Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (273)

Search Parameters:
Keywords = in situ isotope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2597 KiB  
Article
Chemical and Isotopic Investigation of Abiotic Oxidation of Lactate Substrate in the Presence of Varied Electron Acceptors and Under Circumneutral Anaerobic Conditions
by Tsigabu A. Gebrehiwet and R. V. Krishnamurthy
Water 2025, 17(15), 2308; https://doi.org/10.3390/w17152308 - 3 Aug 2025
Viewed by 48
Abstract
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide [...] Read more.
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide (HFO), media composition, and pH under anaerobic conditions, using sodium bicarbonate as the buffering agent. Dissolved inorganic carbon (DIC) was used as a proxy for the oxidation of substrates. HFO media generated more DIC compared to ferric citrate containing media. Light and pH had major roles in the oxidation of lactate in the presence of ferric iron. Under dark conditions in the presence or absence of Fe(III), the DIC produced was low in all pH conditions. Inhibition of DIC production was also observed upon photo exposure when Fe (III) was absent. Isotopically, the system showed initial mixing between the bicarbonate and the carbon dioxide produced from oxidation later being dominated by carbon isotope value of lactate used. These redox conditions align with previous studies suggesting cleavage of organic compounds by hydroxyl radicals. The slower redox processes observed here, compared to previous studies, could be due to the scavenging effect of chloride ion on the hydroxyl radical. Full article
Show Figures

Figure 1

13 pages, 6501 KiB  
Article
Pyrite-Hosted Inclusions in the Southern Ore Belt of the Bainaimiao Porphyry Cu Deposit: Composition and δ34S Characteristics
by Liwen Wu, Yushan Zuo, Yongwang Zhang, Jianjun Yang, Yimin Liu, Guobin Zhang, Hong Zhang, Peng Zhang and Rui Liu
Minerals 2025, 15(7), 729; https://doi.org/10.3390/min15070729 - 12 Jul 2025
Viewed by 254
Abstract
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the [...] Read more.
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the deposit’s southern ore belt were analyzed across distinct mineralization stages. Using Electron Probe Micro-Analysis (EPMA) and in situ sulfur isotope analysis (MC-ICP-MS), inclusion assemblages in pyrite were identified, including pyrrhotite-chalcopyrite solid solutions, biotite, and dolomite. The results demonstrate that these inclusions primarily formed through coprecipitation with pyrite during crystal growth. Early-stage mineralizing fluids exhibited extreme temperatures exceeding 700 °C, coupled with low oxygen fugacity (fO2) and low sulfur fugacity (fS2). Sulfur isotope compositions (δ34S: −5.85 to −4.97‰) indicate a dominant mantle-derived magmatic sulfur source, with contributions from reduced sulfur in sedimentary rocks. Combined with regional geological evolution, the Bainaimiao deposit is classified as a porphyry-type deposit. Its ore-forming materials were partially derived from Mesoproterozoic submarine volcanic exhalative sedimentary source beds, which were later modified and enriched by granodiorite porphyry magmatism. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

20 pages, 17089 KiB  
Article
Sedimentary Characteristics and Genetic Mechanisms of Non-Evaporitic Gypsum in a Half-Graben Basin: A Case Study from the Zhanhua Sag, Bohai Bay Basin, China
by Muxin Cai, Jianguo Zhang, Zaixing Jiang, Junliang Li, Tao Meng, Peng Liu and Chao Jiang
J. Mar. Sci. Eng. 2025, 13(7), 1300; https://doi.org/10.3390/jmse13071300 - 2 Jul 2025
Viewed by 354
Abstract
Gypsum and salt rocks have been proven to act as seals for abundant oil and gas reserves on a global scale, with significant potential for hydrocarbon preservation and evolution. Notably, the sedimentary dynamics of non-evaporitic gypsum in terrestrial half-graben basins remain underexplored, particularly [...] Read more.
Gypsum and salt rocks have been proven to act as seals for abundant oil and gas reserves on a global scale, with significant potential for hydrocarbon preservation and evolution. Notably, the sedimentary dynamics of non-evaporitic gypsum in terrestrial half-graben basins remain underexplored, particularly regarding its genetic link to hydrocarbon accumulation in interbedded mudstones. This study is based on the Zhanhua Sag, in which thick-layered gypsum rocks with dark mudstone are deposited. The gypsum crystals show the intermittent deposition characteristics. The cumulative thickness of the gypsum-containing section reaches a maximum of over 110 m. The spatial distribution of gypsum thickness correlates strongly with the location of deep-seated faults. The strontium and sulfur isotopes of gypsum indicate deep hydrothermal fluids as mineral sources, and negative oxygen isotope excursions also suggest that gypsum layers precipitated in situ from hot brine. Total organic carbon and Rock-Eval data indicate that the deep-lake gypsum rock system has excellent hydrocarbon potential, especially in the mudstone interlayers. This study developed a depositional model of deep-lake gypsum rocks with thermal brine genesis in half-graben basins. The gypsum-bearing system is rich in mudstone interlayers. These gypsum–mudstone interbeds represent promising targets for shale oil exploration after the initial breakthrough during the extraction process. These insights provide a theoretical framework for understanding gypsum-related petroleum systems in half-graben basins across the globe, offering guidance for hydrocarbon exploration in analogous sedimentary environments. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

