Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = hypersensitive reaction (HR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1807 KiB  
Article
Neem Leaf Extracts and Azadirachtin Trigger a Moderate Early Defense Response in Sunflowers Infected with Downy Mildew Caused by Plasmopara halstedii (Farl.) Berl. et de Toni
by Rita Bán, Pratik Doshi, Arbnora Berisha, Katalin Körösi, József Kiss, György Turóczi, Božena Šerá, András Skornyik and Nisha Nisha
Agriculture 2025, 15(12), 1248; https://doi.org/10.3390/agriculture15121248 - 8 Jun 2025
Viewed by 510
Abstract
This study examined the effectiveness of neem leaf extract (NLE) and azadirachtin (AZA) against two isolates of Plasmopara halstedii, which causes downy mildew in sunflowers. We also explored their physiological and histopathological effects. The pre-inoculation treatments included 10% and 20% NLE and [...] Read more.
This study examined the effectiveness of neem leaf extract (NLE) and azadirachtin (AZA) against two isolates of Plasmopara halstedii, which causes downy mildew in sunflowers. We also explored their physiological and histopathological effects. The pre-inoculation treatments included 10% and 20% NLE and 0.01% and 0.1% AZA, compared to a mefenoxam-treated control and a non-treated control. All treatments significantly reduced the disease rate compared to the inoculated controls (which had a 73–76% disease rate). The 10% NLE treatment showed the strongest effect against isolate 1 (0% damping-off), while the 20% NLE treatment was most effective against isolate 2 (4% damping-off). Neem treatments also significantly improved plant height; for instance, 20% of NLE-treated plants inoculated with isolate 2 reached approximately 15 cm, compared to about 8 cm in the inoculated controls. Histological analyses indicated limited hyphal spread and low levels of cortical necrosis in neem-treated plants, particularly with 0.1% AZA treatment. This suggests a moderate initial defense response without extensive hypersensitive cell death. Neem treatments were comparable to mefenoxam treatments. These results highlight the potential of neem-derived products, particularly 10% NLE and 0.1% AZA, for the integrated management of sunflower downy mildew through both direct pathogen suppression and enhanced host resistance. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

13 pages, 2108 KiB  
Article
Genomic, Evolutionary, and Pathogenic Characterization of a New Polerovirus in Traditional Chinese Medicine Viola philippica
by Yuanling Chen, Gaoxiang Chen, Jiaping Yu, Yali Zhou, Shifang Fei, Haorong Chen, Jianxiang Wu and Shuai Fu
Viruses 2025, 17(1), 114; https://doi.org/10.3390/v17010114 - 15 Jan 2025
Viewed by 1064
Abstract
Viola philippica, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of V. philippica remains limited. In this study, V. philippica plants [...] Read more.
Viola philippica, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of V. philippica remains limited. In this study, V. philippica plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens. A novel polerovirus, named Viola Philippica Polerovirus (VPPV), was identified in V. philippica. VPPV possesses a linear, positive-sense, single-stranded RNA genome consisting of 5535 nucleotides (nt) and encodes seven highly overlapping open reading frames (ORFs). Two potential recombination events were identified within ORF2, ORF3a, and ORF3, providing insights into the genetic diversity and evolution history of this novel polerovirus. An infectious cDNA clone of VPPV was successfully constructed and shown to infect Nicotiana benthamiana. Using a PVX-based heterologous expression system, the VPPV P0 protein was shown to trigger a systemic hypersensitive response (HR)-like reaction in N. benthamiana, indicating that P0 functions as the main pathogenicity determinant. These findings contributed to the detection and understanding of pathogenic mechanisms and control strategies for VPPV in V. philippica. Full article
(This article belongs to the Special Issue Emerging and Reemerging Plant Viruses in a Changing World)
Show Figures

