Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = hypodermic needle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2677 KiB  
Proceeding Paper
A Magnetic Deburring Method for Hypodermic Needles Used in Human Bodies
by Yanhua Zou
Eng. Proc. 2025, 92(1), 19; https://doi.org/10.3390/engproc2025092019 - 25 Apr 2025
Viewed by 274
Abstract
In the manufacturing process of precision micro parts, burrs generated in cutting and grinding processes cause various problems. Shot blasting was used in the deburring technology of cutting and grinding burr in the process of manufacturing hypodermic needles for the human body. However, [...] Read more.
In the manufacturing process of precision micro parts, burrs generated in cutting and grinding processes cause various problems. Shot blasting was used in the deburring technology of cutting and grinding burr in the process of manufacturing hypodermic needles for the human body. However, we found that a secondary burr facing the inside occurs on the chin part of the needle during the blasting process. The existence of burrs on a hypodermic needle also causes several problems. We developed a new deburring method by using a vibration magnetic abrasive machining process. Our experimental results validated the effectiveness of the magnetic deburring method. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

33 pages, 2291 KiB  
Review
Beyond the Needle: Innovative Microneedle-Based Transdermal Vaccination
by Hiep X. Nguyen
Medicines 2025, 12(1), 4; https://doi.org/10.3390/medicines12010004 - 7 Feb 2025
Cited by 5 | Viewed by 4287
Abstract
Vaccination represents a critical preventive strategy in the current global healthcare system, serving as an indispensable intervention against diverse pathogenic threats. Although conventional immunization relies predominantly on hypodermic needle-based administration, this method carries substantial limitations, including needle-associated fear, bloodborne pathogen transmission risks, occupational [...] Read more.
Vaccination represents a critical preventive strategy in the current global healthcare system, serving as an indispensable intervention against diverse pathogenic threats. Although conventional immunization relies predominantly on hypodermic needle-based administration, this method carries substantial limitations, including needle-associated fear, bloodborne pathogen transmission risks, occupational injuries among healthcare workers, waste management issues, and dependence on trained medical personnel. Microneedle technology has emerged as an innovative vaccine delivery system, offering convenient, effective, and minimally invasive administration. These microscale needle devices facilitate targeted antigen delivery to epidermal and dermal tissues, where abundant populations of antigen-presenting cells, specifically Langerhans and dermal dendritic cells, provide robust immunological responses. Multiple research groups have extensively investigated microneedle-based vaccination strategies. This transdermal delivery technique offers several advantages, notably circumventing cold-chain requirements and enabling self-administration. Numerous preclinical investigations and clinical trials have demonstrated the safety profile, immunogenicity, and patient acceptance of microneedle-mediated vaccine delivery across diverse immunization applications. This comprehensive review examines the fundamental aspects of microneedle-based immunization, including vaccination principles, transcutaneous immunization strategies, and microneedle-based transdermal delivery—including classifications, advantages, and barriers. Furthermore, this review addresses critical technical considerations, such as treatment efficacy, application methodologies, wear duration, dimensional optimization, manufacturing processes, regulatory frameworks, and sustainability considerations, followed by an analysis of the future perspective of this technology. Full article
Show Figures

Figure 1

14 pages, 2787 KiB  
Review
What Is the Optimal Geometry of Dissolving Microneedle Arrays? A Literature Review
by Maira Visscher, Henderik W. Frijlink and Wouter L. J. Hinrichs
Pharmaceutics 2025, 17(1), 124; https://doi.org/10.3390/pharmaceutics17010124 - 17 Jan 2025
Cited by 1 | Viewed by 1838
Abstract
The application of dissolving microneedle arrays (DMNAs) is an emerging trend in drug and vaccine delivery as an alternative for hypodermic needles or other less convenient drug administration methods. The major benefits include, amongst others, that no trained healthcare personnel is required and [...] Read more.
The application of dissolving microneedle arrays (DMNAs) is an emerging trend in drug and vaccine delivery as an alternative for hypodermic needles or other less convenient drug administration methods. The major benefits include, amongst others, that no trained healthcare personnel is required and that the recipient experiences hardly any pain during administration. However, for a successful drug or vaccine delivery from the DMNA, the microneedles should be inserted intact into the skin. A successful penetration into the upper skin layers may be challenging because of the elastic nature of the skin; therefore, a minimum insertion force is required to overcome the total resistance force of the skin. In addition, the microneedles need to stay intact, which requires a certain mechanical strength, and be able to resist the required insertion force. In addition to the type of material with which the DMNAs are produced, the geometry of the DMNAs will also have a profound effect, not only on the mechanical strength but also on the number of insertions and penetration depth into the skin. In this review, the effects of shape, aspect ratio, length, width of the base, tip diameter and angle, and spacing of DMNAs on the aforementioned effect parameters were evaluated to answer the following question: ‘What is the optimal geometry of dissolving microneedle arrays?’. Full article
(This article belongs to the Special Issue Emerging Trends in Skin Delivery Systems)
Show Figures