11 pages, 1699 KiB  
Article
Optimization of the LIBS Technique in Air, He, and Ar at Atmospheric Pressure for Hydrogen Isotope Detection on Tungsten Coatings
by Salvatore Almaviva, Lidia Baiamonte and Marco Pistilli
J. Nucl. Eng. 2025, 6(3), 22; https://doi.org/10.3390/jne6030022 - 1 Jul 2025
Viewed by 328
Abstract
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing [...] Read more.
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing this task directly in situ, without handling or removing PFCs, thus limiting analysis times and increasing the machine’s duty cycle. To increase sensitivity and the ability to discriminate between isotopes, LIBS analysis can be performed under different background gases at atmospheric pressure, such as air, He, and Ar. In this work, we present the results obtained on tungsten coatings enriched with deuterium and/or hydrogen as a deuterium–tritium nuclear fuel simulant, measured with the LIBS technique in air, He, and Ar at atmospheric pressure, and discuss the pros and cons of their use. The results obtained demonstrate that both He and Ar can improve the LIBS signal resolution of the hydrogen isotopes compared to air. However, using Ar has the additional advantage that the same procedure can also be used to detect He implanted in PFCs as a product of fusion reactions without any interference. Finally, the LIBS signal in an Ar atmosphere increases in terms of the signal-to-noise ratio (SNR), enabling the use of less energetic laser pulses to improve performance in depth profiling analyses. Full article
(This article belongs to the Special Issue Fusion Materials with a Focus on Industrial Scale-Up)
Show Figures

Graphical abstract

22 pages, 4738 KiB  
Article
The Orogeny Transition of the Southern Beishan Orogenic Belt During the Early–Middle Devonian: Evidence from the Wudaomingshui Volcanic Rocks and Granite
by Tongtong He, Yuxi Wang, Jing Yan, Zhiyong Yang, Kangning Li, Zirui Liu, Zixuan Wang and Lei Wu
Minerals 2025, 15(6), 632; https://doi.org/10.3390/min15060632 - 10 Jun 2025
Viewed by 327
Abstract
The Southern Beishan Orogenic Belt (SBOB), an integral part of the Southern Central Asian Orogenic Belt (CAOB), is characterized by extensive Late Paleozoic magmatism. These igneous rocks are the key to studying the tectonic evolution process and the ocean–continent tectonic transformation in the [...] Read more.
The Southern Beishan Orogenic Belt (SBOB), an integral part of the Southern Central Asian Orogenic Belt (CAOB), is characterized by extensive Late Paleozoic magmatism. These igneous rocks are the key to studying the tectonic evolution process and the ocean–continent tectonic transformation in the southern margin of the CAOB and Paleo-Asian Ocean. We present zircon U-Pb chronology, in situ Lu-Hf isotopes, and whole-rock geochemistry data for Early–Middle Devonian volcanic rocks in the Sangejing Formation and granites from the Shuangyingshan-Huaniushan (SH) unit in the SBOB. The Wudaomingshiu volcanic rocks (Ca. 411.5 Ma) are calc-alkaline basalt-basaltic andesites with low SiO2 (47.35~55.59 wt.%) and high TiO2 (1.46~4.16 wt.%) contents, and are enriched in LREEs and LILEs (e.g., Rb, Ba, and Th), depleted in HREEs and HFSEs (Nb, Ta, and Ti), and weakly enriched in Zr-Hf. These mafic rocks are derived from the partial melting of the depleted lithosphere metasomatized by subduction fluid and contaminated by the lower crust. Wudaomingshui’s high-K calc-alkaline I-type granite has a crystallization age of 383.6 ± 2.2 Ma (MSWD = 0.11, n = 13), high Na2O (3.46~3.96 wt.%) and MgO (1.25~1.68 wt.%) contents, and a high DI differentiation index (70.69~80.45); it is enriched in LREEs and LILEs (e.g., Rb, Ba, and Th) and depleted in HREEs and HFSEs (e.g., Nb, Ta, and Ti). Granites have variable zircon εHf(t) values (−2.5~3.3) with Mesoproterozoic TDM2 ages (1310~1013 Ma) and originated from lower crustal melting with mantle inputs and minor upper crustal assimilation. An integrated analysis of magmatic suites in the SBOB, including rock assemblages, geochemical signatures, and zircon εHf(t) values (−2.5 to +3.3), revealed a tectonic transition from advancing to retreating subduction during the Early–Middle Devonian. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

