Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (298)

Search Parameters:
Keywords = imbalance handling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 572 KiB  
Article
Statistical Data-Generative Machine Learning-Based Credit Card Fraud Detection Systems
by Xiaomei Feng and Song-Kyoo Kim
Mathematics 2025, 13(15), 2446; https://doi.org/10.3390/math13152446 - 29 Jul 2025
Viewed by 176
Abstract
This study addresses the challenges of data imbalance and missing values in credit card transaction datasets by employing mode-based imputation and various machine learning models. We analyzed two distinct datasets: one consisting of European cardholders and the other from American Express, applying multiple [...] Read more.
This study addresses the challenges of data imbalance and missing values in credit card transaction datasets by employing mode-based imputation and various machine learning models. We analyzed two distinct datasets: one consisting of European cardholders and the other from American Express, applying multiple machine learning algorithms, including Artificial Neural Networks, Convolutional Neural Networks, and Gradient Boosted Decision Trees, as well as others. Notably, the Gradient Boosted Decision Tree demonstrated superior predictive performance, with accuracy increasing by 4.53%, reaching 96.92% on the European cardholders dataset. Mode imputation significantly improved data quality, enabling stable and reliable analysis of merged datasets with up to 50% missing values. Hypothesis testing confirmed that the performance of the merged dataset was statistically significant compared to the original datasets. This study highlights the importance of robust data handling techniques in developing effective fraud detection systems, setting the stage for future research on combining different datasets and improving predictive accuracy in the financial sector. Full article
Show Figures

Figure 1

25 pages, 4407 KiB  
Article
A Reproducible Pipeline for Leveraging Operational Data Through Machine Learning in Digitally Emerging Urban Bus Fleets
by Bernardo Tormos, Vicente Bermudez, Ramón Sánchez-Márquez and Jorge Alvis
Appl. Sci. 2025, 15(15), 8395; https://doi.org/10.3390/app15158395 - 29 Jul 2025
Viewed by 168
Abstract
The adoption of predictive maintenance in public transportation has gained increasing attention in the context of Industry 4.0. However, many urban bus fleets remain in early digital transformation stages, with limited historical data and fragmented infrastructures that hinder the implementation of data-driven strategies. [...] Read more.
The adoption of predictive maintenance in public transportation has gained increasing attention in the context of Industry 4.0. However, many urban bus fleets remain in early digital transformation stages, with limited historical data and fragmented infrastructures that hinder the implementation of data-driven strategies. This study proposes a reproducible Machine Learning pipeline tailored to such data-scarce conditions, integrating domain-informed feature engineering, lightweight and interpretable models (Linear Regression, Ridge Regression, Decision Trees, KNN), SMOGN for imbalance handling, and Leave-One-Out Cross-Validation for robust evaluation. A scheduled batch retraining strategy is incorporated to adapt the model as new data becomes available. The pipeline is validated using real-world data from hybrid diesel buses, focusing on the prediction of time spent in critical soot accumulation zones of the Diesel Particulate Filter (DPF). In Zone 4, the model continued to outperform the baseline during the production test, indicating its validity for an additional operational period. In contrast, model performance in Zone 3 deteriorated over time, triggering retraining. These results confirm the pipeline’s ability to detect performance drift and support predictive maintenance decisions under evolving operational constraints. The proposed framework offers a scalable solution for digitally emerging fleets. Full article
(This article belongs to the Special Issue Big-Data-Driven Advances in Smart Maintenance and Industry 4.0)
Show Figures