Figure 1

24 pages, 25708 KiB  
Article
Modelling Hollow Microneedle-Mediated Drug Delivery in Skin Considering Drug Binding
by Tanmoy Bhuimali, Sarifuddin, Diganta Bhusan Das and Prashanta Kumar Mandal
Pharmaceutics 2025, 17(1), 105; https://doi.org/10.3390/pharmaceutics17010105 - 14 Jan 2025
Cited by 4 | Viewed by 1316
Abstract
Background/Objectives: Microneedle(MN)-based drug delivery is one of the potential approaches to overcome the limitations of oral and hypodermic needle delivery. An in silico model has been developed for hollow microneedle (HMN)-based drug delivery in the skin and its subsequent absorption in the blood [...] Read more.
Background/Objectives: Microneedle(MN)-based drug delivery is one of the potential approaches to overcome the limitations of oral and hypodermic needle delivery. An in silico model has been developed for hollow microneedle (HMN)-based drug delivery in the skin and its subsequent absorption in the blood and tissue compartments in the presence of interstitial flow. The drug’s reversible specific saturable binding to its receptors and the kinetics of reversible absorption across the blood and tissue compartments have been taken into account. Methods: The governing equations representing the flow of interstitial fluid, the transport of verapamil in the viable skin and the concentrations in the blood and tissue compartments are solved using combined Marker and Cell and Immersed Boundary Methods to gain a quantitative understanding of the model under consideration. Results: The viscoelastic skin is predicted to impede the transport of verapamil in the viable skin and, hence, reduce the concentrations of all forms in the blood and the tissue compartments. The findings reveal that a higher mean concentration in the viable skin is not always associated with a longer MN length. Simulations also predict that the concentrations of verapamil in the blood and bound verapamil in the tissue compartment rise with decreasing tip diameters. In contrast, the concentration of free verapamil in the tissue increases with increasing injection velocities. Conclusions: The novelty of this study includes verapamil metabolism in two-dimensional viscoelastic irregular viable skin and the nonlinear, specific, saturable, and reversible binding of verapamil in the tissue compartment. The tip diameter and the drug’s injection velocity are thought to serve as regulatory parameters for the effectiveness and efficacy of MN-mediated therapy if the MN is robust enough to sustain the force needed to penetrate a wider tip into the skin. Full article
(This article belongs to the Special Issue Microneedles for Drug and Vaccine Delivery)
Show Figures

Figure 1

39 pages, 4052 KiB  
Article
Evaluation of a New Kind of Z-Pinch-Based Space Propulsion Engine: Theoretical Foundations and Design of a Proof-of-Concept Experiment
by S. K. H. Auluck, R. Verma and R. S. Rawat
Plasma 2024, 7(4), 939-977; https://doi.org/10.3390/plasma7040052 - 19 Dec 2024
Viewed by 1791
Abstract
This paper explores a recently proposed scalable z-pinch-based space propulsion engine in greater detail. This concept involves a “modified plasma focus with a tapered anode that transports current from a pulsed power source to a consumable portion of the anode in the form [...] Read more.
This paper explores a recently proposed scalable z-pinch-based space propulsion engine in greater detail. This concept involves a “modified plasma focus with a tapered anode that transports current from a pulsed power source to a consumable portion of the anode in the form of a hypodermic needle tube continuously extruded along the axis of the device”. This tube is filled with a gas at a high pressure and also optionally with an axial magnetic field. The current enters the metal tube through its contact with the anode and returns to the cathode via the plasma sliding over its outer wall. The resulting rapid electrical explosion of the metal tube partially transfers current to a snowplough shock in the fill gas. Both the metal plasma and the fill gas form axisymmetric converging shells. Their interaction forms a hot and dense plasma of the fill gas surrounded by the metal plasma. Its ejection along the axis provides the impulse needed for propulsion. In a nonnuclear version, the fill gas could be xenon or hydrogen. Its unique energy density scaling could potentially lead to a neutron-deficient nuclear fusion drive based on the proton-boron avalanche fusion reaction by lining the tube with solid decaborane. In order to explore the inherent potential of this idea as a scalable space propulsion engine, this paper discusses its theoretical foundations and outlines the first iteration of a conceptual engineering design study for a proof-of-concept experiment based on the UNU-ICTP Plasma Focus facility at the Nanyang Technological University, Singapore. Full article
Show Figures

