Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = immunoglobulin rearrangement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 610 KiB  
Review
Increased c-MYC Expression Associated with Active IGH Locus Rearrangement: An Emerging Role for c-MYC in Chronic Lymphocytic Leukemia
by Kenza Guiyedi, Milène Parquet, Said Aoufouchi, Jasmine Chauzeix, David Rizzo, Israa Al Jamal, Jean Feuillard, Nathalie Gachard and Sophie Peron
Cancers 2024, 16(22), 3749; https://doi.org/10.3390/cancers16223749 - 6 Nov 2024
Cited by 2 | Viewed by 1734
Abstract
This review examines the pivotal role of c-MYC in Chronic Lymphocytic Leukemia (CLL), focusing on how its overexpression leads to increased genetic instability, thereby accelerating disease progression. MYC, a major oncogene, encodes a transcription factor that regulates essential cellular processes, including cell [...] Read more.
This review examines the pivotal role of c-MYC in Chronic Lymphocytic Leukemia (CLL), focusing on how its overexpression leads to increased genetic instability, thereby accelerating disease progression. MYC, a major oncogene, encodes a transcription factor that regulates essential cellular processes, including cell cycle control, proliferation, and apoptosis. In CLL cases enriched with unmutated immunoglobulin heavy chain variable (IGHV) genes, MYC is significantly overexpressed and associated with active rearrangements in the IGH immunoglobulin heavy chain locus. This overexpression results in substantial DNA damage, including double-strand breaks, chromosomal translocations, and an increase in abnormal repair events. Consequently, c-MYC plays a dual role in CLL: it promotes aggressive cell proliferation while concurrently driving genomic instability through its involvement in genetic recombination. This dynamic contributes not only to CLL progression but also to the overall aggressiveness of the disease. Additionally, the review suggests that c-MYC’s influence on genetic rearrangements makes it an attractive target for therapeutic strategies aimed at mitigating CLL malignancy. These findings underscore c-MYC’s critical importance in advancing CLL progression, highlighting the need for further research to explore its potential as a target in future treatment approaches. Full article
(This article belongs to the Special Issue Oncogenesis of Lymphoma)
Show Figures

Figure 1

22 pages, 2639 KiB  
Article
Overlapping Gene Expression and Molecular Features in High-Grade B-Cell Lymphoma
by Katharina D. Faißt, Cora C. Husemann, Karsten Kleo, Monika Twardziok and Michael Hummel
J. Mol. Pathol. 2024, 5(4), 415-436; https://doi.org/10.3390/jmp5040028 - 30 Sep 2024
Viewed by 2388
Abstract
Aggressive B-cell lymphoma encompasses Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and, as per the 2016 WHO classification, high-grade B-cell lymphoma (HGBL) not otherwise specified (NOS) and HGBL double/triple hit (DH/TH). However, the diagnostic distinction of HGBL from BL and DLBCL is [...] Read more.
Aggressive B-cell lymphoma encompasses Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and, as per the 2016 WHO classification, high-grade B-cell lymphoma (HGBL) not otherwise specified (NOS) and HGBL double/triple hit (DH/TH). However, the diagnostic distinction of HGBL from BL and DLBCL is difficult by means of histology/immunostaining in a substantial number of patients. This study aimed to improve subtyping by the identification of molecular features of aggressive B-cell lymphomas, with a specific focus on HGBL. To this end, we performed a comprehensive gene expression and mutational pattern analysis as well as the detection of B-cell clonality of 34 cases diagnosed with BL (n = 4), DLBCL (n = 16), HGBL DH (n = 8), and HGBL NOS (n = 6). Three distinct molecular subgroups were identified based on gene expression, primarily influenced by MYC expression/translocation and cell proliferation. In HGBL, compared to BL, there was an upregulation of PRKAR2B and TERT. HGBL DH exhibited elevated expression of GAMT and SMIM14, while HGBL NOS showed increased expression of MIR155HG and LZTS1. Our gene mutation analysis revealed MYC, ARID1A, BCL2, KMT2D, and PIM1 as the most affected genes in B-cell lymphoma, with BCL2 and CREBBP predominant in HGBL DH, and MYC and PIM1 in HGBL NOS. Clonality analysis of immunoglobulin heavy and light chain rearrangements did not show distinguishable V- or J-usage between the diagnostic subgroups. Full article
Show Figures