Figure 1

31 pages, 6501 KiB  
Review
From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals
by Dipayan Das, Hamdy Kashtoh, Jibanjyoti Panda, Sarvesh Rustagi, Yugal Kishore Mohanta, Niraj Singh and Kwang-Hyun Baek
Plants 2025, 14(15), 2322; https://doi.org/10.3390/plants14152322 - 27 Jul 2025
Viewed by 815
Abstract
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. [...] Read more.
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. Conventional approaches, including traditional breeding procedures, often cannot handle the complex and simultaneous effects of biotic pressures such as pest infestations, disease attacks, and nutritional imbalances, as well as abiotic stresses including heat, salt, drought, and heavy metal toxicity. Applying phytohormonal approaches, particularly those involving hormonal crosstalk, presents a viable way to increase crop resilience in this context. Abscisic acid (ABA), gibberellins (GAs), auxin, cytokinins, salicylic acid (SA), jasmonic acid (JA), ethylene, and GA are among the plant hormones that control plant stress responses. In order to precisely respond to a range of environmental stimuli, these hormones allow plants to control gene expression, signal transduction, and physiological adaptation through intricate networks of antagonistic and constructive interactions. This review focuses on how the principal hormonal signaling pathways (in particular, ABA-ET, ABA-JA, JA-SA, and ABA-auxin) intricately interact and how they affect the plant stress response. For example, ABA-driven drought tolerance controls immunological responses and stomatal behavior through antagonistic interactions with ET and SA, while using SnRK2 kinases to activate genes that react to stress. Similarly, the transcription factor MYC2 is an essential node in ABA–JA crosstalk and mediates the integration of defense and drought signals. Plants’ complex hormonal crosstalk networks are an example of a precisely calibrated regulatory system that strikes a balance between growth and abiotic stress adaptation. ABA, JA, SA, ethylene, auxin, cytokinin, GA, and BR are examples of central nodes that interact dynamically and context-specifically to modify signal transduction, rewire gene expression, and change physiological outcomes. To engineer stress-resilient crops in the face of shifting environmental challenges, a systems-level view of these pathways is provided by a combination of enrichment analyses and STRING-based interaction mapping. These hormonal interactions are directly related to the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2 (Zero Hunger), 12 (Responsible Consumption and Production), and 13 (Climate Action). This review emphasizes the potential of biotechnologies to use hormone signaling to improve agricultural performance and sustainability by uncovering the molecular foundations of hormonal crosstalk. Increasing our understanding of these pathways presents a strategic opportunity to increase crop resilience, reduce environmental degradation, and secure food systems in the face of increasing climate unpredictability. Full article
Show Figures

Figure 1

42 pages, 2224 KiB  
Article
Combined Dataset System Based on a Hybrid PCA–Transformer Model for Effective Intrusion Detection Systems
by Hesham Kamal and Maggie Mashaly
AI 2025, 6(8), 168; https://doi.org/10.3390/ai6080168 - 24 Jul 2025
Viewed by 482
Abstract
With the growing number and diversity of network attacks, traditional security measures such as firewalls and data encryption are no longer sufficient to ensure robust network protection. As a result, intrusion detection systems (IDSs) have become a vital component in defending against evolving [...] Read more.
With the growing number and diversity of network attacks, traditional security measures such as firewalls and data encryption are no longer sufficient to ensure robust network protection. As a result, intrusion detection systems (IDSs) have become a vital component in defending against evolving cyber threats. Although many modern IDS solutions employ machine learning techniques, they often suffer from low detection rates and depend heavily on manual feature engineering. Furthermore, most IDS models are designed to identify only a limited set of attack types, which restricts their effectiveness in practical scenarios where a network may be exposed to a wide array of threats. To overcome these limitations, we propose a novel approach to IDSs by implementing a combined dataset framework based on an enhanced hybrid principal component analysis–Transformer (PCA–Transformer) model, capable of detecting 21 unique classes, comprising 1 benign class and 20 distinct attack types across multiple datasets. The proposed architecture incorporates enhanced preprocessing and feature engineering, followed by the vertical concatenation of the CSE-CIC-IDS2018 and CICIDS2017 datasets. In this design, the PCA component is responsible for feature extraction and dimensionality reduction, while the Transformer component handles the classification task. Class imbalance was addressed using class weights, adaptive synthetic sampling (ADASYN), and edited nearest neighbors (ENN). Experimental results show that the model achieves 99.80% accuracy for binary classification and 99.28% for multi-class classification on the combined dataset (CSE-CIC-IDS2018 and CICIDS2017), 99.66% accuracy for binary classification and 99.59% for multi-class classification on the CSE-CIC-IDS2018 dataset, 99.75% accuracy for binary classification and 99.51% for multi-class classification on the CICIDS2017 dataset, and 99.98% accuracy for binary classification and 98.01% for multi-class classification on the NF-BoT-IoT-v2 dataset, significantly outperforming existing approaches by distinguishing a wide range of classes, including benign and various attack types, within a unified detection framework. Full article
Show Figures