Figure 1

32 pages, 8280 KiB  
Review
Hydrogel-Forming Microneedles in the Management of Dermal Disorders Through a Non-Invasive Process: A Review
by Popat Mohite, Abhijeet Puri, Shubham Munde, Nitin Ade, Ashwini Kumar, Pensak Jantrawut, Sudarshan Singh and Chuda Chittasupho
Gels 2024, 10(11), 719; https://doi.org/10.3390/gels10110719 - 7 Nov 2024
Cited by 14 | Viewed by 6057
Abstract
Microneedle (MN) technology has emerged as a promising approach for delivering therapeutic agents to the skin, offering significant potential in treating various dermal conditions. Among these technologies, hydrogel-forming microneedles (HFMNs) represent a transformative advancement in the management of dermal diseases through non-invasive drug [...] Read more.
Microneedle (MN) technology has emerged as a promising approach for delivering therapeutic agents to the skin, offering significant potential in treating various dermal conditions. Among these technologies, hydrogel-forming microneedles (HFMNs) represent a transformative advancement in the management of dermal diseases through non-invasive drug delivery. These innovative devices consist of micrometer-sized needles made of native or crosslinked hydrophilic polymers, capable of penetrating the stratum corneum without damaging underlying tissues. Upon insertion, HFMNs rapidly absorb interstitial fluid, swelling to form a hydrogel conduit that enables the efficient transport of therapeutic agents directly into the dermal microcirculation. The non-invasive nature of HFMNs enhances patient compliance by eliminating the pain and discomfort associated with traditional hypodermic needles. This technology allows for the delivery of a wide range of drugs, including macromolecules and biomacromolecules, which are often difficult to administer dermally due to their size and polarity. Moreover, HFMNs provide controlled and regulated release profiles, enabling sustained therapeutic effects while minimizing systemic side effects. Additionally, HFMNs can be used for both drug delivery and real-time interstitial fluid monitoring, offering valuable insights into disease states and treatment responses. This dual functionality positions HFMNs as a versatile dermatology tool capable of effectively addressing various dermal complications. This review explores the potential use of polymeric biomaterials in HFMN fabrication and their application in treating major dermal disorders, such as acne, psoriasis, and other skin conditions. Furthermore, the review highlights the non-invasive nature of MN-based treatments, underscoring their potential to reduce patient discomfort and improve treatment adherence, as supported by the recent literature. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (2nd Edition))
Show Figures

Graphical abstract

15 pages, 2516 KiB  
Article
Measurement of Water Drop Sizes Generated by a Dripping Rainfall Simulator with Drippers in the Form of Hypodermic Needles
by Vukašin Rončević, Nikola Živanović, John H. van Boxel, Thomas Iserloh, Nevena Antić, Carla Sofia Santos Ferreira and Marko Spasić
Appl. Sci. 2024, 14(16), 6969; https://doi.org/10.3390/app14166969 - 8 Aug 2024
Cited by 1 | Viewed by 1562
Abstract
Dripping rainfall simulators (DRS) for soil research generate water drops with different types of drippers, but metal tubes are most commonly used, often in the form of hypodermic needles. However, scientific papers using dripping rainfall simulators are often incomplete in terms of data [...] Read more.
Dripping rainfall simulators (DRS) for soil research generate water drops with different types of drippers, but metal tubes are most commonly used, often in the form of hypodermic needles. However, scientific papers using dripping rainfall simulators are often incomplete in terms of data on hypodermic needle characteristics, as well as data on drops produced by hypodermic needles under different water pressures. This study determines which drop sizes and dripping speeds are generated by various hypodermic needles at different water pressures. For the purpose of this study, a dripping rainfall simulator was designed and constructed for laboratory use. Water drops were generated with 11 different needles, ranging in size from 16 G to 32 G (tube gauge number), at different water pressures. Measured water drop sizes ranged from 1.42 to 3.69 mm at a dripping speed between 10 and 360 drops per minute and water head from 14 to over 1970 mm. Measured drop sizes, supplemented with data from previous studies, provided information on the relation between drop sizes and the size of the hypodermic needles. Van Boxel’s numerical model provided estimations of the fall velocity for different drop diameters and their kinetic energy for falling heights up to 11.5 m. The results of this research can be used to design dripping rainfall simulators for soil research. Full article
Show Figures

Figure 1

35 pages, 3821 KiB  
Review
What’s New in Ocular Drug Delivery: Advances in Suprachoroidal Injection since 2023
by Kevin Y. Wu, Angel Gao, Michel Giunta and Simon D. Tran
Pharmaceuticals 2024, 17(8), 1007; https://doi.org/10.3390/ph17081007 - 30 Jul 2024
Cited by 2 | Viewed by 4908
Abstract
Despite significant advancements in ocular drug delivery, challenges persist in treating posterior segment diseases like macular edema (ME) and age-related macular degeneration (AMD). Suprachoroidal (SC) injections are a promising new method for targeted drug delivery to the posterior segment of the eye, providing [...] Read more.
Despite significant advancements in ocular drug delivery, challenges persist in treating posterior segment diseases like macular edema (ME) and age-related macular degeneration (AMD). Suprachoroidal (SC) injections are a promising new method for targeted drug delivery to the posterior segment of the eye, providing direct access to the choroid and retina while minimizing systemic exposure and side effects. This review examines the anatomical and physiological foundations of the SC space; evaluates delivery devices such as microcatheters, hypodermic needles, and microneedles; and discusses pharmacokinetic principles. Additionally, advancements in gene delivery through SC injections are explored, emphasizing their potential to transform ocular disease management. This review also highlights clinical applications in treating macular edema, diabetic macular edema, age-related macular degeneration, choroidal melanoma, and glaucoma. Overall, SC injections are emerging as a promising novel route for administering ophthalmic treatments, with high bioavailability, reduced systemic exposure, and favorable safety profiles. Key therapeutic agents such as triamcinolone acetonide, dexamethasone, AAV-based gene therapy, and axitinib have shown promise. The field of suprachoroidal injection is progressing rapidly, and this review article, while attempting to encapsulate most of the published preclinical and clinical studies, mainly focuses on those that are published within 2023 and 2024. Full article
(This article belongs to the Special Issue Recent Advances in Ocular Drug Delivery Systems)
Show Figures

Figure 1

15 pages, 1981 KiB  
Article
Skin Vaccination with Ebola Virus Glycoprotein Using a Polyphosphazene-Based Microneedle Patch Protects Mice against Lethal Challenge
by Andrey Romanyuk, Ruixue Wang, Alexander Marin, Benjamin M. Janus, Eric I. Felner, Dengning Xia, Yenny Goez-Gazi, Kendra J. Alfson, Abdul S. Yunus, Eric A. Toth, Gilad Ofek, Ricardo Carrion, Mark R. Prausnitz, Thomas R. Fuerst and Alexander K. Andrianov
J. Funct. Biomater. 2023, 14(1), 16; https://doi.org/10.3390/jfb14010016 - 27 Dec 2022
Cited by 12 | Viewed by 4323
Abstract
Ebolavirus (EBOV) infection in humans is a severe and often fatal disease, which demands effective interventional strategies for its prevention and treatment. The available vaccines, which are authorized under exceptional circumstances, use viral vector platforms and have serious disadvantages, such as difficulties in [...] Read more.
Ebolavirus (EBOV) infection in humans is a severe and often fatal disease, which demands effective interventional strategies for its prevention and treatment. The available vaccines, which are authorized under exceptional circumstances, use viral vector platforms and have serious disadvantages, such as difficulties in adapting to new virus variants, reliance on cold chain supply networks, and administration by hypodermic injection. Microneedle (MN) patches, which are made of an array of micron-scale, solid needles that painlessly penetrate into the upper layers of the skin and dissolve to deliver vaccines intradermally, simplify vaccination and can thereby increase vaccine access, especially in resource-constrained or emergency settings. The present study describes a novel MN technology, which combines EBOV glycoprotein (GP) antigen with a polyphosphazene-based immunoadjuvant and vaccine delivery system (poly[di(carboxylatophenoxy)phosphazene], PCPP). The protein-stabilizing effect of PCPP in the microfabrication process enabled preparation of a dissolvable EBOV GP MN patch vaccine with superior antigenicity compared to a non-polyphosphazene polymer-based analog. Intradermal immunization of mice with polyphosphazene-based MN patches induced strong, long-lasting antibody responses against EBOV GP, which was comparable to intramuscular injection. Moreover, mice vaccinated with the MN patches were completely protected against a lethal challenge using mouse-adapted EBOV and had no histologic lesions associated with ebolavirus disease. Full article
(This article belongs to the Special Issue Synthetic Polymers for the Delivery of Vaccines and Therapeutics)
Show Figures