Figure 1

20 pages, 3032 KiB  
Article
A Comparative Analysis of the Immunoglobulin Repertoire in Leukemia Cells and B Cells in Chinese Acute Myeloid Leukemia by High-Throughput Sequencing
by Huige Yan, Lina Wu, Pingzhang Wang, Miaoran Xia, Zhan Shi, Xinmei Huang, Sha Yin, Qian Jiang, C. Cameron Yin, Xiangyu Zhao and Xiaoyan Qiu
Biology 2024, 13(8), 613; https://doi.org/10.3390/biology13080613 - 13 Aug 2024
Viewed by 1820
Abstract
It is common knowledge that immunoglobulin (Ig) is produced by B lymphocytes and mainly functions as an antibody. However, it has been shown recently that myeloblasts from acute myeloid leukemia (AML) could also express Ig and that AML-Ig played a role in leukemogenesis [...] Read more.
It is common knowledge that immunoglobulin (Ig) is produced by B lymphocytes and mainly functions as an antibody. However, it has been shown recently that myeloblasts from acute myeloid leukemia (AML) could also express Ig and that AML-Ig played a role in leukemogenesis and AML progression. The difference between Ig from myeloblasts and B cells has not been explored. Studying the characteristics of the Ig repertoire in myeloblasts and B cells will be helpful to understand the function and significance of AML-Ig. We performed 5′ RACE-related PCR coupled with PacBio sequencing to analyze the Ig repertoire in myeloblasts and B cells from Chinese AML patients. Myeloblasts expressed all five classes of IgH, especially Igγ, with a high expression frequency. Compared with B-Ig in the same patient, AML-Ig showed different biased V(D)J usages and mutation patterns. In addition, the CDR3 length distribution of AML-Ig was significantly different from those of B-Ig. More importantly, mutations of AML-IgH, especially Igμ, Igα, and Igδ, were different from that of B-IgH in each AML patient, and the mutations frequently occurred at the sites of post-translational modification. AML-Ig has distinct characteristics of variable regions and mutations, which may have implications for disease monitoring and personalized therapy. Full article
Show Figures

Figure 1

7 pages, 234 KiB  
Article
Characteristics of 15 Subjects Affected by IgD Multiple Myeloma and the Key Role of the Laboratory in Diagnosis: A Retrospective Study Report and Literature Review
by Jari Intra, Sara Pezzatti, Rinaldo Brivio, Monica Carpenedo, Rita Romano, Nadia Spinoni and Marco Casati
Int. J. Transl. Med. 2024, 4(3), 498-504; https://doi.org/10.3390/ijtm4030033 - 25 Jul 2024
Cited by 1 | Viewed by 1303
Abstract
Immunoglobulin D (IgD) myeloma represents an uncommon subtype of multiple myeloma (MM), accounting for 1–2% of cases. Subjects affected by IgD MM have been demonstrated to have an inferior outcome and survival compared to those with other MM subtypes. A retrospective study was [...] Read more.
Immunoglobulin D (IgD) myeloma represents an uncommon subtype of multiple myeloma (MM), accounting for 1–2% of cases. Subjects affected by IgD MM have been demonstrated to have an inferior outcome and survival compared to those with other MM subtypes. A retrospective study was conducted on 15 patients (9 males and 6 females) diagnosed from 2008 to 2022 with IgD MM, in order to investigate the clinical and biochemical features at the moment of diagnosis, cytogenetic alterations, and survival times. The median age was 69 years, and higher frequencies of bone lesions, renal impairments, Bence–Jones proteinuria, and increased serum LDH were observed. Serum calcium levels were in the reference ranges. In the assessment of protein electrophoresis patterns, nine patients had a serum monoclonal protein that was not detectable. A cytogenetic analysis via fluorescence in situ demonstrated that the most common abnormalities were the deletion of 13q and IGH rearrangements. Patients treated with new chemotherapeutic drugs (immunomodulators, proteasome inhibitors), with or without autologous stem cell transplantation presented a higher median survival. The fundamental role of the laboratory in monoclonal IgD detection and the monitoring and studying of IgD MM cases enhances the knowledge of this disease, thus improving patient outcomes. Full article
26 pages, 13803 KiB  
Article
Restoration of T and B Cell Differentiation after RAG1 Gene Transfer in Human RAG1 Defective Hematopoietic Stem Cells
by Nataël Sorel, Francisco Díaz-Pascual, Boris Bessot, Hanem Sadek, Chloé Mollet, Myriam Chouteau, Marco Zahn, Irene Gil-Farina, Parisa Tajer, Marja van Eggermond, Dagmar Berghuis, Arjan C. Lankester, Isabelle André, Richard Gabriel, Marina Cavazzana, Kasrin Pike-Overzet, Frank J. T. Staal and Chantal Lagresle-Peyrou
Biomedicines 2024, 12(7), 1495; https://doi.org/10.3390/biomedicines12071495 - 5 Jul 2024
Cited by 3 | Viewed by 2670
Abstract
Recombinase-activating gene (RAG)-deficient SCID patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. The two RAG genes act as a required dimer to initiate gene recombination. Gene therapy is a valid treatment alternative for [...] Read more.
Recombinase-activating gene (RAG)-deficient SCID patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. The two RAG genes act as a required dimer to initiate gene recombination. Gene therapy is a valid treatment alternative for RAG-SCID patients who lack a suitable bone marrow donor, but developing such therapy for RAG1/2 has proven challenging. Using a clinically approved lentiviral vector with a codon-optimized RAG1 gene, we report here preclinical studies using CD34+ cells from four RAG1-SCID patients. We used in vitro T cell developmental assays and in vivo assays in xenografted NSG mice. The RAG1-SCID patient CD34+ cells transduced with the RAG1 vector and transplanted into NSG mice led to restored human B and T cell development. Together with favorable safety data on integration sites, these results substantiate an ongoing phase I/II clinical trial for RAG1-SCID. Full article
(This article belongs to the Collection Feature Papers in Gene and Cell Therapy)
Show Figures