Figure 1

24 pages, 9767 KiB  
Article
Improved Binary Classification of Underwater Images Using a Modified ResNet-18 Model
by Mehrunnisa, Mikolaj Leszczuk, Dawid Juszka and Yi Zhang
Electronics 2025, 14(15), 2954; https://doi.org/10.3390/electronics14152954 - 24 Jul 2025
Viewed by 263
Abstract
In recent years, the classification of underwater images has become one of the most remarkable areas of research in computer vision due to its useful applications in marine sciences, aquatic robotics, and sea exploration. Underwater imaging is pivotal for the evaluation of marine [...] Read more.
In recent years, the classification of underwater images has become one of the most remarkable areas of research in computer vision due to its useful applications in marine sciences, aquatic robotics, and sea exploration. Underwater imaging is pivotal for the evaluation of marine eco-systems, analysis of biological habitats, and monitoring underwater infrastructure. Extracting useful information from underwater images is highly challenging due to factors such as light distortion, scattering, poor contrast, and complex foreground patterns. These difficulties make traditional image processing and machine learning techniques struggle to analyze images accurately. As a result, these challenges and complexities make the classification difficult or poor to perform. Recently, deep learning techniques, especially convolutional neural network (CNN), have emerged as influential tools for underwater image classification, contributing noteworthy improvements in accuracy and performance in the presence of all these challenges. In this paper, we have proposed a modified ResNet-18 model for the binary classification of underwater images into raw and enhanced images. In the proposed modified ResNet-18 model, we have added new layers such as Linear, rectified linear unit (ReLU) and dropout layers, arranged in a block that was repeated three times to enhance feature extraction and improve learning. This enables our model to learn the complex patterns present in the image in more detail, which helps the model to perform the classification very well. Due to these newly added layers, our proposed model addresses various complexities such as noise, distortion, varying illumination conditions, and complex patterns by learning vigorous features from underwater image datasets. To handle the issue of class imbalance present in the dataset, we applied a data augmentation technique. The proposed model achieved outstanding performance, with 96% accuracy, 99% precision, 92% sensitivity, 99% specificity, 95% F1-score, and a 96% Area under the Receiver Operating Characteristic Curve (AUC-ROC) score. These results demonstrate the strength and reliability of our proposed model in handling the challenges posed by the underwater imagery and making it a favorable solution for advancing underwater image classification tasks. Full article
Show Figures

Figure 1

17 pages, 1192 KiB  
Article
A Power Monitor System Cybersecurity Alarm-Tracing Method Based on Knowledge Graph and GCNN
by Tianhao Ma, Juan Yu, Binquan Wang, Maosheng Gao, Zhifang Yang, Yajie Li and Mao Fan
Appl. Sci. 2025, 15(15), 8188; https://doi.org/10.3390/app15158188 - 23 Jul 2025
Viewed by 145
Abstract
Ensuring cybersecurity in power monitoring systems is of paramount importance to maintain the operational safety and stability of modern power grids. With the rapid expansion of grid infrastructure and increasing sophistication of cyber threats, existing manual alarm-tracing methods face significant challenges in handling [...] Read more.
Ensuring cybersecurity in power monitoring systems is of paramount importance to maintain the operational safety and stability of modern power grids. With the rapid expansion of grid infrastructure and increasing sophistication of cyber threats, existing manual alarm-tracing methods face significant challenges in handling the massive volume of security alerts, leading to delayed responses and potential system vulnerabilities. Current approaches often lack the capability to effectively model complex relationships among alerts and are hindered by imbalanced data distributions, which degrade tracing accuracy. To this end, this paper proposes a power monitor system cybersecurity alarm-tracing method based on the knowledge graph (KG) and graph convolutional neural networks (GCNN). Specifically, a cybersecurity KG is constituted based on the historical alert, accurately representing the entities and relationships in massive alerts. Then, a GCNN with attention mechanisms is applied to sufficiently extract the topological features along alarms in KG so that it can precisely and effectively trace the massive alarms. Most importantly, to mitigate the influence of imbalanced alarms for tracing, a specialized data process and model ensemble strategy by adaptively weighted imbalance sample is proposed. Finally, based on 70,000 alarm information from a regional power grid, by applying the method proposed in this paper, an alarm traceability accuracy rate of 96.59% was achieved. Moreover, compared with the traditional manual method, the traceability efficiency was improved by more than 80%. Full article
(This article belongs to the Special Issue Design, Optimization and Control Strategy of Smart Grids)
Show Figures