Figure 1

14 pages, 976 KiB  
Article
LysR-Type Transcriptional Regulator Contributes to Pseudomonas cannabina pv. alisalensis Virulence by Regulating Type Three Secretion System
by Kanon Yamamoto, Takashi Fujikawa, Ayaka Uke, Giyu Usuki, Yasuhiro Ishiga and Nanami Sakata
Bacteria 2024, 3(4), 499-512; https://doi.org/10.3390/bacteria3040033 - 6 Dec 2024
Viewed by 1374
Abstract
Pseudomonas cannabina pv. alisalensis (Pcal) causes bacterial blight on cabbage. In a previous study, we screened for reduced virulence using Tn5 transposon mutants and identified a LysR-type transcriptional regulator (LTTR) as a potential virulence factor in Pcal. However, the role [...] Read more.
Pseudomonas cannabina pv. alisalensis (Pcal) causes bacterial blight on cabbage. In a previous study, we screened for reduced virulence using Tn5 transposon mutants and identified a LysR-type transcriptional regulator (LTTR) as a potential virulence factor in Pcal. However, the role of LTTR in Pcal virulence has not been thoroughly investigated. In this study, we demonstrated that the Pcal NN14 mutant (with Tn5 insertion in the LTTR-encoding gene) showed reduced disease symptoms and bacterial populations in cabbage, indicating that LTTR contributes to Pcal virulence. RNA-seq analysis identified 39 LTTR-dependent genes. Genes associated with 13 of the type three secretion system (T3SS), two of flagellar apparatus, ABC transporters, and transcription factors were expressed at lower levels in the NN14 mutant compared to the wild type. Conversely, tssH and hcp, type six secretion system (T6SS)-related genes, showed higher expression in NN14. Furthermore, these differences in gene expression were observed in minimal medium, but not in nutrient-rich medium, suggesting that LTTR acts as a global regulator responsive to nutrient conditions. Additionally, LTTR activated the expression of T3SS-related genes during Pcal infection. We also demonstrated that NN14 showed a reduced ability to induce hypersensitive reaction (HR) cell death in non-host plants. Collectively, these results suggest that LTTR contributes to Pcal virulence by regulating T3SS in response to environmental changes. Full article
Show Figures

Figure 1

17 pages, 478 KiB  
Review
Balancing Benefits and Risks: A Literature Review on Hypersensitivity Reactions to Human G-CSF (Granulocyte Colony-Stimulating Factor)
by Roxana Silvia Bumbăcea, Mihaela Ruxandra Udrea, Selda Ali and Violeta Claudia Bojincă
Int. J. Mol. Sci. 2024, 25(9), 4807; https://doi.org/10.3390/ijms25094807 - 28 Apr 2024
Cited by 6 | Viewed by 2814
Abstract
Human granulocyte colony-stimulating factor (G-CSF) is a granulopoietic growth factor used in the treatment of neutropenia following chemotherapy, myeloablative treatment, or healthy donors preparing for allogeneic transplantation. Few hypersensitivity reactions (HRs) have been reported, and its true prevalence is unknown. We aimed to [...] Read more.
Human granulocyte colony-stimulating factor (G-CSF) is a granulopoietic growth factor used in the treatment of neutropenia following chemotherapy, myeloablative treatment, or healthy donors preparing for allogeneic transplantation. Few hypersensitivity reactions (HRs) have been reported, and its true prevalence is unknown. We aimed to systematically characterize G-CSF-induced HRs while including a comprehensive list of adverse reactions. We reviewed articles published before January 2024 by searching in the PubMed, Embase, Cochrane Library, and Web of Science databases using a combination of the keywords listed, selected the ones needed, and extracted relevant data. The search resulted in 68 entries, 17 relevant to our study and 7 others found from manually searching bibliographic sources. A total of 40 cases of G-CSF-induced HR were described and classified as immediate (29) or delayed (11). Immediate ones were mostly caused by filgrastim (13 minimum), with at least 9 being grade 5 on the WAO anaphylaxis scale. Delayed reactions were mostly maculopapular exanthemas and allowed for the continuation of G-CSF. Reactions after first exposure frequently appeared and were present in at least 11 of the 40 cases. Only five desensitization protocols have been found concerning the topic at hand in the analyzed data. We believe this study brings to light the research interest in this topic that could benefit from further exploration, and propose regular updating to include the most recently published evidence. Full article
Show Figures