Figure 1

18 pages, 4424 KiB  
Article
Deferasirox Nanosuspension Loaded Dissolving Microneedles for Intradermal Delivery
by Hafsa Shahid Faizi, Lalitkumar K. Vora, Muhammad Iqbal Nasiri, Yu Wu, Deepakkumar Mishra, Qonita Kurnia Anjani, Alejandro J. Paredes, Raghu Raj Singh Thakur, Muhammad Usman Minhas and Ryan F. Donnelly
Pharmaceutics 2022, 14(12), 2817; https://doi.org/10.3390/pharmaceutics14122817 - 15 Dec 2022
Cited by 23 | Viewed by 3631
Abstract
Microneedles are minimally invasive systems that can deliver drugs intradermally without pain and bleeding and can advantageously replace the hypodermal needles and oral routes of delivery. Deferasirox (DFS) is an iron chelator employed in several ailments where iron overload plays an important role [...] Read more.
Microneedles are minimally invasive systems that can deliver drugs intradermally without pain and bleeding and can advantageously replace the hypodermal needles and oral routes of delivery. Deferasirox (DFS) is an iron chelator employed in several ailments where iron overload plays an important role in disease manifestation. In this study, DFS was formulated into a nanosuspension (NSs) through wet media milling employing PVA as a stabilizer and successfully loaded in polymeric dissolving microneedles (DMNs). The release studies for DFS-NS clearly showed a threefold increased dissolution rate compared to pure DFS. The mechanical characterization of DFS-NS-DMNs revealed that the system was sufficiently strong for efficacious skin penetration. Optical coherence tomography images confirmed an insertion of up to 378 µm into full-thickness porcine skin layers. The skin deposition studies showed 60% drug deposition from NS-DMN, which was much higher than from the DFS-NS transdermal patch (DFS-NS-TP) (without needles) or pure DFS-DMNs. Moreover, DFS-NS without DMNs did not deposit well inside the skin, indicating that DMNs played an important role in effectively delivering drugs inside the skin. Therefore, it is evident from the findings that loading DFS-NS into novel DMN devices can effectively deliver DFS transdermally. Full article
Show Figures

Figure 1

36 pages, 8800 KiB  
Review
In-Plane Si Microneedles: Fabrication, Characterization, Modeling and Applications
by Abdulla Al Mamun and Feng Zhao
Micromachines 2022, 13(5), 657; https://doi.org/10.3390/mi13050657 - 20 Apr 2022
Cited by 9 | Viewed by 5051
Abstract
Microneedles are getting more and more attention in research and commercialization since their advancement in the 1990s due to the advantages over traditional hypodermic needles such as minimum invasiveness, low material and fabrication cost, and precise needle geometry control, etc. The design and [...] Read more.
Microneedles are getting more and more attention in research and commercialization since their advancement in the 1990s due to the advantages over traditional hypodermic needles such as minimum invasiveness, low material and fabrication cost, and precise needle geometry control, etc. The design and fabrication of microneedles depend on various factors such as the type of materials used, fabrication planes and techniques, needle structures, etc. In the past years, in-plane and out-of-plane microneedle technologies made by silicon (Si), polymer, metal, and other materials have been developed for numerous biomedical applications including drug delivery, sample collections, medical diagnostics, and bio-sensing. Among these microneedle technologies, in-plane Si microneedles excel by the inherent properties of Si such as mechanical strength, wear resistance, biocompatibility, and structural advantages of in-plane configuration such as a wide range of length, readiness of integration with other supporting components, and complementary metal-oxide-semiconductor (CMOS) compatible fabrication. This article aims to provide a review of in-plane Si microneedles with a focus on fabrication techniques, theoretical and numerical analysis, experimental characterization of structural and fluidic behaviors, major applications, potential challenges, and future prospects. Full article
(This article belongs to the Special Issue Biosensing Interfaces for Implantable and Wearable Applications)
Show Figures