Figure 1

24 pages, 2667 KiB  
Article
Transformer-Driven Fault Detection in Self-Healing Networks: A Novel Attention-Based Framework for Adaptive Network Recovery
by Parul Dubey, Pushkar Dubey and Pitshou N. Bokoro
Mach. Learn. Knowl. Extr. 2025, 7(3), 67; https://doi.org/10.3390/make7030067 - 16 Jul 2025
Viewed by 457
Abstract
Fault detection and remaining useful life (RUL) prediction are critical tasks in self-healing network (SHN) environments and industrial cyber–physical systems. These domains demand intelligent systems capable of handling dynamic, high-dimensional sensor data. However, existing optimization-based approaches often struggle with imbalanced datasets, noisy signals, [...] Read more.
Fault detection and remaining useful life (RUL) prediction are critical tasks in self-healing network (SHN) environments and industrial cyber–physical systems. These domains demand intelligent systems capable of handling dynamic, high-dimensional sensor data. However, existing optimization-based approaches often struggle with imbalanced datasets, noisy signals, and delayed convergence, limiting their effectiveness in real-time applications. This study utilizes two benchmark datasets—EFCD and SFDD—which represent electrical and sensor fault scenarios, respectively. These datasets pose challenges due to class imbalance and complex temporal dependencies. To address this, we propose a novel hybrid framework combining Attention-Augmented Convolutional Neural Networks (AACNN) with transformer encoders, enhanced through Enhanced Ensemble-SMOTE for balancing the minority class. The model captures spatial features and long-range temporal patterns and learns effectively from imbalanced data streams. The novelty lies in the integration of attention mechanisms and adaptive oversampling in a unified fault-prediction architecture. Model evaluation is based on multiple performance metrics, including accuracy, F1-score, MCC, RMSE, and score*. The results show that the proposed model outperforms state-of-the-art approaches, achieving up to 97.14% accuracy and a score* of 0.419, with faster convergence and improved generalization across both datasets. Full article
Show Figures

Figure 1

22 pages, 1906 KiB  
Article
Explainable and Optuna-Optimized Machine Learning for Battery Thermal Runaway Prediction Under Class Imbalance Conditions
by Abir El Abed, Ghalia Nassreddine, Obada Al-Khatib, Mohamad Nassereddine and Ali Hellany
Thermo 2025, 5(3), 23; https://doi.org/10.3390/thermo5030023 - 15 Jul 2025
Viewed by 343
Abstract
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power [...] Read more.
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power and transportation systems. This paper presents an advanced machine learning method for forecasting and classifying the causes of TR. A generative model for synthetic data generation was used to handle class imbalance in the dataset. Hyperparameter optimization was conducted using Optuna for four classifiers: Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), tabular network (TabNet), and Extreme Gradient Boosting (XGBoost). A three-fold cross-validation approach was used to guarantee a robust evaluation. An open-source database of LIB failure events is used for model training and testing. The XGBoost model outperforms the other models across all TR categories by achieving 100% accuracy and a high recall (1.00). Model results were interpreted using SHapley Additive exPlanations analysis to investigate the most significant factors in TR predictors. The findings show that important TR indicators include energy adjusted for heat and weight loss, heater power, average cell temperature upon activation, and heater duration. These findings guide the design of safer battery systems and preventive monitoring systems for real applications. They can help experts develop more efficient battery management systems, thereby improving the performance and longevity of battery-operated devices. By enhancing the predictive knowledge of temperature-driven failure mechanisms in LIBs, the study directly advances thermal analysis and energy storage safety domains. Full article
Show Figures