Figure 1

16 pages, 1887 KiB  
Review
Sporothrix brasiliensis Causing Atypical Sporotrichosis in Brazil: A Systematic Review
by Vanice Rodrigues Poester, Melissa Orzechowski Xavier, Lívia Silveira Munhoz, Rossana Patricia Basso, Rosely Maria Zancopé-Oliveira, Dayvison Francis Saraiva Freitas and Alessandro Comarú Pasqualotto
J. Fungi 2024, 10(4), 287; https://doi.org/10.3390/jof10040287 - 13 Apr 2024
Cited by 9 | Viewed by 3022
Abstract
Zoonotic sporotrichosis, a subcutaneous mycosis caused by Sporothrix brasiliensis, has become hyperendemic and a serious public health issue in Brazil and an emerging disease throughout the world. Typical sporotrichosis is defined as fixed or lymphocutaneous lesion development, however, reports of atypical presentations [...] Read more.
Zoonotic sporotrichosis, a subcutaneous mycosis caused by Sporothrix brasiliensis, has become hyperendemic and a serious public health issue in Brazil and an emerging disease throughout the world. Typical sporotrichosis is defined as fixed or lymphocutaneous lesion development, however, reports of atypical presentations have been described in hyperendemic areas, which may result in a worse prognosis. Thus, considering an increase in atypical cases and in more severe extracutaneous cases and hospitalizations reported in Brazil, we aimed to perform a systematic review to search for hypersensitivity reactions (HRs) and extracutaneous presentations associated with zoonotic sporotrichosis. A systematic review was performed, following the PRISMA guidelines to search for atypical/extracutaneous cases (mucosal, osteoarthritis, HRs, pulmonary, meningeal) of zoonotic sporotrichosis. A total of 791 published cases over 26 years (1998–2023) in eleven Brazilian states were reviewed. Most cases corresponded to a HR (47%; n = 370), followed by mucosal (32%; n = 256), multifocal (8%; n = 60), osteoarthritis (7%; n = 59), meningeal (4%; n = 32), and pulmonary (2%; n = 14) infections. When available (n = 607), the outcome was death in 7% (n = 43) of cases. Here, we show a frequent and worrisome scenario of zoonotic sporotrichosis in Brazil, with a high and dispersed incidence of atypical/extracutaneous cases throughout the Brazilian territory. Therefore, educational measures are necessary to make health professionals and the overall population aware of this fungal pathogen in Brazil as well as in other countries in the Americas. Full article
Show Figures

Figure 1

11 pages, 590 KiB  
Article
Immune-Mediated Organ-Specific Reactions to COVID-19 Vaccines: A Retrospective Descriptive Study
by Carmen Ruiz-Fernández, Ricardo Cuesta, Susana Martín-López, Javier Guijarro, Arturo López Gómez de las Huertas, Mikel Urroz, Laura Miguel-Berenguel, Miguel González-Muñoz and Elena Ramírez
Pharmaceuticals 2023, 16(5), 720; https://doi.org/10.3390/ph16050720 - 9 May 2023
Cited by 4 | Viewed by 2383
Abstract
Severe acute respiratory syndrome coronavirus 2 caused the global COVID-19 pandemic and public health crisis, and it led to the rapid development of COVID-19 vaccines, which can cause rare and typically mild hypersensitivity reactions (HRs). Delayed HRs to COVID-19 vaccines have been reported, [...] Read more.
Severe acute respiratory syndrome coronavirus 2 caused the global COVID-19 pandemic and public health crisis, and it led to the rapid development of COVID-19 vaccines, which can cause rare and typically mild hypersensitivity reactions (HRs). Delayed HRs to COVID-19 vaccines have been reported, and the excipients polyethylene glycol (PEG)2000 and polysorbate 80 (P80) are the suspected culprits. Skin patch tests do not help in diagnosing delayed reactions. We aimed to perform lymphocyte transformation tests (LTT) with PEG2000 and P80 in 23 patients with suspected delayed HRs. Neurological reactions (n = 10) and myopericarditis reactions (n = 6) were the most frequent complications. Seventy-eight percent (18/23) of the study patients were admitted to a hospital ward, and the median time to discharge was 5.5 (IQR, 3–8) days. Some 73.9% of the patients returned to baseline condition after 25 (IQR, 3–80) days. LTT was positive in 8/23 patients (5/10 neurological reactions, 2/4 hepatitis reactions and 1/2 rheumatologic reactions). All myopericarditis cases had a negative LTT. These preliminary results indicate that LTT with PEGs and polysorbates is a useful tool for identifying excipients as causal agents in HRs to COVID-19 vaccines and can play an important role in risk stratification in patients with HRs. Full article
Show Figures