Figure 1

12 pages, 1163 KiB  
Article
Next-Generation-Sequencing of the Human B-Cell Receptor Improves Detection and Diagnosis and Enhances Disease Monitoring in Patients with Gastric Mucosa-Associated Lymphoid Tissue Lymphoma
by Chidimma Agatha Akpa, Cora Husemann, Chris Allen, Ann-Christin von Brünneck, Jana Ihlow and Michael Hummel
J. Mol. Pathol. 2024, 5(3), 292-303; https://doi.org/10.3390/jmp5030021 - 4 Jul 2024
Viewed by 2361
Abstract
Mucosa-associated lymphoid tissue (MALT) lymphomas are slow-growing B-cell lymphomas mainly diagnosed in the stomach and termed gastric MALT lymphoma (G-MALT). Despite histological evaluation, immunostaining, and additional B-cell clonality analysis by fragment analysis, a clear-cut diagnosis is not feasible in all cases, especially for [...] Read more.
Mucosa-associated lymphoid tissue (MALT) lymphomas are slow-growing B-cell lymphomas mainly diagnosed in the stomach and termed gastric MALT lymphoma (G-MALT). Despite histological evaluation, immunostaining, and additional B-cell clonality analysis by fragment analysis, a clear-cut diagnosis is not feasible in all cases, especially for clinical follow-up of patients after treatment. We examined clonally rearranged immunoglobulin heavy- and light-chain gene sequences of 36 genomic DNA samples from six different patients obtained at different time points over the course of several years using the OncomineTM B-cell receptor pan-clonality next-generation sequencing (NGS) assay. Each case consisted of samples diagnosed with G-MALT and samples without evidence of lymphoma, based on histological examinations. We show a robust correlation (100%) of the results between the applied NGS method and histology-diagnosed G-MALT-positive patients. We also detected malignant clonotypes in samples where histology assessment failed to provide clear evidence of G-MALT (15 out of 19 samples). Furthermore, this method revealed malignant clonotypes much earlier in the disease course, with NGS of the immunoglobulin light chain being crucial in complementing immunoglobulin heavy-chain analysis. Hence, the value of NGS in routine lymphoma diagnostics is greatly significant and can be explored in order to provide better diagnoses and proffer the early detection of lymphoma relapse. Full article
Show Figures