Figure 1

22 pages, 5386 KiB  
Article
A Clustering Algorithm for Large Datasets Based on Detection of Density Variations
by Adrián Josué Ramírez-Díaz, José Francisco Martínez-Trinidad and Jesús Ariel Carrasco-Ochoa
Mathematics 2025, 13(14), 2272; https://doi.org/10.3390/math13142272 - 15 Jul 2025
Viewed by 332
Abstract
Clustering algorithms help handle unlabeled datasets. In large datasets, density-based clustering algorithms effectively capture the intricate structures and varied distributions that these datasets often exhibit. However, while these algorithms can adapt to large datasets by building clusters with arbitrary shapes by identifying low-density [...] Read more.
Clustering algorithms help handle unlabeled datasets. In large datasets, density-based clustering algorithms effectively capture the intricate structures and varied distributions that these datasets often exhibit. However, while these algorithms can adapt to large datasets by building clusters with arbitrary shapes by identifying low-density regions, they usually struggle to identify density variations. This paper proposes a Variable DEnsity Clustering Algorithm for Large datasets (VDECAL) to address this limitation. VDECAL introduces a large-dataset partitioning strategy that allows working with manageable subsets and prevents workload imbalance. Within each partition, relevant objects subsets characterized by attributes such as density, position, and overlap ratio are computed to identify both low-density regions and density variations, thereby facilitating the building of the clusters. Extensive experiments on diverse datasets show that VDECAL effectively detects density variations, improving clustering quality and runtime performance compared to state-of-the-art DBSCAN-based algorithms developed for clustering large datasets. Full article
Show Figures

Figure 1

26 pages, 3020 KiB  
Article
Data-Driven Loan Default Prediction: A Machine Learning Approach for Enhancing Business Process Management
by Xinyu Zhang, Tianhui Zhang, Lingmin Hou, Xianchen Liu, Zhen Guo, Yuanhao Tian and Yang Liu
Systems 2025, 13(7), 581; https://doi.org/10.3390/systems13070581 - 15 Jul 2025
Viewed by 773
Abstract
Loan default prediction is a critical task for financial institutions, directly influencing risk management, loan approval decisions, and profitability. This study evaluates the effectiveness of machine learning models, specifically XGBoost, Gradient Boosting, Random Forest, and LightGBM, in predicting loan defaults. The research investigates [...] Read more.
Loan default prediction is a critical task for financial institutions, directly influencing risk management, loan approval decisions, and profitability. This study evaluates the effectiveness of machine learning models, specifically XGBoost, Gradient Boosting, Random Forest, and LightGBM, in predicting loan defaults. The research investigates the following question: How effective are machine learning models in predicting loan defaults compared to traditional approaches? A structured machine learning pipeline is developed, including data preprocessing, feature engineering, class imbalance handling (SMOTE and class weighting), model training, hyperparameter tuning, and evaluation. Models are assessed using accuracy, F1-score, ROC AUC, precision–recall curves, and confusion matrices. The results show that Gradient Boosting achieves the highest overall classification performance (accuracy = 0.8887, F1-score = 0.8084, recall = 0.8021), making it the most effective model for identifying defaulters. XGBoost exhibits superior discriminatory power with the highest ROC AUC (0.9714). A cost-sensitive threshold-tuning procedure is embedded to align predictions with regulatory loss weights to support audit requirements. Full article
(This article belongs to the Special Issue Data-Driven Methods in Business Process Management)
Show Figures

Figure 1

17 pages, 3192 KiB  
Article
Hypoxic Status in COPD and ARDS Patients: Impact on Lipid Signature
by Camillo Morano, Aldijana Sadikovic, Michele Dei Cas, Rocco Francesco Rinaldo, Lorena Duca, Federico Maria Rubino, Michele Mondoni, Davide Chiumello, Sara Ottolenghi, Michele Samaja and Rita Paroni
Int. J. Mol. Sci. 2025, 26(13), 6405; https://doi.org/10.3390/ijms26136405 - 3 Jul 2025
Viewed by 283
Abstract
In patients with respiratory diseases, a panel of markers is often used to assess disease severity and progression. Here we test whether the serum lipid signature may surge as a reliable alternative marker to monitor systemic hypoxia, a frequent unfavourable outcome in acute [...] Read more.
In patients with respiratory diseases, a panel of markers is often used to assess disease severity and progression. Here we test whether the serum lipid signature may surge as a reliable alternative marker to monitor systemic hypoxia, a frequent unfavourable outcome in acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary diseases (COPD). We recruited 9 healthy controls, 10 COPD patients, and 10 ARDS patients. Various markers related to inflammation, redox imbalance, and iron handling were measured alongside lipid profiles obtained through untargeted lipidomic analysis. The results show that serum lipids were moderately lower in COPD patients and significantly reduced in ARDS patients compared to the controls. Six lipid classes (cholesteryl esters, coenzyme Q, phosphatidylinositol, sterols, hexosylceramides, and phosphatidylethanolamine) exhibited significant changes (ANOVA p < 0.05) and correlated with the Horowitz index (P/F), suggesting their potential as markers of hypoxia severity. While conventional markers also correlated with P/F, the lipid signature was more specific and reliable. This study highlights that hypoxia in pulmonary diseases depresses circulating lipids, with certain lipid classes offering more precise predictions of hypoxia severity. Expanding this research to larger populations could support the lipid signature as a clinical tool. Full article
Show Figures