Figure 1

17 pages, 2940 KiB  
Article
Hsp90 Gene Is Required for Mi-1-Mediated Resistance of Tomato to the Whitefly Bemisia tabaci
by Susana Pascual, Clara I. Rodríguez-Álvarez, Isgouhi Kaloshian and Gloria Nombela
Plants 2023, 12(3), 641; https://doi.org/10.3390/plants12030641 - 1 Feb 2023
Cited by 8 | Viewed by 2824
Abstract
The Mi-1 gene of tomato (Solanum lycopersicum) confers resistance against some nematodes and insects, but the resistance mechanisms differ depending on the harmful organism, as a hypersensitive reaction (HR) occurs only in the case of nematodes. The gene Rme1 is required [...] Read more.
The Mi-1 gene of tomato (Solanum lycopersicum) confers resistance against some nematodes and insects, but the resistance mechanisms differ depending on the harmful organism, as a hypersensitive reaction (HR) occurs only in the case of nematodes. The gene Rme1 is required for Mi-1-mediated resistance to nematodes, aphids, and whiteflies, and several additional proteins also play a role in this resistance. Among them, the involvement of the chaperone HSP90 has been demonstrated in Mi-1-mediated resistance for aphids and nematodes, but not for whiteflies. In this work, we studied the implication of the Hsp90 gene in the Mi-1 resistance against the whitefly Bemisia tabaci by means of Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS). The silencing of the Hsp90 gene in tomato Motelle plants carrying the Mi-1 gene resulted in a decrease in resistance to whiteflies, as oviposition values were significantly higher than those on non-silenced plants. This decrease in resistance was equivalent to that caused by the silencing of the Mi-1 gene itself. Infiltration with the control TRV vector did not alter Mi-1 mediated resistance to B. tabaci. Similar to the Mi-1 gene, silencing of Hsp90-1 occurs partially, as silenced plants showed a significant but not complete suppression of gene expression. Thus, our results demonstrate the requirement of Hsp90 in the Mi-1-mediated resistance to B. tabaci and reinforce the hypothesis of a common model for this resistance to nematodes and insects. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Figure 1

13 pages, 1230 KiB  
Article
Pseudomonas syringae Infection Modifies Chlorophyll Fluorescence in Nicotiana tabacum
by Magdalena Tomaszewska-Sowa, Norbert Keutgen, Tomáš Lošák, Anna Figas and Anna J. Keutgen
Agriculture 2022, 12(9), 1504; https://doi.org/10.3390/agriculture12091504 - 19 Sep 2022
Cited by 2 | Viewed by 2569
Abstract
The system Nicotiana tabacum L.—Pseudomonas syringae VAN HALL pv. tomato (Pto) DC3000 was investigated at a low inoculation level (c. 5 × 105 colony-forming units (CFU) mL–1) such as it occurs in the field. The aim of this study [...] Read more.
The system Nicotiana tabacum L.—Pseudomonas syringae VAN HALL pv. tomato (Pto) DC3000 was investigated at a low inoculation level (c. 5 × 105 colony-forming units (CFU) mL–1) such as it occurs in the field. The aim of this study was to test the hypothesis that N. tabacum, a non-host of Pto DC3000, improved the PSII efficiency in inoculated leaves compared with control detached leaves. Visible symptoms at the infected area were not detected within 14 days. Chlorophyll (Chl) a fluorescence was measured 6–7 days after inoculation of detached leaves. Compared with the control, the actual photochemical quantum yield of photosystem (PS) II was higher in the inoculated leaves at the expense of the fraction of heat dissipated by photo-inactivated non-functional centers. In addition, the fraction of open PSII reaction centers (RCs) was higher in inoculated leaves. Maximum fluorescence in the dark-adapted detached inoculated leaves, as a measure of the absorbed energy, was lower than in control leaves. The lower capacity to absorb energy in combination with a higher fraction of open PSII RCs is interpreted as an acclimation to limit over-excitation and to reduce heat dissipation. This should limit the production of reactive oxygen species and reduce the probability of a hypersensitive response (HR), which represents an expensive cell-death program for the plant. Full article
(This article belongs to the Special Issue Advanced Research of Crop Plant Interactions with Bacteria and Fungi)
Show Figures