30 pages, 8658 KiB  
Article
SIMS Dating of Granite-Hosted Uranium Deposits in the Xiazhuang Ore Field and Its Geological Significance
by Mingyi Liu, Bailin Wu, Xin Zheng, Wanying Zhang, Guoquan Sun, Xiaorui Zhang, Mengdi Yang, Yaxin Ma and Yu Hou
Minerals 2025, 15(6), 622; https://doi.org/10.3390/min15060622 - 9 Jun 2025
Viewed by 257
Abstract
Using pitchblende uranium ore GBW04420 as the standard material and through the secondary ion mass spectrometry (SIMS) technical method, the in situ U-Pb isotopic chronology characteristics of the main granite-type uranium deposits in the Xiazhuang ore field in the Nanling area of southern [...] Read more.
Using pitchblende uranium ore GBW04420 as the standard material and through the secondary ion mass spectrometry (SIMS) technical method, the in situ U-Pb isotopic chronology characteristics of the main granite-type uranium deposits in the Xiazhuang ore field in the Nanling area of southern China were studied. Firstly, the suitability of GBW04420 as the in situ U-Pb isotopic dating standard material for uranium minerals was verified. On this basis, the in situ U-Pb isotopic ages of the three main granite-type uranium deposits in the Xiazhuang ore field, namely the Xianshi, Zhaixia, and Xiwang deposits, were obtained by SIMS dating. The results show that the overall mineralization period of the Xiazhuang ore field is mainly in Late Cretaceous and the Eocene-Oligocene. The mineralization ages indicate that the uranium deposits are of post-magmatic, medium-low temperature hydrothermal origin rather than the magmatic uranium deposit type. The hydrothermal fluids originate from the combined effect of the crust-mantle hydrothermal fluid and atmospheric precipitation; the uranium source originates from the extraction of the Indosinian-Early Yanshanian diagenetic granite by atmospheric water and partly from the mantle source of the basic dike. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