Figure 1

12 pages, 4164 KiB  
Case Report
Molecular Features of HHV8 Monoclonal Microlymphoma Associated with Kaposi Sarcoma and Multicentric Castleman Disease in an HIV-Negative Patient
by Evelina Rogges, Sabrina Pelliccia, Camilla Savio, Gianluca Lopez, Irene Della Starza, Giacinto La Verde and Arianna Di Napoli
Int. J. Mol. Sci. 2024, 25(7), 3775; https://doi.org/10.3390/ijms25073775 - 28 Mar 2024
Cited by 1 | Viewed by 2162
Abstract
Human herpesvirus 8 (HHV8)-associated diseases include Kaposi sarcoma (KS), multicentric Castleman disease (MCD), germinotropic lymphoproliferative disorder (GLPD), Kaposi sarcoma inflammatory cytokine syndrome (KICS), HHV8-positive diffuse large B-cell lymphoma (HHV8+ DLBCL), primary effusion lymphoma (PEL), and extra-cavitary PEL (ECPEL). We report the case of [...] Read more.
Human herpesvirus 8 (HHV8)-associated diseases include Kaposi sarcoma (KS), multicentric Castleman disease (MCD), germinotropic lymphoproliferative disorder (GLPD), Kaposi sarcoma inflammatory cytokine syndrome (KICS), HHV8-positive diffuse large B-cell lymphoma (HHV8+ DLBCL), primary effusion lymphoma (PEL), and extra-cavitary PEL (ECPEL). We report the case of a human immunodeficiency virus (HIV)-negative male treated for cutaneous KS, who developed generalized lymphadenopathy, hepatosplenomegaly, pleural and abdominal effusions, renal insufficiency, and pancytopenia. The excised lymph node showed features of concomitant involvement by micro-KS and MCD, with aggregates of HHV8+, Epstein Barr virus (EBV)-negative, IgM+, and lambda+ plasmablasts reminiscent of microlymphoma. Molecular investigations revealed a somatically hypermutated (SHM) monoclonal rearrangement of the immunoglobulin heavy chain (IGH), accounting for 4% of the B-cell population of the lymph node. Mutational analyses identified a pathogenic variant of KMT2D and variants of unknown significance in KMT2D, FOXO1, ARID1A, and KMT2A. The patient died shortly after surgery. The histological features (HHV8+, EBV−, IgM+, Lambda+, MCD+), integrated with the molecular findings (monoclonal IGH, SHM+, KMT2D mutated), supported the diagnosis of a monoclonal HHV8+ microlymphoma, with features intermediate between an incipient HHV8+ DLBCL and an EBV-negative ECPEL highlighting the challenges in the accurate classification of HHV8-driven lymphoid proliferations. Full article
Show Figures

Figure 1

15 pages, 3269 KiB  
Article
Flow Sorting, Whole Genome Amplification and Next-Generation Sequencing as Combined Tools to Study Heterogeneous Acute Lymphoblastic Leukemia
by Rabiah Fardoos, Claus Christensen, Nina Friesgaard Øbro, Ulrik Malthe Overgaard, Bodil Als-Nielsen, Hans Ole Madsen and Hanne Vibeke Marquart
Diagnostics 2023, 13(21), 3306; https://doi.org/10.3390/diagnostics13213306 - 25 Oct 2023
Viewed by 1694
Abstract
Next-generation sequencing (NGS) methods have been introduced for immunoglobulin (IG)/T-cell receptor (TR) gene rearrangement analysis in acute lymphoblastic leukemia (ALL) and lymphoma (LBL). These methods likely constitute faster and more sensitive approaches to analyze heterogenous cases of ALL/LBL, yet it is not known [...] Read more.
Next-generation sequencing (NGS) methods have been introduced for immunoglobulin (IG)/T-cell receptor (TR) gene rearrangement analysis in acute lymphoblastic leukemia (ALL) and lymphoma (LBL). These methods likely constitute faster and more sensitive approaches to analyze heterogenous cases of ALL/LBL, yet it is not known whether gene rearrangements constituting low percentages of the total sequence reads represent minor subpopulations of malignant cells or background IG/TR gene rearrangements in normal B-and T-cells. In a comparison of eight cases of B-cell precursor ALL (BCP-ALL) using both the EuroClonality NGS method and the IdentiClone multiplex-PCR/gene-scanning method, the NGS method identified between 29% and 139% more markers than the gene-scanning method, depending on whether the NGS data analysis used a threshold of 5% or 1%, respectively. As an alternative to using low thresholds, we show that IG/TR gene rearrangements in subpopulations of cancer cells can be discriminated from background IG/TR gene rearrangements in normal B-and T-cells through a combination of flow cytometry cell sorting and multiple displacement amplification (MDA)-based whole genome amplification (WGA) prior to the NGS. Using this approach to investigate the clonal evolution in a BCP-ALL patient with double relapse, clonal TR rearrangements were found in sorted leukemic cells at the time of second relapse that could be identified at the time of diagnosis, below 1% of the total sequence reads. These data emphasize that caution should be exerted when interpreting rare sequences in NGS experiments and show the advantage of employing the flow sorting of malignant cell populations in NGS clonality assessments. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