Figure 1

24 pages, 6606 KiB  
Article
Hybrid Nanoparticles of Proanthocyanidins from Uncaria tomentosa Leaves: QTOF-ESI MS Characterization, Antioxidant Activity and Immune Cellular Response
by Andrea Mariela Araya-Sibaja, Krissia Wilhelm-Romero, Felipe Vargas-Huertas, María Isabel Quirós-Fallas, Diego Alvarado-Corella, Juan José Mora-Román, José Roberto Vega-Baudrit, Andrés Sánchez-Kopper and Mirtha Navarro-Hoyos
Plants 2022, 11(13), 1737; https://doi.org/10.3390/plants11131737 - 30 Jun 2022
Cited by 5 | Viewed by 2898
Abstract
Previous studies in Uncaria tomentosa have shown promising results concerning the characterization of polyphenols with leaves yielding more diverse proanthocyanidins and higher bioactivities values. However, the polyphenols-microbiota interaction at the colonic level and their catabolites avoid the beneficial effects that can be exerted [...] Read more.
Previous studies in Uncaria tomentosa have shown promising results concerning the characterization of polyphenols with leaves yielding more diverse proanthocyanidins and higher bioactivities values. However, the polyphenols-microbiota interaction at the colonic level and their catabolites avoid the beneficial effects that can be exerted by this medicinal plant when consumed. In this regard, a new generation of hybrid nanoparticles has demonstrated improvements in natural compounds’ activity by increasing their bioavailability. In this line, we report a detailed study of the characterization of a proanthocyanidin-enriched extract (PA-E) from U. tomentosa leaves from Costa Rica using UPLC-QTOF-ESI MS. Moreover, two types of hybrid nanoparticles, a polymeric-lipid (F-1) and a protein-lipid (F-2) loaded with PA-E were synthesized and their characterization was conducted by dynamic light scattering (DLS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR), high-resolution transmission electron microscopy (HR-TEM), and encapsulation efficiency (%EE). In addition, in vitro release, antioxidant activity through 2,2-diphenyl-1-picrylhidrazyl (DPPH) as well as in vivo delayed-type hypersensitivity (DTH) reaction was evaluated. Results allowed the identification of 50 different compounds. The PA-E loaded nanoparticles F-1 and F-2 achieved encapsulation efficiency of ≥92%. The formulations exhibited porosity and spherical shapes with a size average of 26.1 ± 0.8 and 11.8 ± 3.3 nm for F-1 and F-2, respectively. PA-E increased its release rate from the nanoparticles compared to the free extract in water and antioxidant activity in an aqueous solution. In vivo, the delayed-type hypersensitive test shows the higher immune stimulation of the flavan-3-ols with higher molecular weight from U. tomentosa when administered as a nanoformulation, resulting in augmented antigen-specific responses. The present work constitutes to our knowledge, the first report on these bioactivities for proanthocyanidins from Uncaria tomentosa leaves when administrated by nanosystems, hence, enhancing the cellular response in mice, confirming their role in immune modulation. Full article
Show Figures