24 pages, 1538 KiB  
Review
Multifunctional Hydrogels for Advanced Cancer Treatment: Diagnostic Imaging and Therapeutic Modalities
by Kyung Kwan Lee, Kwangmo Go, Eonjin Lee, Hongki Kim, Seonwook Kim, Ji-Hyun Kim, Min Suk Chae and Jin-Oh Jeong
Gels 2025, 11(6), 426; https://doi.org/10.3390/gels11060426 - 1 Jun 2025
Cited by 2 | Viewed by 1277
Abstract
Multifunctional hydrogels represent an emerging technological advancement in cancer therapeutics, integrating diagnostic imaging capabilities with therapeutic modalities into comprehensive, multifunctional systems. These hydrogels exhibit exceptional biocompatibility, biodegradability, high water retention capacity, and tunable mechanical properties, enabling precise drug delivery while minimizing systemic side [...] Read more.
Multifunctional hydrogels represent an emerging technological advancement in cancer therapeutics, integrating diagnostic imaging capabilities with therapeutic modalities into comprehensive, multifunctional systems. These hydrogels exhibit exceptional biocompatibility, biodegradability, high water retention capacity, and tunable mechanical properties, enabling precise drug delivery while minimizing systemic side effects. Recent innovations in stimuli-responsive components facilitate intelligent, controlled drug release mechanisms triggered by various stimuli, including changes in pH, temperature, magnetic fields, and near-infrared irradiation. Incorporating diagnostic imaging agents, such as magnetic nanoparticles, fluorescent dyes, and radiolabeled isotopes, substantially improves tumor visualization and real-time therapeutic monitoring. Multifunctional hydrogels effectively integrate chemotherapy, photothermal therapy, photodynamic therapy, immunotherapy, and their synergistic combinations, demonstrating superior therapeutic outcomes compared to conventional methods. Particularly, injectable and in situ-forming hydrogels provide sustained local drug delivery postoperatively, effectively reducing tumor recurrence. However, challenges persist, including initial burst release, mechanical instability, regulatory barriers, and scalability concerns. Current research emphasizes advanced nanocomposite formulations, biofunctionalization strategies, and innovative manufacturing technologies like 3D bioprinting to facilitate clinical translation. This review comprehensively summarizes recent advancements, clinical applications, and future perspectives of multifunctional hydrogel systems for enhanced cancer treatment, underscoring their potential to revolutionize personalized oncology. Full article
Show Figures

Figure 1

23 pages, 5217 KiB  
Article
Constraints from Geochemistry of Mineralization-Hosting Sandstone and Sulfur Isotopes of Pyrite on Uranium Mineralization in the Liuhuanggou Area, Southern Junggar Basin
by Junyang Li, Yu Zhou, Chunji Xue, Shizhong Chen, Guoxiong Ma, Zuohuai Yang, Min Liu, Le Yang and Jie Gong
Minerals 2025, 15(6), 575; https://doi.org/10.3390/min15060575 - 28 May 2025
Viewed by 417
Abstract
A combination of microstructural, fluid inclusion, and in situ sulfur isotopic analyses of pyrite, along with major and trace element studies of the mineralization-hosting sandstone, reveals the complexity of its genesis from the Jurassic Toutunhe Formation in the Liuhuanggou sandstone-hosted uranium deposit, Southern [...] Read more.
A combination of microstructural, fluid inclusion, and in situ sulfur isotopic analyses of pyrite, along with major and trace element studies of the mineralization-hosting sandstone, reveals the complexity of its genesis from the Jurassic Toutunhe Formation in the Liuhuanggou sandstone-hosted uranium deposit, Southern Junggar Basin. Based on field geological investigations and the geochemical characteristics, it is concluded that the source of the ore-bearing sandstones originates from felsic igneous rocks in the Northern Tianshan and Central Tianshan regions. Through optical microscopy and scanning electron microscopy (SEM), three generations of pyrite were identified: framboidal pyrite, concentric overgrown pyrite, and sub-idiomorphic to idiomorphic cement pyrite. The sulfur isotopes of the pyrite were analyzed using laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). The results indicate that each type of pyrite has distinct sulfur isotope compositions (the framboidal pyrite: −16.85‰ to +2.16‰, the concentric overgrown pyrite: −7.86‰ to +10.32‰, the sub-idiomorphic to idiomorphic cement pyrite: +9.16‰ to +16.77‰). The framboidal pyrite and the sub-idiomorphic to idiomorphic cement pyrite were formed through bacterial sulfate reduction (BSR), while the concentric overgrown pyrite was formed through thermochemical sulfate reduction (TSR) triggered by the upward migration of hydrocarbons. The discovery of hydrocarbon inclusions provides evidence for the involvement of deep-seated reducing fluids in uranium mineralization. Uranium mineralization occurred in two distinct stages: (1) The early stage involved the interaction of uranium-bearing fluids with reductants in the mineralization-hosting strata under the influence of groundwater dynamics, leading to initial uranium enrichment. (2) The later stage involved the upward migration of deep-seated hydrocarbons along faults, which enhanced the reducing capacity of the sandstone and resulted in further uranium enrichment and mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

29 pages, 9622 KiB  
Article
Provenance of the Upper Paleozoic Shihezi Formation in the Luonan Region of the Qinling Orogenic Belt and Its Tectonic Implications
by Yuliang Duan, Wenqi Pan, Xi Zhang, Zhengtao Zhang, Yi Ding, Ziwen Jiang, Zhichao Li, Lamao Meiduo, Weiran Zhao and Wenhou Li
Minerals 2025, 15(5), 549; https://doi.org/10.3390/min15050549 - 21 May 2025
Viewed by 319
Abstract
This study investigates the provenance of the Permian Shihezi Formation (Fm) siliciclastic sediments in the Luonan area, southern margin of the North China Block, which constrain the sediment sources and tectonic evolution of the basin. Our research investigates the heavy mineral characteristics, geochemical [...] Read more.
This study investigates the provenance of the Permian Shihezi Formation (Fm) siliciclastic sediments in the Luonan area, southern margin of the North China Block, which constrain the sediment sources and tectonic evolution of the basin. Our research investigates the heavy mineral characteristics, geochemical features, detrital zircon U-Pb geochronology, and Lu-Hf isotope tracing the provenance characteristics of the Shihezi Fm in this region. Zircon yielded three distinct U-Pb age groups as follows: 320–300 Ma, 1950–1850 Ma, and 2550–2450 Ma. The εHf(t) values of zircons ranged from −41 to 50, and the two–stage Hf model’s ages (TDM2) values are concentrated between 3940 Ma and 409 Ma, suggesting that magmatic sources likely derive from Early Archaean–Devonian crustal materials. The heavy mineral assemblages are primarily composed of zircon, leucoxene, and magnetite. Further geochemical analyses of the rocks indicate a diverse provenance area and a complex tectonic evolution. Taken together, these results suggest that the provenance of the Shihezi Fm is from the North China Block, with secondary contributions from the Qinling Orogenic Belt and the North Qilian Orogenic Belt. The provenance of Luonan shares similarities with the southern Ordos Basin. Investigating the provenance of the Luonan area along the southern margin of the North China Craton provides critical supplementary constraints for shedding light on the Late Paleozoic tectonothermal events in the Qinling Orogenic Belt. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

14 pages, 7293 KiB  
Article
The Genetic Mechanism and Geological Significance of Calcite in Buried-Hill Karstic Reservoirs: A Case Study of the Lower Paleozoic Carbonate Reservoirs in the Bohai Sea
by Xiuzhang Song, Tongyao Zhang, Peng Hao, Yahao Huang, Yinjun He and Chunyan Zang
Minerals 2025, 15(5), 508; https://doi.org/10.3390/min15050508 - 11 May 2025
Viewed by 437
Abstract
Calcite in hydrocarbon reservoirs records abundant information about diagenetic fluids and environments. Understanding the formation mechanisms of calcite is crucial for predicting reservoir characteristics and hydrocarbon migration. This study identifies the types of authigenic calcite present in the Lower Paleozoic carbonate reservoirs of [...] Read more.
Calcite in hydrocarbon reservoirs records abundant information about diagenetic fluids and environments. Understanding the formation mechanisms of calcite is crucial for predicting reservoir characteristics and hydrocarbon migration. This study identifies the types of authigenic calcite present in the Lower Paleozoic carbonate reservoirs of the Bohai Bay Basin through petrographic analysis, cathodoluminescence, and other experimental methods. By integrating electron probe microanalysis, in situ isotopic analysis, and fluid inclusion studies, we further constrain the source of the diagenetic fluids responsible for the authigenic calcite. The results show that there are at least three types of authigenic calcite in the Lower Paleozoic carbonate reservoirs of the Bohai Sea. Calcite cemented in the syn-depositional-to-early-diagenetic stage displays very weak cathodoluminescence, with δ13C and δ18O and paleo-salinity distributions similar to those of micritic calcite. These features suggest that the calcite was formed during burial heating by sedimentary fluids. Calcite filling fractures shows heterogeneous cathodoluminescence intensity, ranging from weak to strong, indicating multiple stages of cementation. The broad elemental variation and multiple cementation events suggest that the diagenetic fluid sources were diverse. Isotopic data show that samples with carbon isotope values greater than −2.9‰ likely formed through water–rock interaction with fluids retained within the strata, whereas samples exhibiting more negative δ13C were formed from a mixed-source supply of strata and mantle-derived fluids. Calcite that fills karst collapse pores exhibits alternating bright and dark cathodoluminescence, strong negative δ18O shifts, and variability in trace elements such as Mn, Fe, and Co. These characteristics indicate a mixed origin of diagenetic fluids derived from both meteoric freshwater and carbonate-dissolving fluids. Full article
Show Figures

Figure 1

17 pages, 5068 KiB  
Article
The Contribution of Evaporite Layers in the Formation of the Subvolcanic Type Fe Deposit in the Emeishan Large Igneous Province, Southwestern China: Insights from the S and O Isotopic Characteristics of the Kuangshanliangzi Deposit
by Qiu Wan, Chao Duan, Yanhe Li, Bin Hu, Kejun Hou and Tianshun Wang
Minerals 2025, 15(5), 456; https://doi.org/10.3390/min15050456 - 27 Apr 2025
Viewed by 275
Abstract
The Emeishan Large Igneous Province (ELIP) is one of the largest igneous provinces, containing some of the world’s richest mineral resources. It mainly comprises magmatic Fe-Ti-V deposits and Cu-Ni sulfide deposits, with minor subvolcanic-type Fe deposits related to mafic–ultramafic rocks. The evaporite layer [...] Read more.
The Emeishan Large Igneous Province (ELIP) is one of the largest igneous provinces, containing some of the world’s richest mineral resources. It mainly comprises magmatic Fe-Ti-V deposits and Cu-Ni sulfide deposits, with minor subvolcanic-type Fe deposits related to mafic–ultramafic rocks. The evaporite layer is involved in the metallogenic system, yet its contribution has not been examined in detail. In this study, an integrated geological study, single-mineral S and O isotopic analysis, and in situ S isotope analysis were carried out on pyrite and magnetite from the Kuangshanliangzi (KSLZ) subvolcanic-type Fe deposit to examine the role of evaporite layers in Fe mineralization. The O isotopic values of magnetite and the S isotopic values of pyrite were abnormally high in the KSLZ deposit. This indicates that the ore-forming system of the KSLZ deposit is contaminated by 18O- and 34S-enriched evaporite layers, inferred from the Dengying Formation, which significantly increase the oxygen fugacity, sulfur fugacity, and water content of the metallogenic system via the basic–ultrabasic magma-upwelling process, thus promoting the formation of Fe ores. When the SO42− (from evaporite layers) oxidizes Fe2+ to Fe3+, the SO42− is reduced to S2−, and the ore-forming system can be changed from unsaturated sulfide to supersaturated sulfide, which also benefits the Cu-Ni sulfide deposit formation. Full article
(This article belongs to the Special Issue Mineralization and Metallogeny of Iron Deposits)
Show Figures

Figure 1

21 pages, 10400 KiB  
Article
Origin of the Xulaojiugou Pb–Zn Deposit, Heilongjiang Province, NE China: Constraints from Molybdenite Re–Os Isotopic Dating, Trace Elements, and Isotopic Compositions of Sulfides
by Gan Liu, Yunsheng Ren, Jingmou Li and Wentan Xu
Minerals 2025, 15(5), 441; https://doi.org/10.3390/min15050441 - 25 Apr 2025
Viewed by 395
Abstract
The Xulaojiugou Pb–Zn deposit, situated in the eastern Xing’an-Mongolia Orogenic Belt (XMOB), represents a medium-scale Pb–Zn deposit in central Heilongjiang Province, NE China. The mineralization occurs mainly near the contact zone of porphyritic biotite granite, medium-grained monzogranite, and marble in the Early Cambrian Qianshan [...] Read more.
The Xulaojiugou Pb–Zn deposit, situated in the eastern Xing’an-Mongolia Orogenic Belt (XMOB), represents a medium-scale Pb–Zn deposit in central Heilongjiang Province, NE China. The mineralization occurs mainly near the contact zone of porphyritic biotite granite, medium-grained monzogranite, and marble in the Early Cambrian Qianshan Formation. Orebodies exhibit typical skarn characteristics and are structurally controlled by NE trending faults. To constrain the metallogenic age, ore-forming processes, and sources of ore-forming materials, we conducted integrated geochemical analyses, Re–Os isotope dating, in situ sulfur isotope analysis, and trace element analysis. Five molybdenite samples provided a Re–Os isochron age of 184.6 ± 3.0 Ma, indicating Early Jurassic mineralization. In situ δ34S values from 20 sphalerite and 9 galena samples ranged from 5.31‰ to 5.83‰, suggesting derivation of sulfur from a deep magmatic source. Trace element analysis of 42 spots from three sphalerite samples revealed formation temperatures of 248–262 °C, which are consistent with mesothermal conditions. Integrated with regional tectonic evolution, the Xulaojiugou deposit is genetically linked to medium-grained monzogranite emplacement and represents a typical skarn polymetallic deposit, which is genetically associated with the regional porphyry–skarn metallogenic system that developed during the Early Yanshanian (Jurassic) tectonic–magmatic event and was driven by the subduction of the Paleo-Pacific plate. Full article
Show Figures

Figure 1

24 pages, 12852 KiB  
Article
Zircon U-Pb Geochronology and Geochemical Constraints of Tiancang Granites, Southern Beishan Orogenic Belt: Implications for Early Permian Magmatism and Tectonic Evolution
by Chao Teng, Meiling Dong, Xinjie Yang, Deng Xiao, Jie Shao, Jun Cao, Yalatu Su and Wendong Lu
Minerals 2025, 15(4), 426; https://doi.org/10.3390/min15040426 - 19 Apr 2025
Cited by 1 | Viewed by 395
Abstract
The Beishan Orogenic Belt, situated along the southern margin of the Central Asian Orogenic Belt, represents a critical tectonic domain that archives the prolonged subduction–accretion processes and Paleo-Asian Ocean closure from the Early Paleozoic to the Mesozoic. Early Permian magmatism, exhibiting the most [...] Read more.
The Beishan Orogenic Belt, situated along the southern margin of the Central Asian Orogenic Belt, represents a critical tectonic domain that archives the prolonged subduction–accretion processes and Paleo-Asian Ocean closure from the Early Paleozoic to the Mesozoic. Early Permian magmatism, exhibiting the most extensive spatial-temporal distribution in this belt, remains controversial in its geodynamic context: whether it formed in a persistent subduction regime or was associated with mantle plume activity or post-collisional extension within a rift setting. This study presents an integrated analysis of petrology, zircon U-Pb geochronology, in situ Hf isotopes, and whole-rock geochemistry of Early Permian granites from the Tiancang area in the southern Beishan Orogenic Belt, complemented by regional comparative studies. Tiancang granites comprise biotite monzogranite, monzogranite, and syenogranite. Zircon U-Pb dating of four samples yields crystallization ages of 279.3–274.1 Ma. These granites are classified as high-K calc-alkaline to calc-alkaline, metaluminous to weakly peraluminous I-type granites. Geochemical signatures reveal the following: (1) low total rare earth element (REE) concentrations with light REE enrichment ((La/Yb)N = 3.26–11.39); (2) pronounced negative Eu anomalies (Eu/Eu* = 0.47–0.71) and subordinate Ce anomalies; (3) enrichment in large-ion lithophile elements (LILEs: Rb, Th, U, K) coupled with depletion in high-field-strength elements (HFSEs: Nb, Ta, P, Zr, Ti); (4) zircon εHf(t) values ranging from −10.5 to −0.1, corresponding to Hf crustal model ages (TDMC) of 1.96–1.30 Ga. These features collectively indicate that the Tiancang granites originated predominantly from partial melting of Paleoproterozoic–Mesoproterozoic crustal sources with variable mantle contributions, followed by extensive fractional crystallization. Regional correlations demonstrate near-synchronous magmatic activity across the southern/northern Beishan and eastern Tianshan Orogenic belts. The widespread Permian granitoids, combined with post-collisional magmatic suites and rift-related stratigraphic sequences, provide compelling evidence for a continental rift setting in the southern Beishan during the Early Permian. This tectonic regime transition likely began with lithospheric delamination after the Late Carboniferous–Early Permian collisional orogeny, which triggered asthenospheric upwelling and crustal thinning. These processes ultimately led to the terminal closure of the Paleo-Asian Ocean’s southern branch, followed by intracontinental evolution. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