Figure 1

26 pages, 10603 KiB  
Review
Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges
by Fouad Damiri, Nagavendra Kommineni, Samuel Ogbeide Ebhodaghe, Raviteja Bulusu, Vaskuri G. S. Sainaga Jyothi, Amany A. Sayed, Aeshah A. Awaji, Mousa O. Germoush, Hamdan S. Al-malky, Mohammed Z. Nasrullah, Md. Habibur Rahman, Mohamed M. Abdel-Daim and Mohammed Berrada
Pharmaceuticals 2022, 15(2), 190; https://doi.org/10.3390/ph15020190 - 3 Feb 2022
Cited by 95 | Viewed by 12220
Abstract
In this focused progress review, the most widely accepted methods of transdermal drug delivery are hypodermic needles, transdermal patches and topical creams. However, microneedles (MNs) (or microneedle arrays) are low-invasive 3D biomedical constructs that bypass the skin barrier and produce systemic and localized [...] Read more.
In this focused progress review, the most widely accepted methods of transdermal drug delivery are hypodermic needles, transdermal patches and topical creams. However, microneedles (MNs) (or microneedle arrays) are low-invasive 3D biomedical constructs that bypass the skin barrier and produce systemic and localized pharmacological effects. In the past, biomaterials such as carbohydrates, due to their physicochemical properties, have been extensively used to manufacture microneedles (MNs). Due to their wide range of functional groups, carbohydrates enable the design and development of tunable properties and functionalities. In recent years, numerous microneedle products have emerged on the market, although much research needs to be undertaken to overcome the various challenges before the successful introduction of microneedles into the market. As a result, carbohydrate-based microarrays have a high potential to achieve a future step in sensing, drug delivery, and biologics restitution. In this review, a comprehensive overview of carbohydrates such as hyaluronic acid, chitin, chitosan, chondroitin sulfate, cellulose and starch is discussed systematically. It also discusses the various drug delivery strategies and mechanical properties of biomaterial-based MNs, the progress made so far in the clinical translation of carbohydrate-based MNs, and the promotional opportunities for their commercialization. In conclusion, the article summarizes the future perspectives of carbohydrate-based MNs, which are considered as the new class of topical drug delivery systems. Full article
Show Figures

Figure 1

18 pages, 3184 KiB  
Article
Resource Management through Artificial Intelligence in Screening Programs—Key for the Successful Elimination of Hepatitis C
by Anca Elena Butaru, Mădălin Mămuleanu, Costin Teodor Streba, Irina Paula Doica, Mihai Mircea Diculescu, Dan Ionuț Gheonea and Carmen Nicoleta Oancea
Diagnostics 2022, 12(2), 346; https://doi.org/10.3390/diagnostics12020346 - 29 Jan 2022
Cited by 10 | Viewed by 2876
Abstract
Background: The elimination of the Hepatitis C virus (HCV) will only be possible if rapid and efficient actions are taken. Artificial neural networks (ANNs) are computing systems based on the topology of the biological brain, containing connected artificial neurons that can be tasked [...] Read more.
Background: The elimination of the Hepatitis C virus (HCV) will only be possible if rapid and efficient actions are taken. Artificial neural networks (ANNs) are computing systems based on the topology of the biological brain, containing connected artificial neurons that can be tasked with solving medical problems. Aim: We expanded the previously presented HCV micro-elimination project started in September 2020 that aimed to identify HCV infection through coordinated screening in asymptomatic populations and developed two ANN models able to identify at-risk subjects selected through a targeted questionnaire. Material and method: Our study included 14,042 screened participants from a southwestern region of Oltenia, Romania. Each participant completed a 12-item questionnaire along with anti-HCV antibody rapid testing. Hepatitis-C-positive subjects were linked to care and ultimately could receive antiviral treatment if they had detectable viremia. We built two ANNs, trained and tested on the dataset derived from the questionnaires and then used to identify patients in a similar, already existing dataset. Results: We found 114 HCV-positive patients (81 females), resulting in an overall prevalence of 0.81%. We identified sharing personal hygiene items, receiving blood transfusions, having dental work or surgery and re-using hypodermic needles as significant risk factors. When used on an existing dataset of 15,140 persons (119 HCV cases), the first ANN models correctly identified 97 (81.51%) HCV-positive subjects through 13,401 tests, while the second ANN model identified 81 (68.06%) patients through only 5192 tests. Conclusions: The use of ANNs in selecting screening candidates may improve resource allocation and prioritize cases more prone to severe disease. Full article
(This article belongs to the Special Issue Modern Imaging and Computer-Aided Diagnosis in Gastroenterology)
Show Figures

Figure 1

13 pages, 4450 KiB  
Article
One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography
by Principia Dardano, Selene De Martino, Mario Battisti, Bruno Miranda, Ilaria Rea and Luca De Stefano
Polymers 2021, 13(4), 520; https://doi.org/10.3390/polym13040520 - 9 Feb 2021
Cited by 55 | Viewed by 5363
Abstract
Microneedles (MNs) are an emerging technology in pharmaceutics and biomedicine, and are ready to be commercialized in the world market. However, solid microneedles only allow small doses and time-limited administration rates. Moreover, some well-known and already approved drugs need to be re-formulated when [...] Read more.
Microneedles (MNs) are an emerging technology in pharmaceutics and biomedicine, and are ready to be commercialized in the world market. However, solid microneedles only allow small doses and time-limited administration rates. Moreover, some well-known and already approved drugs need to be re-formulated when supplied by MNs. Instead, hollow microneedles (HMNs) allow for rapid, painless self-administrable microinjection of drugs in their standard formulation. Furthermore, body fluids can be easily extracted for analysis by a reverse use of HMNs, thus making them perfect for sensing issues and theranostics applications. The fabrication of HMNs usually requires several many-step processes, increasing the costs and consequently decreasing the commercial interest. Photolithography is a well-known fabrication technique in microelectronics and microfluidics that fabricates MNs. In this paper, authors show a proof of concept of a patented, easy and one-shot fabrication of two kinds of HMNs: (1) Symmetric HMNs with a “volcano” shape, made by using a photolithographic mask with an array of transparent symmetric rings; and (2) asymmetric HMNs with an oblique aperture, like standard hypodermic steel needles, made by using an array of transparent asymmetric rings, defined by two circles, which centers are slightly mismatched. Simulation of light propagation, fabrication process, and preliminary results on ink microinjection are presented. Full article
Show Figures

Figure 1

17 pages, 3011 KiB  
Article
Injectability of Thermosensitive, Low-Concentrated Chitosan Colloids as Flow Phenomenon through the Capillary under High Shear Rate Conditions
by Anna Rył and Piotr Owczarz
Polymers 2020, 12(10), 2260; https://doi.org/10.3390/polym12102260 - 1 Oct 2020
Cited by 20 | Viewed by 3287
Abstract
Low-concentrated colloidal chitosan systems undergoing a thermally induced sol–gel phase transition are willingly studied due to their potential use as minimally invasive injectable scaffolds. Nevertheless, instrumental injectability tests to determine their clinical utility are rarely performed. The aim of this work was to [...] Read more.
Low-concentrated colloidal chitosan systems undergoing a thermally induced sol–gel phase transition are willingly studied due to their potential use as minimally invasive injectable scaffolds. Nevertheless, instrumental injectability tests to determine their clinical utility are rarely performed. The aim of this work was to analyze the flow phenomenon of thermosensitive chitosan systems with the addition of disodium β-glycerophosphate through hypodermic needles. Injectability tests were performed using a texture analyzer and hypodermic needles in the sizes 14G–25G. The rheological properties were determined by the flow curve, three-interval thixotropy test (3ITT), and Cox–Merz rule. It was found that reducing the needle diameter and increasing its length and the crosshead speed increased the injection forces. It was claimed that under the considered flow conditions, there was no need to take into account the viscoelastic properties of the medium, and the model used to predict the injection force, based solely on the shear-thinning nature of the experimental material, showed very good agreement with the experimental data in the shear rate range of 200–55,000 s−1. It was observed that the increase in the shear rate value led to macroscopic structural changes of the chitosan sol caused by the disentangling and ordering of the polysaccharide chains along the shear field. Full article
(This article belongs to the Special Issue Functional Biopolymer-Based Hydrogels)
Show Figures

Graphical abstract

Back to TopTop