Figure 1

13 pages, 970 KiB  
Article
Contrast Medium Hypersensitivity: A Large Italian Study with Long-Term Follow-Up
by Eleonora Nucera, Giuseppe Parrinello, Sebastiano Gangemi, Alessandro Buonomo, Arianna Aruanno, Franziska Michaela Lohmeyer, Riccardo Inchingolo and Angela Rizzi
Biomedicines 2022, 10(4), 759; https://doi.org/10.3390/biomedicines10040759 - 24 Mar 2022
Cited by 6 | Viewed by 5792
Abstract
Hypersensitivity reactions (HRs) to contrast media (CM) are a major problem. We compared differences of HRs to iodinated contrast media (ICM) versus gadolinium-based contrast media (GBCM), collecting data on prevalence, type, latency and severity. Secondly, the predisposition to perform new contrast tests, use [...] Read more.
Hypersensitivity reactions (HRs) to contrast media (CM) are a major problem. We compared differences of HRs to iodinated contrast media (ICM) versus gadolinium-based contrast media (GBCM), collecting data on prevalence, type, latency and severity. Secondly, the predisposition to perform new contrast tests, use of premedication and possible appearance of new reactions were explored in a long-term follow-up of 5 years. Clinical data, comorbidities, skin test (ST) results, re-exposure to CM procedures with any new reactions, premedication and CM used were collected. In a retrospective single-center study, 350 patients with mild to moderate HRs were enrolled. Asthma, food allergy, non-allergic drug hypersensitivity and neurologic disease were significantly more frequent in patients with HRs to GBCM compared to the high evidence of cardiovascular disease and history of cancer in patients with HRs to ICM. A marked delay in performing STs was reported by patients with negative results (66 months, p < 0.01). Iomeprol, iopamidol and gadobenic acid were the culprit CM most involved in HRs in patients with positive STs. During follow-up, 7.1% of responders reported new HRs to CM despite negative STs, premedication and infusion of alternative CM in most cases. Full article
Show Figures

Figure 1

14 pages, 2051 KiB  
Article
Identification of Genes in Xanthomonas euvesicatoria pv. rosa That Are Host Limiting in Tomato
by Qiurong Fan, Shaheen Bibi, Gary E. Vallad, Erica M. Goss, Jason C. Hurlbert, Matthews L. Paret, Jeffrey B. Jones and Sujan Timilsina
Plants 2022, 11(6), 796; https://doi.org/10.3390/plants11060796 - 17 Mar 2022
Cited by 7 | Viewed by 3129
Abstract
Xanthomonas euvesicatoria pv. rosa strain Xer07 causes a leaf spot on a Rosa sp. and is closely related to X. euvesicatoria pv. euvesicatoria (Xee) and X. perforans (Xp), causal agents of bacterial spot of tomato. However, Xer07 is not [...] Read more.
Xanthomonas euvesicatoria pv. rosa strain Xer07 causes a leaf spot on a Rosa sp. and is closely related to X. euvesicatoria pv. euvesicatoria (Xee) and X. perforans (Xp), causal agents of bacterial spot of tomato. However, Xer07 is not pathogenic on tomato and elicits a hypersensitive reaction (HR). We compared the genomes of the three bacterial species to identify the factors that limit Xer07 on tomato. Comparison of pathogenicity associated factors including the type III secretion systems identified two genes, xopA and xer3856, in Xer07 that have lower sequence homology in tomato pathogens. xer3856 is a homolog of genes in X. citri (xac3856) and X. fuscans pv. aurantifolii, both of which have been reported to elicit HRs in tomato. When xer3856 was expressed in X. perforans and infiltrated in tomato leaflets, the transconjugant elicited an HR and significantly reduced bacterial populations compared to the wildtype X. perforans strain. When xer3856 was mutated in Xer07, the mutant strain still triggered an HR in tomato leaflets. The second gene identified codes for type III secreted effector XopA, which contains a harpin domain that is distinct from the xopA homologs in Xee and Xp. The Xer07-xopA, when expressed in X. perforans, did not elicit an HR in tomato leaflets, but significantly reduced bacterial populations. This indicates that xopA and xer3856 genes in combination with an additional factor(s) limit Xer07 in tomato. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