Graphical abstract

20 pages, 1455 KiB  
Article
Dynamic Adaptation for Class-Imbalanced Streams: An Imbalanced Continuous Test-Time Framework
by Wuxi Ma and Hao Yang
Symmetry 2025, 17(7), 1050; https://doi.org/10.3390/sym17071050 - 3 Jul 2025
Viewed by 282
Abstract
Test-time adaptation (TTA) enhances model performance in target domains by dynamically adjusting parameters using unlabeled test data. However, existing TTA methods typically assume balanced data distributions, whereas real-world test data is often imbalanced and continuously evolving. This persistent imbalance significantly degrades the effectiveness [...] Read more.
Test-time adaptation (TTA) enhances model performance in target domains by dynamically adjusting parameters using unlabeled test data. However, existing TTA methods typically assume balanced data distributions, whereas real-world test data is often imbalanced and continuously evolving. This persistent imbalance significantly degrades the effectiveness of conventional TTA techniques. To address this challenge, we introduce imbalanced continuous test-time adaptation (ICTTA), a novel framework explicitly designed to handle class imbalance in dynamically evolving test data streams. We construct an imbalanced perturbation dataset to simulate real-world scenarios and empirically demonstrate the limitations of existing methods. To overcome these limitations, we propose a dynamic adaptive imbalanced loss function that assigns adaptive weights during network optimisation, enabling effective learning from minority classes while preserving performance on majority classes. Theoretical analysis shows the superiority of our approach in handling imbalanced continuous TTA. Extensive experiments conducted on the CIFAR and ImageNet datasets demonstrate that our proposed method significantly outperforms state-of-the-art TTA approaches. It achieves a mean classification error rate of 16.5% on CIFAR10-C and 68.1% on ImageNet-C. These results underscore the critical need to address real-world data imbalances and represent a significant advancement toward more adaptive and robust test-time learning paradigms. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

31 pages, 2292 KiB  
Article
Symmetric Dual-Phase Framework for APT Attack Detection Based on Multi-Feature-Conditioned GAN and Graph Convolutional Network
by Qi Liu, Yao Dong, Chao Zheng, Hualin Dai, Jiaxing Wang, Liyuan Ning and Qiqi Liang
Symmetry 2025, 17(7), 1026; https://doi.org/10.3390/sym17071026 - 30 Jun 2025
Viewed by 335
Abstract
Advanced persistent threat (APT) attacks present significant challenges to cybersecurity due to their covert nature, high complexity, and ability to operate across multiple temporal and spatial scales. Existing detection techniques often struggle with issues like class imbalance, insufficient feature extraction, and the inability [...] Read more.
Advanced persistent threat (APT) attacks present significant challenges to cybersecurity due to their covert nature, high complexity, and ability to operate across multiple temporal and spatial scales. Existing detection techniques often struggle with issues like class imbalance, insufficient feature extraction, and the inability to capture complex attack dependencies. To address these limitations, we propose a dual-phase framework for APT detection, combining multi-feature-conditioned generative adversarial networks (MF-CGANs) for data reconstruction and a multi-scale convolution and channel attention-enhanced graph convolutional network (MC-GCN) for improved attack detection. The MF-CGAN model generates minority-class samples to resolve the class imbalance problem, while MC-GCN leverages advanced feature extraction and graph convolution to better model the intricate relationships within network traffic data. Experimental results show that the proposed framework achieves significant improvements over baseline models. Specifically, MC-GCN outperforms traditional CNN-based IDS models, with accuracy, precision, recall, and F1-score improvements ranging from 0.47% to 13.41%. The MC-GCN model achieves an accuracy of 99.87%, surpassing CNN (86.46%) and GCN (99.24%), while also exhibiting high precision (99.87%) and recall (99.88%). These results highlight the proposed model’s superior ability to handle class imbalance and capture complex attack behaviors, establishing it as a leading approach for APT detection. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 4645 KiB  
Article
YOLOv10-LGDA: An Improved Algorithm for Defect Detection in Citrus Fruits Across Diverse Backgrounds
by Lun Wang, Rong Ye, Youqing Chen and Tong Li
Plants 2025, 14(13), 1990; https://doi.org/10.3390/plants14131990 - 29 Jun 2025
Viewed by 445
Abstract
Citrus diseases can lead to surface defects on citrus fruits, adversely affecting their quality. This study aims to accurately identify citrus defects against varying backgrounds by focusing on four types of diseases: citrus black spot, citrus canker, citrus greening, and citrus melanose. We [...] Read more.
Citrus diseases can lead to surface defects on citrus fruits, adversely affecting their quality. This study aims to accurately identify citrus defects against varying backgrounds by focusing on four types of diseases: citrus black spot, citrus canker, citrus greening, and citrus melanose. We propose an improved YOLOv10-based disease detection method that replaces the traditional convolutional layers in the Backbone network with LDConv to enhance feature extraction capabilities. Additionally, we introduce the GFPN module to strengthen multi-scale information interaction through cross-scale feature fusion, thereby improving detection accuracy for small-target diseases. The incorporation of the DAT mechanism is designed to achieve higher efficiency and accuracy in handling complex visual tasks. Furthermore, we integrate the AFPN module to enhance the model’s detection capability for targets of varying scales. Lastly, we employ the Slide Loss function to adaptively adjust sample weights, focusing on hard-to-detect samples such as blurred features and subtle lesions in citrus disease images, effectively alleviating issues related to sample imbalance. The experimental results indicate that the enhanced model YOLOv10-LGDA achieves impressive performance metrics in citrus disease detection, with accuracy, recall, mAP@50, and mAP@50:95 rates of 98.7%, 95.9%, 97.7%, and 94%, respectively. These results represent improvements of 4.2%, 3.8%, 4.5%, and 2.4% compared to the original YOLOv10 model. Furthermore, when compared to various other object detection algorithms, YOLOv10-LGDA demonstrates superior recognition accuracy, facilitating precise identification of citrus diseases. This advancement provides substantial technical support for enhancing the quality of citrus fruit and ensuring the sustainable development of the industry. Full article
(This article belongs to the Special Issue Precision Agriculture in Crop Production)
Show Figures

Figure 1

19 pages, 1433 KiB  
Article
Cost-Optimised Machine Learning Model Comparison for Predictive Maintenance
by Yating Yang and Muhammad Zahid Iqbal
Electronics 2025, 14(12), 2497; https://doi.org/10.3390/electronics14122497 - 19 Jun 2025
Viewed by 627
Abstract
Predictive maintenance is essential for reducing industrial downtime and costs, yet real-world datasets frequently encounter class imbalance and require cost-sensitive evaluation due to costly misclassification errors. This study utilises the SCANIA Component X dataset to advance predictive maintenance through machine learning, employing seven [...] Read more.
Predictive maintenance is essential for reducing industrial downtime and costs, yet real-world datasets frequently encounter class imbalance and require cost-sensitive evaluation due to costly misclassification errors. This study utilises the SCANIA Component X dataset to advance predictive maintenance through machine learning, employing seven supervised algorithms, Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbours, Multi-Layer Perceptron, XGBoost, and LightGBM, trained on time-series features extracted via a sliding window approach. A bespoke cost-sensitive metric, aligned with SCANIA’s misclassification cost matrix, assesses model performance. Three imbalance mitigation strategies, downsampling, downsampling with SMOTETomek, and manual class weighting, were explored, with downsampling proving most effective. Random Forest and Support Vector Machine models achieved high accuracy and low misclassification costs, whilst a voting ensemble further enhanced cost efficiency. This research emphasises the critical role of cost-aware evaluation and imbalance handling, proposing an ensemble-based framework to improve predictive maintenance in industrial applications Full article
Show Figures

Figure 1

Back to TopTop