18 pages, 3194 KiB  
Article
Single-Step IGHV Next-Generation Sequencing Detects Clonality and Somatic Hypermutation in Lymphoid Malignancies: A Phase III Diagnostic Accuracy Study
by Anna Gazzola, Mohsen Navari, Claudia Mannu, Riccardo Donelli, Maryam Etebari and Pier Paolo Piccaluga
Cancers 2023, 15(18), 4624; https://doi.org/10.3390/cancers15184624 - 19 Sep 2023
Viewed by 1925
Abstract
Background: Multiplex PCR based on consensus primers followed by capillary electrophoresis and Sanger sequencing are considered as the gold standard method for the evaluation of clonality and somatic hypermutation in lymphoid malignancies. As an alternative, the next-generation sequencing (NGS) of immune receptor genes [...] Read more.
Background: Multiplex PCR based on consensus primers followed by capillary electrophoresis and Sanger sequencing are considered as the gold standard method for the evaluation of clonality and somatic hypermutation in lymphoid malignancies. As an alternative, the next-generation sequencing (NGS) of immune receptor genes has recently been proposed as a solution, due to being highly effective and sensitive. Here, we designed a phase III diagnostic accuracy study intended to compare the current gold standard methods versus the first commercially available NGS approaches for testing immunoglobulin heavy chain gene rearrangements. Methods: We assessed IGH rearrangements in 68 samples by means of both the NGS approach (LymphoTrack® IGH assay, and LymphoTrack® IGH somatic hypermutation assay, run on Illumina MiSeq) and capillary electrophoresis/Sanger sequencing to assess clonality and somatic hypermutations (SHM). Results: In comparison to the routine capillary-based analysis, the NGS clonality assay had an overall diagnostic accuracy of 96% (63/66 cases). Other studied criteria included sensitivity (95%), specificity (100%), positive predictive value (100%) and negative predictive value (75%). In discrepant cases, the NGS results were confirmed by a different set of primers that provided coverage of the IGH leader sequence. Furthermore, there was excellent agreement of the SHM determination with both the LymphoTrack® FR1 and leader assays when compared to the Sanger sequencing analysis (84%), with NGS able to assess the SHM rate even in cases where the conventional approach failed. Conclusion: Overall, conventional Sanger sequencing and next-generation-sequencing-based clonality and somatic hypermutation analyses gave comparable results. For future use in a routine diagnostic workflow, NGS-based approaches should be evaluated prospectively and an analysis of cost-effectiveness should be performed. Full article
(This article belongs to the Special Issue Advances in Lymphoma, Plasma Cell Myeloma, and Leukemia Diagnostics)
Show Figures

Figure 1

19 pages, 3741 KiB  
Article
Serological and Molecular Characterization of Hepatitis C Virus-Related Cryoglobulinemic Vasculitis in Patients without Cryoprecipitate
by Cecilia Napodano, Gabriele Ciasca, Patrizia Chiusolo, Krizia Pocino, Laura Gragnani, Annunziata Stefanile, Francesca Gulli, Serena Lorini, Gessica Minnella, Federica Fosso, Riccardo Di Santo, Sabrina Romanò, Valerio Basile, Valerio De Stefano, Gian Ludovico Rapaccini, Anna Linda Zignego, Enrico Di Stasio, Mariapaola Marino and Umberto Basile
Int. J. Mol. Sci. 2023, 24(14), 11602; https://doi.org/10.3390/ijms241411602 - 18 Jul 2023
Cited by 8 | Viewed by 2177
Abstract
Prolonged B cells stimulation due to the Hepatitis C virus (HCV) can result in autoimmunity, stigmatized by rising levels of cryoglobulins (CGs), the rheumatoid factor (RF), and free light chains (FLC) of immunoglobulins (Ig) associated with a range of symptoms, from their absence [...] Read more.
Prolonged B cells stimulation due to the Hepatitis C virus (HCV) can result in autoimmunity, stigmatized by rising levels of cryoglobulins (CGs), the rheumatoid factor (RF), and free light chains (FLC) of immunoglobulins (Ig) associated with a range of symptoms, from their absence to severe cryoglobulinemic vasculitis and lymphoma. Here, we aimed to identify an immunological signature for the earliest stages of vasculitis when cryoprecipitate is still not detectable. We firstly analyzed the IgG subclasses, FLC, and RF in 120 HCV-RNA-positive patients divided into four groups according to the type of cryoprecipitate and symptoms: 30 asymptomatic without cryoprecipitate (No Cryo), 30 with vasculitis symptoms but without CGs that we supposed were circulating but still not detectable (Circulating), 30 type II and 30 type III mixed cryoglobulinemia (Cryo II and Cryo III, respectively). Our results revealed that patients with supposed circulating CGs displayed a pattern of serological parameters that closely resembled Cryo II and Cryo III, with a stronger similarity to Cryo II. Accordingly, we analyzed the groups of Circulating and Cryo II for their immunoglobulin heavy chain (IgH) and T-cell receptor (TCR) gene rearrangements, finding a similar mixed distribution of monoclonal, oligoclonal, and polyclonal responses compared to a control group of ten HCV-RNA-negative patients recovered from infection, who displayed a 100% polyclonal response. Our results strengthened the hypothesis that circulating CGs are the origin of symptoms in HCV-RNA-positive patients without cryoprecipitate and demonstrated that an analysis of clonal IGH and TCR rearrangements is the best option for the early diagnosis of extrahepatic complications. Full article
(This article belongs to the Special Issue Liver Diseases: From Bench to Bedside)
Show Figures

Figure 1

16 pages, 32659 KiB  
Article
Chromosomal Aberration t(14;17)(q32;q21) Simultaneously Activates HOXB5 and miR10a in Triple-Hit B-Cell Lymphoma
by Stefan Nagel, Claudia Pommerenke, Corinna Meyer, Maren Kaufmann and Roderick A. F. MacLeod
Biomedicines 2023, 11(6), 1758; https://doi.org/10.3390/biomedicines11061758 - 19 Jun 2023
Cited by 1 | Viewed by 1939
Abstract
BCL2, BCL6 and MYC are major oncogenes in B-cell lymphoma. Their aberrant activation frequently occurs via chromosomal translocations which juxtapose light or heavy chain immunoglobulin (IG) genes to BCL2 and MYC or fuse diverse partner genes with BCL6. So-called double-hit lymphomas [...] Read more.
BCL2, BCL6 and MYC are major oncogenes in B-cell lymphoma. Their aberrant activation frequently occurs via chromosomal translocations which juxtapose light or heavy chain immunoglobulin (IG) genes to BCL2 and MYC or fuse diverse partner genes with BCL6. So-called double-hit lymphomas usually carry BCL2 and MYC rearrangements, while triple-hit lymphomas additionally bear BCL6-fusions. All these translocations are of diagnostic relevance and usually denote poor prognosis. Here, we genomically characterized classic follicular lymphoma (FL) cell line SC-1, thereby identifying t(14;18)(q32;q21) juxtaposing IGH and BCL2, t(8;14)(q24;q32) juxtaposing IGH and MYC, and t(3;3)(q25;q27) fusing MBNL1 to BCL6. In addition, we found that SC-1 carries a novel chromosomal rearrangement, t(14;17)(q32;q21), which, though present at establishment, has remained unreported until now. We further show that t(14;17)(q32;q21) juxtaposes IGH with the HOXB gene cluster at 17q21 and affect the oncogenic activation of both homeobox gene HOXB5 and neighboring micro-RNA gene miR10a. Moreover, we detected aberrant overexpression of HOXB5 in subsets of Burkitt lymphoma, FL, and multiple myeloma patients, confirming the clinical relevance of its deregulation. In SC-1, HOXB5 activation was additionally supported by co-expression of hematopoietic stem cell factor ZNF521, indicating an aberrant impact in cell differentiation. Functional investigations showed that HOXB5 represses the apoptotic driver BCL2L11 and promotes survival in the presence of etoposide, and that miR10a inhibits BCL6 and may thus play an oncogenic role in later stages of lymphomagenesis. Collectively, we characterize triple-hit B-cell line SC-1 and identify the aberrant expression of HOXB5 and miR10a, both novel oncogenes in B-cell lymphoma. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

11 pages, 945 KiB  
Perspective
Identification of Immunoglobulin Gene Rearrangement Biomarkers in Multiple Myeloma through cfDNA-Based Liquid Biopsy Using tchDNA-Seq
by Natalia Buenache, Andrea Sánchez-delaCruz, Isabel Cuenca, Alicia Giménez, Laura Moreno, Joaquín Martínez-López and Juan Manuel Rosa-Rosa
Cancers 2023, 15(11), 2911; https://doi.org/10.3390/cancers15112911 - 25 May 2023
Viewed by 2563
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of pathogenic CD138+ plasma cells (PPCs) in bone marrow (BM). Recent years have seen a significant increase in the treatment options for MM; however, most patients who achieve complete the response [...] Read more.
Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of pathogenic CD138+ plasma cells (PPCs) in bone marrow (BM). Recent years have seen a significant increase in the treatment options for MM; however, most patients who achieve complete the response ultimately relapse. The earlier detection of tumor-related clonal DNA would thus be very beneficial for patients with MM and would enable timely therapeutic interventions to improve outcomes. Liquid biopsy of “cell-free DNA” (cfDNA) as a minimally invasive approach might be more effective than BM aspiration not only for the diagnosis but also for the detection of early recurrence. Most studies thus far have addressed the comparative quantification of patient-specific biomarkers in cfDNA with PPCs and BM samples, which have shown good correlations. However, there are limitations to this approach, such as the difficulty in obtaining enough circulating free tumor DNA to achieve sufficient sensitivity for the assessment of minimal residual disease. Herein, we summarize current data on methodologies to characterize MM, and we present evidence that targeted capture hybridization DNA sequencing (tchDNA-Seq) can provide robust biomarkers in cfDNA, including immunoglobulin (IG) rearrangements. We also show that detection can be improved by prior purification of the cfDNA. Overall, liquid biopsies of cfDNA to monitor IG rearrangements have the potential to provide important diagnostic, prognostic, and predictive information in patients with MM. Full article
Show Figures

Figure 1

10 pages, 3125 KiB  
Article
Patterns of Lymphocytic Infiltrates Can Differentiate Feline Hepatic Lymphoma from Lymphocytic Portal Hepatitis
by Kimberley Sebastian, Rebecca C. Smedley, Alexander Bartel and Matti Kiupel
Vet. Sci. 2023, 10(2), 127; https://doi.org/10.3390/vetsci10020127 - 7 Feb 2023
Cited by 3 | Viewed by 3917
Abstract
Hepatic lymphoma is poorly characterized in cats and differentiating between inflammation and lymphomas is often difficult. The diagnosis of hepatic lymphoma in humans relies on recognition of specific patterns of lymphocytic infiltrates and clonality testing of antigen receptors. Herein, we defined similar patterns [...] Read more.
Hepatic lymphoma is poorly characterized in cats and differentiating between inflammation and lymphomas is often difficult. The diagnosis of hepatic lymphoma in humans relies on recognition of specific patterns of lymphocytic infiltrates and clonality testing of antigen receptors. Herein, we defined similar patterns of lymphocytic infiltrates in hepatic biopsies of cats and correlated them with clonality to determine which patterns are predictive of lymphoma. A retrospective study was performed on surgical biopsies from 44 cats. The immunophenotype was characterized using CD3 and CD20 on all 44 samples. All 44 samples were tested using PCR for T-cell receptor gamma-gene rearrangements. PCR for immunoglobulin heavy chain gene rearrangements was performed on 24 of these cats. Four patterns of lymphocytic infiltrates were characterized: (1) tightly periportal, (2) periportal and centrilobular, (3) nodular, and (4) periportal with sinusoidal extension. Other histomorphologic features (fibrosis, biliary hyperplasia, bile ductopenia, bile duct targeting, hepatic hematopoiesis, lipogranulomas, lymphonodular aggregates, other inflammatory cells) were also evaluated. The sensitivity and specificity of the lymphocytic patterns to diagnose lymphomas were determined using Bayesian Hui–Walter analysis (BLCM) against clonality results. Lymphocytic patterns 2, 3, and 4 accurately diagnosed hepatic lymphomas with a sensitivity and specificity of 82% (CI 95%: 0.65, 0.96) and 77% (CI 95%: 0.54, 1.00), respectively. None of the other microscopic features evaluated were predictive of a lymphoma or inflammation. Our study identified specific patterns of lymphocytic infiltration that differentiate feline hepatic lymphoma from inflammation while other histologic features were not associated with an accurate diagnosis. Full article
(This article belongs to the Special Issue Spotlight on Feline Oncology)
Show Figures

Figure 1

12 pages, 1559 KiB  
Article
Genetic Alterations in Members of the Proteasome 26S Subunit, AAA-ATPase (PSMC) Gene Family in the Light of Proteasome Inhibitor Resistance in Multiple Myeloma
by Larissa Haertle, Natalia Buenache, Hipólito Nicolás Cuesta Hernández, Michal Simicek, Renata Snaurova, Inmaculada Rapado, Nerea Martinez, Nieves López-Muñoz, José María Sánchez-Pina, Umair Munawar, Seungbin Han, Yanira Ruiz-Heredia, Rafael Colmenares, Miguel Gallardo, Margarita Sanchez-Beato, Miguel Angel Piris, Mehmet Kemal Samur, Nikhil C. Munshi, Rosa Ayala, Klaus Martin Kortüm, Santiago Barrio and Joaquín Martínez-Lópezadd Show full author list remove Hide full author list
Cancers 2023, 15(2), 532; https://doi.org/10.3390/cancers15020532 - 15 Jan 2023
Cited by 5 | Viewed by 3741
Abstract
For the treatment of Multiple Myeloma, proteasome inhibitors are highly efficient and widely used, but resistance is a major obstacle to successful therapy. Several underlying mechanisms have been proposed but were only reported for a minority of resistant patients. The proteasome is a [...] Read more.
For the treatment of Multiple Myeloma, proteasome inhibitors are highly efficient and widely used, but resistance is a major obstacle to successful therapy. Several underlying mechanisms have been proposed but were only reported for a minority of resistant patients. The proteasome is a large and complex machinery. Here, we focus on the AAA ATPases of the 19S proteasome regulator (PSMC1-6) and their implication in PI resistance. As an example of cancer evolution and the acquisition of resistance, we conducted an in-depth analysis of an index patient by applying FISH, WES, and immunoglobulin-rearrangement sequencing in serial samples, starting from MGUS to newly diagnosed Multiple Myeloma to a PI-resistant relapse. The WES analysis uncovered an acquired PSMC2 Y429S mutation at the relapse after intensive bortezomib-containing therapy, which was functionally confirmed to mediate PI resistance. A meta-analysis comprising 1499 newly diagnosed and 447 progressed patients revealed a total of 36 SNVs over all six PSMC genes that were structurally accumulated in regulatory sites for activity such as the ADP/ATP binding pocket. Other alterations impact the interaction between different PSMC subunits or the intrinsic conformation of an individual subunit, consequently affecting the folding and function of the complex. Interestingly, several mutations were clustered in the central channel of the ATPase ring, where the unfolded substrates enter the 20S core. Our results indicate that PSMC SNVs play a role in PI resistance in MM. Full article
(This article belongs to the Collection Targeting Solid Tumors)
Show Figures

Figure 1

9 pages, 1655 KiB  
Article
Single-Cell RNA Sequencing for the Detection of Clonotypic V(D)J Rearrangements in Multiple Myeloma
by Antonio Matera, Alessio Marella, Akihiro Maeda, Matteo C. Da Vià, Francesca Lazzaroni, Sonia Fabris, Stefania Pioggia, Laura Porretti, Federico Colombo, Federica Torricelli, Antonino Neri, Elisa Taiana, Giuseppina Fabbiano, Valentina Traini, Elisa Genuardi, Daniela Drandi, Niccolò Bolli and Marta Lionetti
Int. J. Mol. Sci. 2022, 23(24), 15691; https://doi.org/10.3390/ijms232415691 - 10 Dec 2022
Cited by 5 | Viewed by 3431
Abstract
Multiple myeloma (MM) has a highly heterogeneous genetic background, which complicates its molecular tracking over time. Nevertheless, each MM patient’s malignant plasma cells (PCs) share unique V(D)J rearranged sequences at immunoglobulin loci, which represent ideal disease biomarkers. Because the tumor-specific V(D)J sequence is [...] Read more.
Multiple myeloma (MM) has a highly heterogeneous genetic background, which complicates its molecular tracking over time. Nevertheless, each MM patient’s malignant plasma cells (PCs) share unique V(D)J rearranged sequences at immunoglobulin loci, which represent ideal disease biomarkers. Because the tumor-specific V(D)J sequence is highly expressed in bulk RNA in MM patients, we wondered whether it can be identified by single-cell RNA sequencing (scRNA-seq). To this end we analyzed CD138+ cells purified from bone marrow aspirates of 19 samples with PC dyscrasias by both a standard method based on bulk DNA and by an implementation of the standard 10x Genomics protocol to detect expressed V(D)J sequences. A dominant clonotype was easily identified in each sample, accounting on average for 83.65% of V(D)J-rearranged cells. Compared with standard methods, scRNA-seq analysis proved highly concordant and even more effective in identifying clonal productive rearrangements, by-passing limitations related to the misannealing of consensus primers in hypermutated regions. We next validated its accuracy to track 5 clonal cells with absolute sensitivity in a virtual sample containing 3180 polyclonal cells. This shows that single-cell V(D)J analysis may be used to find rare clonal cells, laying the foundations for functional single-cell dissection of minimal residual disease. Full article
(This article belongs to the Special Issue Molecular and Cellular Biology of Multiple Myeloma)
Show Figures

Figure 1

Back to TopTop