12 pages, 3346 KiB  
Article
ATG4 Mediated Psm ES4326/AvrRpt2-Induced Autophagy Dependent on Salicylic Acid in Arabidopsis Thaliana
by Wenjun Gong, Bingcong Li, Baihong Zhang and Wenli Chen
Int. J. Mol. Sci. 2020, 21(14), 5147; https://doi.org/10.3390/ijms21145147 - 21 Jul 2020
Cited by 8 | Viewed by 4467
Abstract
Psm ES4326/AvrRpt2 (AvrRpt2) was widely used as the reaction system of hypersensitive response (HR) in Arabidopsis. The study showed that in npr1 (GFP-ATG8a), AvrRpt2 was more effective at inducing the production of autophagosome and autophagy flux than that [...] Read more.
Psm ES4326/AvrRpt2 (AvrRpt2) was widely used as the reaction system of hypersensitive response (HR) in Arabidopsis. The study showed that in npr1 (GFP-ATG8a), AvrRpt2 was more effective at inducing the production of autophagosome and autophagy flux than that in GFP-ATG8a. The mRNA expression of ATG1, ATG6 and ATG8a were more in npr1 during the early HR. Based on transcriptome data analysis, enhanced disease susceptibility 1 (EDS1) was up-regulated in wild-type (WT) but was not induced in atg4a4b (ATG4 deletion mutant) during AvrRpt2 infection. Compared with WT, atg4a4b had higher expression of salicylic acid glucosyltransferase 1 (SGT1) and isochorismate synthase 1 (ICS1); but less salicylic acid (SA) in normal condition and the same level of free SA during AvrRpt2 infection. These results suggested that the consumption of free SA should be occurred in atg4a4b. AvrRpt2 may trigger the activation of Toll/Interleukin-1 receptor (TIR)-nucleotide binding site (NB)-leucine rich repeat (LRR)—TIR-NB-LRR—to induce autophagy via EDS1, which was inhibited by nonexpressor of PR genes 1 (NPR1). Moreover, high expression of NPR3 in atg4a4b may accelerate the degradation of NPR1 during AvrRpt2 infection. Full article
(This article belongs to the Special Issue New Insight into Signaling and Autophagy in Plants)
Show Figures

Figure 1

14 pages, 2659 KiB  
Article
Inducing Plant Defense Reactions in Tobacco Plants with Phenolic-Rich Extracts from Red Maple Leaves: A Characterization of Main Active Ingredients
by Elodie Peghaire, Samar Hamdache, Antonin Galien, Mohamad Sleiman, Alexandra ter Halle, Hicham El Alaoui, Ayhan Kocer, Claire Richard and Pascale Goupil
Forests 2020, 11(6), 705; https://doi.org/10.3390/f11060705 - 24 Jun 2020
Cited by 11 | Viewed by 3521
Abstract
Red maple leaf extracts (RME) were tested for their plant defense inducer (PDI) properties. Two extracts were obtained and compared by different approaches: RME1 using ethanol–water (30–70%, v/v, 0.5% HCl 1N) and RME2 using pure water. Both extracts titrated at 1.9 g [...] Read more.
Red maple leaf extracts (RME) were tested for their plant defense inducer (PDI) properties. Two extracts were obtained and compared by different approaches: RME1 using ethanol–water (30–70%, v/v, 0.5% HCl 1N) and RME2 using pure water. Both extracts titrated at 1.9 g L−1 in polyphenols and infiltrated into tobacco leaves efficiently induced hypersensitive reaction-like lesions with topical accumulation of auto-fluorescent compounds noted under UV and scopoletin titration assays. The antimicrobial marker PR1, β−1,3-glucanase PR2, chitinase PR3, and osmotin PR5 target genes were all upregulated in tobacco leaves following RME1 treatment. The alkaline hydrolysis of RME1 and RME2 combined with HPLC titration of gallic acid revealed that gallate functions were present in both extracts at levels comprised between 185 and 318 mg L−1. HPLC-HR-MS analyses and glucose assay identified four gallate derivatives consisting of a glucose core linked to 5, 6, 7, and 8 gallate groups. These four galloyl glucoses possessed around 46% of total gallate functions. Their higher concentration in RME suggested that they may contribute significantly to PDI activity. These findings define the friendly galloyl glucose as a PDI and highlight a relevant methodology for combining plant assays and chemistry process to their potential quantification in crude natural extracts. Full article
(This article belongs to the Special Issue The Use of Secondary Metabolites from Trees in Bioprotection)
Show Figures

Graphical abstract

15 pages, 3100 KiB  
Article
CaCML13 Acts Positively in Pepper Immunity Against Ralstonia solanacearum Infection Forming Feedback Loop with CabZIP63
by Lei Shen, Sheng Yang, Deyi Guan and Shuilin He
Int. J. Mol. Sci. 2020, 21(11), 4186; https://doi.org/10.3390/ijms21114186 - 11 Jun 2020
Cited by 23 | Viewed by 3436
Abstract
Ca2+-signaling—which requires the presence of calcium sensors such as calmodulin (CaM) and calmodulin-like (CML) proteins—is crucial for the regulation of plant immunity against pathogen attack. However, the underlying mechanisms remain elusive, especially the roles of CMLs involved in plant immunity remains [...] Read more.
Ca2+-signaling—which requires the presence of calcium sensors such as calmodulin (CaM) and calmodulin-like (CML) proteins—is crucial for the regulation of plant immunity against pathogen attack. However, the underlying mechanisms remain elusive, especially the roles of CMLs involved in plant immunity remains largely uninvestigated. In the present study, CaCML13, a calmodulin-like protein of pepper that was originally found to be upregulated by Ralstonia solanacearum inoculation (RSI) in RNA-seq, was functionally characterized in immunity against RSI. CaCML13 was found to target the whole epidermal cell including plasma membrane, cytoplasm and nucleus. We also confirmed that CaCML13 was upregulated by RSI in pepper roots by quantitative real-time PCR (qRT-PCR). The silencing of CaCML13 significantly enhanced pepper plants’ susceptibility to RSI accompanied with downregulation of immunity-related CaPR1, CaNPR1, CaDEF1 and CabZIP63. In contrast, CaCML13 transient overexpression induced clear hypersensitivity-reaction (HR)-mimicked cell death and upregulation of the tested immunity-related genes. In addition, we also revealed that the G-box-containing CaCML13 promoter was bound by CabZIP63 and CaCML13 was positively regulated by CabZIP63 at transcriptional level. Our data collectively indicate that CaCML13 act as a positive regulator in pepper immunity against RSI forming a positive feedback loop with CabZIP63. Full article
(This article belongs to the Special Issue Plant Disease Resistance)
Show Figures

Graphical abstract

20 pages, 6065 KiB  
Article
Autophagy-Like Cell Death Regulates Hydrogen Peroxide and Calcium Ion Distribution in Xa3/Xa26-Mediated Resistance to Xanthomonas oryzae pv. oryzae
by Jianbo Cao, Meng Zhang, Mengmeng Zhu, Limin He, Jinghua Xiao, Xianghua Li and Meng Yuan
Int. J. Mol. Sci. 2020, 21(1), 194; https://doi.org/10.3390/ijms21010194 - 27 Dec 2019
Cited by 9 | Viewed by 3695
Abstract
The broad-spectrum and durable resistance gene Xa3/Xa26 against Xanthomonas oryzae pv. oryzae (Xoo) has been widely exploited in rice production in China. But the cytological features of the Xa3/Xa26-mediated resistance reaction have been rarely reported. This study reveals the cytological [...] Read more.
The broad-spectrum and durable resistance gene Xa3/Xa26 against Xanthomonas oryzae pv. oryzae (Xoo) has been widely exploited in rice production in China. But the cytological features of the Xa3/Xa26-mediated resistance reaction have been rarely reported. This study reveals the cytological characteristics of the Xa3/Xa26-mediated resistance reaction against Xoo to uncover the functions of hypersensitive response programmed cell death (HR-PCD) in rice. Autophagy-like cell death, which was characterized by double-membrane bodies appearance in xylem parenchyma cell and mesophyll cell, was inhibited by autophagy inhibitor 3-methyladenin (3-MA). The autophagy-related genes were induced to reach a high level in resistance reaction. The hydrogen peroxide (H2O2) maintained a low concentration on the plasma membrane. The calcium ions localized on the apoplast were transferred into the vacuole. The autophagy inhibitor (3-MA) impaired Xa3/Xa26-mediated resistance by promoting the accumulation of H2O2, and inhibited the transfer of extracellular calcium ions into the vacuole in the xylem parenchyma cells and mesophyll cells. Therefore, the HR-PCD belongs to autophagy-like cell death in the Xa3/Xa26-mediated resistance reaction. These results suggest that the autophagy-like cell death participates in the Xa3/Xa26-mediated resistance by negatively regulating H2O2 accumulation, in order to abolish oxidative stress and possibly activate calcium ion signals in xylem parenchyma cells of the rice leaf. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop