1)
and confirmed in the abovementioned results (Figures S31–S33). In previous studies, NIR-
HCy-NHOH 1–3 were reduced via four-electron transfer, and NIR-HCy-NH2 1–3 were
reduced through two-electron transfer from hydroxylamine intermediates. Specifically,
the formation of azoxy compounds was induced by the reaction between hydroxylamine
and nitroso intermediates to produce more stable azoxy compounds than the intermediate
forms. This can be explained indirectly through the azoxy formation of NIR-HCy-NO2 1, in
which nitroso intermediates were produced during the NTR reduction process. Specifically,
the bathochromic effect and fluorescence enhancement occurred when the nitro group
(a strong EWG) was reduced to an amine group (a strong EDG) by NTR. As a result,
the fluorescence emissions of NIR-HCy-NO2 1–3 themselves were very weak, which is
consistent with their nonemissive characteristic; this was due to the quenching effect of the
six-nitro substitution on the hemicyanine skeleton. However, reductive NIR-HCy-NO2 1–3
showed fluorescent properties due to the removal of ICT interference by the nitro group
(Figure 2B–D) [37,38].
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Figure 2. Nitroreductase (NTR)-mediated reduction and activation of NIR-HCy-NO2 (A) and fluo-
rescence enhancement of NIR-HCy-NO2 in the presence of 5 µg/mL NTR and 50 µM NADH over
30 min (B–D). (B) NIR-HCy-NO2 1 in 1× PBS (pH 7.4, 20% (v/v) ACN), (C) NIR-HCy-NO2 2 in
1× PBS (pH 7.4, 5% (v/v) ACN), and (D) NIR-HCy-NO2 3 in 1× PBS (pH 7.4). The emission spectra
were recorded using λex = 672 nm.
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To confirm the exact excitation and emission wavelengths of reduced NIR-HCy-NO2
1–3 by NTR, the emission spectra were recorded using the same excitation wavelength
(λex = 672 nm) (Figure S34). All three probes emitted at longer wavelengths, in order
from longest to shortest, of 3, 2, and 1 in the NIR region. Additionally, NIR-HCy-NO2 1–3
exhibited a Stokes shift of more than 20 nm, similar to the Stokes shift of other NIR dyes.
Additionally, to cross-check the fluorescence-emitted form, fully reduced forms (HCy-NH2
1–3) were obtained using the chemical reduction method (Figures S35–S37). The spectra of
HCy-NH2 1–3 were almost the same as the NTR reduction result (Figures S34 and S38), and
the conversion from a strong EWG to a strong EDG was quite important to emit fluorescence
due to the ICT effect. Moreover, kinetically, the reduction reaction of NIR-HCy-NO2 1–3
samples by NTR was dependent on time and was saturated in less than 20 min (Figure S39).
Specifically, the reductive reaction of NIR-HCy-NO2 1 and NIR-HCy-NO2 3 was saturated
within 10 min (Figure S39A,C).

2.3. Selectivity Study

After confirming the reaction condition and optical properties of NIR-HCy-NO2 1–3,
including the reaction time, excitation, and emission wavelength, we evaluated the selec-
tivity of NIR-HCy-NO2 1–3 for NTR over other various types of biological and chemical
species. The fluorometric change in NIR-HCy-NO2 1–3 by NTR and other analytes was
measured. Metal cations (Na+, K+, Mg2+, Ca2+, and Hg2+), halogen anions (Br− and I−),
amino acids (L-cysteine, DL-homocysteine, L-phenylalanine, and glycine), and proteins
(BSA, ALP, GOx, thrombin, AchE, lysozyme, and trypsin) were used as the analytes. The
fluorometric response of NIR-HCy-NO2 1–3 by NTR was much higher than the other ana-
lytes (Figure 3). Thus, NIR-HCy-NO2 1–3 reacted selectively with NTR, and, specifically,
NIR-HCy-NO2 1 showed the highest fluorescence response compared to the others.
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Figure 3. Fluorescence enhancement of NIR-HCy-NO2 in the presence of alkali, alkaline earth
metals, heavy metals, amino acids, and proteins. (A) NIR-HCy-NO2 1 in 1× PBS (pH 7.4, 20% (v/v)
ACN), (B) NIR-HCy-NO2 2 in 1× PBS (pH 7.4, 5% (v/v) ACN), and (C) NIR-HCy-NO2 3 in 1× PBS
(pH 7.4); reaction condition: 5 µM NIR-HCy-NO2 1–3 at 37 ◦C for 30 min; 1, NIR-HCy-NO2; 2,
5 µg/mL NTR + 50 µM NADH; 3, 50 mM NaCl; 4, 50 mM KCl; 5, 50 mM MgCl2; 6, 50 mM CaCl2;
7, 50 mM HgCl2; 8, 50 mM KBr; 9, 50 mM KI; 10, 1 mM L-cysteine; 11, 1 mM DL-homocysteine; 12,
1 mM L-phenylalanine; 13, 1 mM glycine; 14, 1 mg/mL BSA; 15, 1 U/mL GOx; 16, 1 U/mL thrombin;
17, 1 U/mL ALP; 18, 1 U/mL AchE; 19, 0.1 mg/mL lysozyme; 20, 0.1 mg/mL trypsin.

2.4. Quantitative Analysis

The quantitative analysis of NIR-HCy-NO2 1–3 was performed with various concen-
trations of NTR under the physiological condition (PBS (pH 7.4) in the presence of 50 µM
of NADH at 37 ◦C). The fluorescence signals of NIR-HCy-NO2 1–3 increased the NTR
concentration dependently. The trend line R-square (R2) values of NIR-HCy-NO2 1–3 were
0.9888, 0.9969, and 0.9964, respectively, and all three probes showed good linearity over
the concentration range of 0.125–5 µg/mL of NTR (Figure S40). The detection limits of
NIR-HCy-NO2 1–3 were 8, 114, and 181 ng/mL NTR, respectively. The sensitivity was the
opposite trend to the probe polarity. Thus, the probe polarity was quite an important factor
in deciding the detection limit.
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2.5. Michaelis–Menten Kinetics

To elucidate the enzyme–substrate interaction between NTR and NIR-HCy-NO2
1–3, Michaelis–Menten kinetics were conducted. In Figure 4, the initial reaction rates
of the enzymatic reduction were dependent on the concentration of NIR-HCy-NO2 1–3
(0–40 µM), and the reduction induced by NTR was saturated above 40 µM of NIR-HCy-
NO2 1–3. Consequently, the kinetic curves (Figure 4) followed the Michaelis—Menten
equation. In the kinetics results, the Michaelis constant (Km) and the catalytic rate constant
(kcat) of NTR for NIR-HCy-NO2 1–3 were obtained.
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Figure 4. Michaelis–Menten curve of NIR-HCy-NO2 1–3 reacted with 5 µg/mL NTR and 50 µM
NADH at 37 ◦C. NIR-HCy-NO2 1 reacted in 1× PBS (pH 7.4, 20% (v/v) ACN), NIR-HCy-NO2 2 in
1× PBS (pH 7.4, 5% (v/v) ACN), and NIR-HCy-NO2 3 in 1× PBS (pH 7.4).

As shown in Table S1, the catalytic efficiency (kcat/Km) increased in the order of NIR-
HCy-NO2 1–3, and it was indicated that NIR-HCy-NO2 1 was reduced more effectively by
NTR compared to NIR-HCy-NO2 2 and NIR-HCy-NO2 3. Additionally, the Km value of
NTR for all three probes was lower than the kinetic values obtained in previous NTR probe
studies under similar conditions. Thus, NIR-HCy-NO2 1–3 had a better affinity to NTR
compared to the other probes reported in previous studies (Table S2). While NIR-HCy-
NO2 1 was superior to nitrofurazone in terms of its catalytic efficiency, NIR-HCy-NO2 2
and NIR-HCy-NO2 3 were lower. The above results suggest that NIR-HCy-NO2 1 is a
more suitable substrate for NTR kinetics analysis than the other two probes. It was also
suggested that the charged function groups (sulfonate and quaternary ammonium) in
indolium interrupt the reduction induced by NTR.

2.6. NTR Activity Imaging in Live Cells

We expanded the biological application of NIR-HCy-NO2 1–3 to NTR activity imaging
in live cells. The A549 cell line was selected for confocal fluorescence images. First, the
cytotoxicity tests of NIR-HCy-NO2 1–3 were performed to determine the probes’ nontoxic
concentration level. All the probes were nontoxic at high concentrations (≥20 µM) for cell
imaging after 1 h, suggesting that NIR-HCy-NO2 1–3 were biocompatible (Figure S41) for
live cell NTR activity imaging.

At a low concentration (<5 µM), NIR-HCy-NO2 1 induced sufficient fluorescence
signals for imaging after 10 min (Figure 5A). However, the fluorescence signals of NIR-
HCy-NO2 2 and NIR-HCy-NO2 3 were not detected at 40 µM after 30 min of treat-
ment (Figure S42A). The arithmetic mean intensity of NIR-HCy-NO2 1 increased in a
concentration-dependent manner; the arithmetic mean intensity of each concentration
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of NIR-HCy-NO2 1 increased 10.1-, 19.8-, and 28.8-fold, respectively, compared to the
untreated group (Figure 5B). However, the arithmetic mean intensities of NIR-HCy-NO2 2
and NIR-HCy-NO2 3 increased up to about 6.2- and 2.7-fold, respectively (Figure S42B),
which was too small a fold change considering their treatment concentrations. In the
Michaelis–Menten kinetics results, the catalytic efficiencies of NIR-HCy-NO2 2 and NIR-
HCy-NO2 3 were relatively lower than NIR-HCy-NO2 1, and the trend was the same
as live cell imaging ( Figures 4 and 5 and Figure S42 and Table S2). Additionally, NIR-
HCy-NO2 1 was localized in mitochondria, which was overlapped with a MitoTracker
(Figure 5C). The scatter plot of the two channels (MitoTracker (MTGFM) and NIR-HCy-
NO2 1 (Cy5.5)) showed a linear form and tendencies to synchronize with a Mender’s
colocalization coefficient of 0.9748 (Figure 5D).
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with various concentrations of NIR-HCy-NO2 1. (B) The arithmetic mean intensity dependent on
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Interestingly, the NIR-HCy-NO2 1 signal was oxygen concentration-independent in
the live cell (Figure S43). In a previous study, a Cy7-based fluorescence probe detected
mitochondrial NTR in an A549 cell line under normoxia, and it was identified as type I
NTR, which is oxygen-independent [20]. In this study, NIR-HCy-NO2 1 was also able to
detect type I mitochondrial NTR under the same conditions and cell line. Moreover, the
fluorescence signals of NIR-HCy-NO2 1 were similar under normoxia and hypoxia, and
this suggested that NIR-HCy-NO2 1 was mainly reduced by type I mitochondrial NTR
(Figure S43B). To verify the relationship between the signal enhancement and reductase,
dicoumarol was pretreated as the reductase inhibitor, and the signal in the treated group
decreased by up to 40% compared to the untreated group (Figure S44). As with previous
results, NIR-HCy-NO2 1 is more suitable for NTR activity imaging than NIR-HCy-NO2 2
and NIR-HCy-NO2 3.



Int. J. Mol. Sci. 2023, 24, 6074 8 of 12

2.7. In Vivo Imaging

We next applied NIR-HCy-NO2 to in vivo fluorescence imaging in a xenograft model
using an IVIS Spectrum system. Prior to imaging, we first determined the adequate con-
centration of each probe for injection. As shown in Figure S45, the fluorescent background
signals from prereacted NIR-HCy-NO2 1–3 were not observed from 5–50 µM in PBS. Based
on their cytotoxicity results, 20 µM was decided on for NIR-HCy-NO2 1–3, considering a
sufficiently strong fluorescence signal for in vivo imaging. Then, nude mice bearing A549
xenograft tumors were intratumorally injected with each probe and monitored in a treat-
ment time–course manner. In Figure 6D, the fluorescence signal of all three NIR-HCy-NO2
initially enhanced after the injection, and NIR-HCy-NO2 1 showed the strongest fluores-
cence signal among them. The fluorescence of NIR-HCy-NO2 1 was not saturated until
20 min post-injection, while that of NIR-HCy-NO2 2 and NIR-HCy-NO2 3 were saturated
at 10 and 5 min, respectively. Thus, NIR-HCy-NO2 1 showed the best performance for
in vivo tumor imaging among all NIR-HCy-NO2 probes due to the strong signal and the
continuous reaction with the reductase (Figure 6D).
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Figure 6. In vivo imaging of tumors with NIR-HCy-NO2 in xenograft models. BALB/c nude mice
bearing A549 tumors were injected intratumorally with 100 µL of PBS containing 20 µM of NIR-HCy-
NO2 1 (A), NIR-HCy-NO2 2 (B), and NIR-HCy-NO2 3 (C). Fluorescence images were acquired at
different time points after the injection of each probe (D).

3. Discussion

In summary, we succeeded in the design and synthesis of novel NIR off–on probes
NIR-HCy-NO2 1–3 for NTR activity imaging. The water solubility of NIR-HCy-NO2
derivatives was different depending on the functional group introduced to NIR-HCy-
NO2, and all NIR-HCy-NO2 1–3 reacted selectively with NTR. The fluorescence intensity
and absorbance spectra of NIR-HCy-NO2 1–3 changed due to the reduction reaction
induced by NTR, and the LODs of NIR-HCy-NO2 1–3 were under 200 ng/mL of NTR.
Among them, the LOD of NIR-HCy-NO2 1 was the lowest with 8 ng/mL of NTR, and the
catalytic efficiency was the highest at 0.22 ± 0.03 µM−1·s−1. In intracellular NTR activity
imaging, the performance of NIR-HCy-NO2 1 was overwhelmingly good, and the signal
was reduced with a dicoumarol treatment known as the reductase inhibitor. Additionally,
the NIR-HCy-NO2 1 response was oxygen-independent, and it was considered that NIR-
HCy-NO2 1 should be used to detect and image type I mitochondrial NTR as the potential
target in live cells. NIR-HCy-NO2 1 showed a strong fluorescence intensity and sustained
reactivity in vivo. In conclusion, NIR-HCy-NO2 1 showed a good performance among
the three derivatives, and similar trends were observed in the Michaelis–Menten kinetics
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and intracellular and in vivo NTR activity imaging. In further studies, NIR-HCy-NO2 has
the potential to be applied to various fields related to NTR, and it is able to be used for
intracellular and in vivo NTR activity imaging.

4. Materials and Methods
4.1. Characterization of Optical Properties

The optical property measurements were performed in 1× phosphate buffered saline
(PBS) (10 mM, pH 7.4) containing acetonitrile (ACN). NIR-HCy-NO2 1 was measured
in 1× PBS (pH 7.4, 20% (v/v) ACN), NIR-HCy-NO2 2 was measured in 1× PBS (pH7.4,
5% (v/v) ACN), and NIR-HCy-NO2 3 was measured in 1× PBS (pH 7.4) without ACN,
respectively. All of the optical analyses were carried out using 5 µM of NIR-HCy-NO2 1–3,
and NADH was added to all three probe solutions until the amount reached 50 µM. The
mixture was incubated at 37 ◦C for 30 min. The UV-visible spectra were measured using a
spectrophotometer (DU800, Beckman Coulter, Brea, CA, USA), and the fluorescence was
measured using a fluorescence spectrometer (FS-2, SCINCO, Seoul, Republic of Korea)
and an imaging reader (CYTATION5, BioTek, Winooski, VT, USA), respectively. The
fluorescence spectra were recorded in the range from 685 to 850 nm, with λex = 672 nm
from a xenon lamp.

4.2. Mass Analysis of Reduced NIR-HCy-NO2 1–3

To prepare the reaction mixture for mass analysis, 500 µM of NIR-HCy-NO2 1–3
were reduced by 1 µM of NTR with 500 µM of NADH in PBS (10 mM, pH 7.4) at room
temperature for 3 min. To quench the enzymatic reaction, β-mercaptoethanol was added to
the reaction mixture until the concentration was 2%. The product mass was measured using
a high-resolution mass spectrometer (micrOTOF-QII, Bruker Daltonik, Bremen, Germany)
in the electrospray ionization (ESI) mode.

4.3. Cell Culture

Non-small cell lung cancer adenocarcinoma A549 cell lines were obtained from the Bio-
evaluation Center at the Korea Research Institute of Bioscience and Biotechnology (KRIBB).
The cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin/streptomycin (P/S). The
cells were cultured at 37 ◦C under 5% CO2.

4.4. Cytotoxicity Assay

The cytotoxicity assay was carried out using the methylene blue staining method
(Methylene blue, Sigma-Aldrich, St. Louis, MO, USA). A549 cells were seeded into 96-well
cell culture plates at 2 × 104/well and preincubated in DMEM (10% (v/v) FBS and 1% (v/v)
P/S). After the medium in the wells was removed, NIR-HCy-NO2 1–3 (100 µL/well) at
concentrations of 0–40 µM were added to the wells of the treatment group, respectively. The
cells were incubated for 1 h at 37 ◦C under 5% CO2 and then fixed for over 1 h by adding
10% formalin solution (50 µL/well). After each well attached to fixed cells was washed
with PBS (pH 7.4), the fixed cells were stained with 2% methylene blue working solution
(50% (v/v) methanol) for 1 h. The stained cells were washed strongly with distilled water
and dried sufficiently at room temperature. The cells were lysed using 0.5% hydrogen
chloride, and an imaging reader (CYTATION5, BioTek, Winooski, VT, USA) was used to
measure the OD600 (absorbance value) of each well. Cell viability was calculated using the
following formula: cell viability (%T) = At/Ac × 100 (%), where At denotes the absorbance
value of the treated group, and Ac denotes the absorbance value of the untreated group.

4.5. Confocal Fluorescence Imaging in Living Cells

A549 cells (4 × 104/well) were plated on µ-Slide 4 Well (ibidi, Gräfelfing, Germany)
and were allowed to adhere for 24 h. All staining procedures were carried out under
the normoxia condition. The cells were incubated in serum-free DMEM at 37 ◦C with
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NIR-HCy-NO2 1 (0.5, 1, and 2 µM) for 10 min, or NIR-HCy-NO2 2 and NIR-HCy-NO2 3
(40 µM) for 30 min. Then, the cells were washed with DPBS (0.4 mL × 2 times) and were
further incubated with 5 µg/mL of Hoechst 33,342 in a serum-free DMEM at 37 ◦C for
5 min. After washing with DPBS (0.4 mL × 3 times), fluorescence imaging was performed
with an LSM 800 confocal fluorescence microscope (ZEISS, Jena, Germany) at a 40× water
immersion objective lens. The fluorescence signal of the cells incubated with Hoechst 33,342
and NIR-HCy-NO2 1–3 was collected at 400–600 nm using a semiconductor laser at 405 nm
as an excitation resource of Hoechst 33,342 and at 645–700 nm using a semiconductor laser
at 640 nm as an excitation resource of NIR-HCy-NO2 1–3, respectively.

For the comparison of the fluorescence images between normoxia and hypoxia, the
hypoxic culture was carried out for 12 h at 37 ◦C under 5% CO2 and 2% O2. The staining pro-
cedure of NIR-HCy-NO2 1 and Hoechst 33,352 and the condition of confocal fluorescence
imaging were performed in the same way as previously outlined.

A549 cells were used for the colocalization imaging, and the confocal imaging for
colocalization was carried out in the same culture and using the NIR-HCy-NO2 1 stain-
ing condition with fluorescence confocal imaging. Then, the cells were treated with
0.5 µM of MitoTacker® Green FM (MTGFM) for 30 min and were washed with DPBS
(0.4 mL × 3 times). Fluorescence imaging was carried out in the same conditions outlined
for the previous experiment; the fluorescence signal was collected at 400–650 nm using a
semiconductor laser at 490 nm as an excitation resource of MTGFM.

4.6. Reductase Inhibition Test in Live Cells

Dicoumarol (Sigma-Aldrich) was used for reductase inhibition. A549 cells were
pretreated for 4 h with dicoumarol (500 µM), and then NIR-HCy-NO2 1 (10 µM) was
added for 20 min. The fluorescence intensity in A549 cells was measured using a Synergy
H1 multimode plate reader (BioTek instruments, Winooski, VT, USA).

4.7. Fluorescence Imaging in Xenograft Mice

The in vivo imaging of the probes was determined using a xenograft mouse model. All
animal experimental protocols were approved by the bioethics committee of the KRIBB. Six-
week-old female nude mice were subcutaneously inoculated with A549 cells (5 × 106 cells)
in the right flank. After two weeks, the mice were anesthetized with 2% isoflurane, and
NIR-HCy-NO2 1–3 diluted in 100 µL of 1× PBS were injected into the tumor. The in vivo
imaging was analyzed using the IVIS Lumina II luminescence imaging system (Caliper
Life Science, Alameda, CA, USA) and Living Image software (Caliper Life Science).
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