16 pages, 7909 KiB  
Article
Zircon U-Pb Geochronology and Hf Isotopes of the Granitoids from Cahanwusu Cu Deposit in Awulale Mountain, Western Tianshan: Implication for Regional Mineralization
by Wei Zhang, Mao-Xue Chen, Mei-Li Yang, Wen-Hui Yang and Xing-Chun Zhang
Minerals 2025, 15(4), 380; https://doi.org/10.3390/min15040380 - 4 Apr 2025
Cited by 1 | Viewed by 442
Abstract
Awulale Mountain is one of the most important Fe-Cu concentration areas situated in the eastern part of Western Tianshan. The Cu deposits in the belt are genetically associated with the Permian intermediate and felsic intrusions. However, the precise age and magma source of [...] Read more.
Awulale Mountain is one of the most important Fe-Cu concentration areas situated in the eastern part of Western Tianshan. The Cu deposits in the belt are genetically associated with the Permian intermediate and felsic intrusions. However, the precise age and magma source of the causative intrusions are currently not confirmed, constraining our understanding of regional mineralization. The Cahanwusu porphyry Cu deposit is located in the western part of Awulale Mountain. Field investigations have shown that the mineralization in the deposit is genetically associated with granitic porphyry and diorite porphyry. In this paper, we provide detailed zircon U-Pb ages and in-situ Hf isotopic compositions of the granitic porphyry and diorite porphyry. The granitic porphyry and diorite porphyry have zircon U-Pb ages of 328.6 ± 2.6 Ma (MSWD = 0.52; n = 23) and 331 ± 2.8 Ma (MSWD = 0.95; n = 21), respectively. This indicates that the Cahanwusu deposit was formed in the Carboniferous in a subduction setting. This is distinguishable from other porphyry Cu deposits in the belt, which were generally formed in the Permian in the post-collision extensional setting. The granitic porphyry and diorite porphyry exhibit positive εHf(t) values varying from +2.8 to +5.4 (average of +4.1) and +2.0 to +5.1 (average of +4.1), respectively. The magmas of these causative intrusions were interpreted to be derived from the partial melting of the juvenile lower crust which originated from cooling of mantle-derived magmas related to the subduction process. Our new results highlight that the Cahanwusu deposit represents a new episode of Cu mineralization in the belt and the Carboniferous granitoids in Awulale Mountain are potential candidates for Cu exploration. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

23 pages, 16611 KiB  
Article
Study on the Occurrence States and Enrichment Mechanisms of the Dispersed Elements Ga, Ge, and In in the Chipu Pb-Zn Deposit, Sichuan Province, China
by Tian Tan, Huijuan Peng, En Qin, Ziyue Wang and Xingxing Mao
Minerals 2025, 15(4), 341; https://doi.org/10.3390/min15040341 - 26 Mar 2025
Viewed by 482
Abstract
The dispersed elements Ga, Ge, and In are crucial strategic mineral resources often enriched in Pb-Zn deposits. The Chipu Pb-Zn deposit, located on the western edge of the Yangtze Block, lies to the north of the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province with large [...] Read more.
The dispersed elements Ga, Ge, and In are crucial strategic mineral resources often enriched in Pb-Zn deposits. The Chipu Pb-Zn deposit, located on the western edge of the Yangtze Block, lies to the north of the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province with large amounts of Emeishan basalt. Based on trace element and in situ sulfur isotope analyses by (LA)-ICP-MS, sphalerite is the main carrier mineral for Ga (17~420 ppm), Ge (3.87~444 ppm), and In (31~720 ppm). Ga or Ge correlate significantly with Cu, while In substitutes for Zn in sphalerite alongside Fe. Key substitution reactions include Ga3+ + Cu+ ↔ 2Zn2+, Ge4+ + 2Cu+ ↔ 3Zn2+, and 2In3+ + Fe2+ ↔ 4Zn2+. Sphalerite crystallized at medium to low temperatures (114–195 °C). Sulfide δ34S values (+3.48 to +24.74‰) suggest sulfur mainly originated from Dengying Formation marine sulfates via thermochemical sulfate reduction (TSR). Metal-bearing fluid release at 30 Ma post-Emeishan mantle plume activity (261–257 Ma) coincides with the Chipu deposit’s mineralization period (230–200 Ma), suggesting the Chipu deposit is associated with Emeishan plume activity. The magmatic activity drove basinal brine circulation, extracting In from intermediate-felsic igneous rocks and metamorphic basement. Elevated temperatures promoted the coupling of Fe and In into sphalerite, causing anomalous In enrichment. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop