Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = hydroxy naphthol blue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3380 KiB  
Article
A Loop-Mediated Isothermal Amplification Assay Utilizing Hydroxy Naphthol Blue (LAMP-HNB) for the Detection of Treponema pallidum Subspp. pallidum
by Saranthum Phurijaruyangkun, Pongbun Tangjitrungrot, Pornpun Jaratsing, Suphitcha Augkarawaritsawong, Khurawan Kumkrong, Sawanya Pongparit, Pawita Suwanvattana, Supatra Areekit, Kosum Chansiri and Somchai Santiwatanakul
Pathogens 2024, 13(11), 949; https://doi.org/10.3390/pathogens13110949 - 31 Oct 2024
Viewed by 1652
Abstract
Treponema pallidum subspp. pallidum is a spirochaete bacterium that causes syphilis, one of the most common sexually transmitted diseases. Syphilis progresses through four distinct stages, each characterized by specific symptoms, namely primary, secondary, latent, and late (tertiary) syphilis. Serology has been considered the [...] Read more.
Treponema pallidum subspp. pallidum is a spirochaete bacterium that causes syphilis, one of the most common sexually transmitted diseases. Syphilis progresses through four distinct stages, each characterized by specific symptoms, namely primary, secondary, latent, and late (tertiary) syphilis. Serology has been considered the primary diagnostic approach. However, it is plagued by problems such as the limited specificity of nontreponemal tests and the inadequate correlation of treponemal tests with disease activity. In this study, we focused on the development of a loop-mediated isothermal amplification assay utilizing hydroxy naphthol blue (LAMP-HNB) for the diagnosis of T. pallidum subspp. pallidum. Specifically, this study seeks to determine the analytical sensitivity (limit of detection; LOD) and analytical specificity. Four hundred clinical serum samples were analyzed for diagnostic sensitivity, specificity, and predictive value, and each technique’s 95% confidence intervals (95% CI, p < 0.05) were evaluated. The limit of detection for polymerase chain reaction with agarose gel electrophoresis (PCR-AGE), the loop-mediated isothermal amplification assay combined with agarose gel electrophoresis (LAMP-AGE), and LAMP-HNB were 116 pg/µL, 11.6 pg/µL, and 11.6 pg/ µL, respectively. Analytical specificity examinations indicated the absence of cross-reactivity with Leptospira interrogans, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, human immunodeficiency virus (HIV), and healthy human serum in PCR-AGE, LAMP-AGE, and LAMP-HNB. The diagnostic sensitivity, diagnostic specificity, positive predictive value (PPV), and negative predictive value (NPV) for PCR-AGE were 100.00 (100.00)%, 94.50 (94.40–94.60)%, 94.79 (94.69–94.88)%, and 100.00 (100.00)%, respectively. While, for LAMP-AGE and LAMP-HNB, they were 100.00 (100.00)%, 91.00 (90.87–91.13)%, 91.74 (91.63–91.86)%, and 100.00 (100.00)%, respectively. The LAMP-HNB test is simple, rapid, highly sensitive, and highly specific, without requiring expensive equipment. In the future, the LAMP-HNB assay may develop into a single-step diagnostic process, enabling the use as point-of-care testing for the diagnosis, prevention, and management of syphilis infection. Full article
Show Figures

Figure 1

13 pages, 4107 KiB  
Article
Field-Applicable Loop-Mediated Isothermal Amplification for the Detection of Seven Common Human Papillomavirus Subtypes
by Hongyi Li, He Tan, Xiaona Lv, Zhiqiang Han, Yuxin Wang, Shijue Gao, Ruiqin Zhang, Xinxin Shen, Xuejun Ma and Yanqing Tie
Trop. Med. Infect. Dis. 2024, 9(10), 240; https://doi.org/10.3390/tropicalmed9100240 - 12 Oct 2024
Cited by 1 | Viewed by 1389
Abstract
Persistent HPV infection is a major risk factor for the subsequent development of cervical cancer. LAMP is simple and suitable for field detection in the resource-limited settings. In this study, hydroxy naphthol blue (HNB)-based visual LAMP and evagreen-based fluorescent LAMP coupled with a [...] Read more.
Persistent HPV infection is a major risk factor for the subsequent development of cervical cancer. LAMP is simple and suitable for field detection in the resource-limited settings. In this study, hydroxy naphthol blue (HNB)-based visual LAMP and evagreen-based fluorescent LAMP coupled with a microfluidic chip (LAMP-chip) were established for the field detection of seven subtypes of HPV. The analytical sensitivity was 19–233 copies/reaction. The overall clinical sensitivity was 97.35% for visual LAMP and 98.23% for LAMP-chip. Both LAMP assays exhibited 100% specificity and were completed in less than 50 min. Additionally, both assays did not require complicated nucleic acid extraction and purification steps. A complete quality control monitoring system (including internal control, positive quality control and negative control) in the LAMP assays further ensured the credibility of the results. Our findings demonstrated that the proposed LAMP assays have the potential to be applied in the testing of common HPV DNA in field investigations (visual LAMP) or within communities and primary health centers (LAMP-chip). Full article
(This article belongs to the Special Issue Molecular Epidemiology of Human Papillomavirus Infection)
Show Figures

Figure 1

11 pages, 1477 KiB  
Article
Rapid Visual Detection of Methicillin-Resistant Staphylococcus aureus in Human Clinical Samples via Closed LAMP Assay Targeting mecA and spa Genes
by Noora S. A. Abusheraida, Asraa A. H. AlBaker, Asmaa S. A. Aljabri, Hana A. Abdelrahman, Hassan Al-Mana, Godwin J. Wilson, Khalid A. Anan and Nahla O. Eltai
Microorganisms 2024, 12(1), 157; https://doi.org/10.3390/microorganisms12010157 - 12 Jan 2024
Cited by 4 | Viewed by 3374
Abstract
The emergence of antimicrobial resistance (AMR), particularly methicillin-resistant Staphylococcus aureus (MRSA), poses a significant global health threat as these bacteria increasingly become resistant to the most available therapeutic options. Thus, developing an efficient approach to rapidly screen MRSA directly from clinical specimens has [...] Read more.
The emergence of antimicrobial resistance (AMR), particularly methicillin-resistant Staphylococcus aureus (MRSA), poses a significant global health threat as these bacteria increasingly become resistant to the most available therapeutic options. Thus, developing an efficient approach to rapidly screen MRSA directly from clinical specimens has become vital. In this study, we establish a closed-tube loop-mediated isothermal amplification (LAMP) method incorporating hydroxy-naphthol blue (HNB) colorimetric dye assay to directly detect MRSA from clinical samples based on the presence of mecA and spa genes. In total, 125 preidentified S. aureus isolates and 93 clinical samples containing S. aureus were sourced from the microbiology laboratory at Hamad General Hospital (HGH). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were computed based on conventional PCR. The assay demonstrated 100% specificity, 91.23% sensitivity, 0.90 Cohen Kappa (CK), 100% PPV, and 87.8% NPV for the clinical samples, while clinical isolates exhibited 100% specificity, 97% sensitivity, 0.926 CK, 100% PPV, and 88.89% NPV. Compared to cefoxitin disk diffusion, LAMP provided 100% specificity and sensitivity, 1.00 CK, and 100% for PPV and NPV. The study revealed that the closed-tube LAMP incorporating (HNB) dye is a rapid technique with a turnaround time of less than 1 h and high specificity and sensitivity. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

15 pages, 1970 KiB  
Article
A Comparative Study on Visual Detection of Mycobacterium tuberculosis by Closed Tube Loop-Mediated Isothermal Amplification: Shedding Light on the Use of Eriochrome Black T
by Alireza Neshani, Hosna Zare, Hamid Sadeghian, Hadi Safdari, Bamdad Riahi-Zanjani and Ehsan Aryan
Diagnostics 2023, 13(1), 155; https://doi.org/10.3390/diagnostics13010155 - 2 Jan 2023
Cited by 18 | Viewed by 4331
Abstract
Loop-mediated isothermal amplification is a promising candidate for the rapid detection of Mycobacterium tuberculosis. However, the high potential for carry-over contamination is the main obstacle to its routine use. Here, a closed tube LAMP was intended for the visual detection of Mtb [...] Read more.
Loop-mediated isothermal amplification is a promising candidate for the rapid detection of Mycobacterium tuberculosis. However, the high potential for carry-over contamination is the main obstacle to its routine use. Here, a closed tube LAMP was intended for the visual detection of Mtb to compare turbidimetric and two more favorable colorimetric methods using calcein and hydroxy naphthol blue (HNB). Additionally, a less studied dye (i.e., eriochrome black T (EBT)) was optimized in detail in the reaction for the first time. Mtb purified DNA and 30 clinical specimens were used to respectively determine the analytical and diagnostic sensitivities of each method. The turbidimetric method resulted in the best analytical sensitivity (100 fg DNA/reaction), diagnostic sensitivity and specificity (100%), and time-to-positivity of the test (15 min). However, this method is highly prone to subjective error in reading the results. Moreover, HNB-, calcein-, and EBT-LAMP could respectively detect 100 fg, 1 pg, and 1 pg DNA/reaction (the analytical sensitivities) in 30, 15, and 30 min, while the diagnostic sensitivity and specificity were respectively 93.3% and 100% for them all. Interestingly, EBT-LAMP showed the lowest potential for subjective error in reading the results. This report helps judiciously choose the most appropriate visual method, taking a step forward toward the field applicability of LAMP for the detection of Mtb, particularly in resource-limited settings. Full article
(This article belongs to the Special Issue Laboratory Diagnosis in Microbial Diseases)
Show Figures

Figure 1

11 pages, 3662 KiB  
Article
Loop-Mediated Isothermal Amplification for the Rapid Detection of the Mutation of Carbendazim-Resistant Isolates in Didymella bryoniae
by Lina Shen, Mengyu Huang, Anfei Fang, Yuheng Yang, Yang Yu and Chaowei Bi
Agronomy 2022, 12(9), 2057; https://doi.org/10.3390/agronomy12092057 - 29 Aug 2022
Cited by 4 | Viewed by 1855
Abstract
Gummy stem blight (GSB) caused by Didymella bryoniae (D. bryoniae) is a worldwide fungal soil-borne disease that can cause severe yield reduction of watermelon. To shorten the monitoring time of carbendazim-resistant strains of D. bryoniae in the field, in this study, [...] Read more.
Gummy stem blight (GSB) caused by Didymella bryoniae (D. bryoniae) is a worldwide fungal soil-borne disease that can cause severe yield reduction of watermelon. To shorten the monitoring time of carbendazim-resistant strains of D. bryoniae in the field, in this study, we developed a loop-mediated isothermal amplification (LAMP) assay for rapid detection of carbendazim-resistant strains of D. bryoniae. The β-tubulin gene of carbendazim-resistant strains was selected as the target for primer design. Based on the color change of hydroxy naphthol blue (HNB) and gel electrophoresis, the optimal reaction conditions for LAMP were determined at 65 °C for 50 min. In specificity tests, the LAMP assay was able to distinguish between carbendazim-resistant and sensitive strains of D. bryoniae. Moreover, in sensitivity tests, the detection limit was 1 ng/μL D. bryoniae DNA of the carbendazim-resistant strain. In addition, the LAMP method was successfully applied to detect carbendazim-resistant strains in D. bryoniae-infested samples. Therefore, the developed LAMP assay provides a new method for the rapid detection of carbendazim-resistant strains of D. bryoniae. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 2469 KiB  
Article
In-Situ Monitoring of Real-Time Loop-Mediated Isothermal Amplification with QCM: Detecting Listeria monocytogenes
by Sirirat Wachiralurpan, Isaratat Phung-On, Narong Chanlek, Supatra Areekit, Kosum Chansiri and Peter A. Lieberzeit
Biosensors 2021, 11(9), 308; https://doi.org/10.3390/bios11090308 - 31 Aug 2021
Cited by 18 | Viewed by 4686
Abstract
Functionalized DNA sequences are promising sensing elements to combine with transducers for bio-sensing specific target microbes. As an application example, this paper demonstrates in situ detection of loop-mediated isothermal amplification products by hybridizing them with thiolated-ssDNA covalently anchored on the electrodes of a [...] Read more.
Functionalized DNA sequences are promising sensing elements to combine with transducers for bio-sensing specific target microbes. As an application example, this paper demonstrates in situ detection of loop-mediated isothermal amplification products by hybridizing them with thiolated-ssDNA covalently anchored on the electrodes of a quartz crystal microbalance (QCM). Such hybridization leads to a frequency signal, which is suitable for monitoring real-time LAMP amplification based on mass-sensing: it detects interactions between the complementary nucleobases of LAMP products in solution and the thiolated-ssDNA probe sequence on the gold surface. Target DNA LAMP products cause irreversible frequency shifts on the QCM surfaces during hybridization in the kHz range, which result from both changes in mass and charge on the electrode surface. In order to confirm the LAMP assay working in the QCM sensing system at elevated temperature, the sky blue of positive LAMP products solution was achieved by using the Hydroxy Naphthol Blue (HNB) and agarose gel electrophoresis. Since on-QCM sensing of DNA hybridization leads to irreversible sensor responses, this work shows characterization by X-ray photoelectron spectroscopy (XPS) core spectra of S2p, N1s, Mg1s, P2p and C1s. XPS results confirmed that indeed both DNA and by-products of LAMP attached to the surface. Listeria monocytogenes DNA served to study in-situ detection of amplified LAMP products on DNA-functionalized surfaces. Full article
(This article belongs to the Special Issue Feature Issue of Biosensors and Bioelectronic Devices Section)
Show Figures

Figure 1

12 pages, 3933 KiB  
Article
Optical Temperature Control Unit and Convolutional Neural Network for Colorimetric Detection of Loop-Mediated Isothermal Amplification on a Lab-On-A-Disc Platform
by Da Ye Seul Lim, Moo-Jung Seo and Jae Chern Yoo
Sensors 2019, 19(14), 3207; https://doi.org/10.3390/s19143207 - 20 Jul 2019
Cited by 12 | Viewed by 4831
Abstract
Lab-on-a-disc (LOD) has emerged as a promising candidate for a point-of-care testing (POCT) device because it can effectively integrate complex fluid manipulation steps using multiple layers of polymeric substrates. However, it is still highly challenging to design and fabricate temperature measurement and heating [...] Read more.
Lab-on-a-disc (LOD) has emerged as a promising candidate for a point-of-care testing (POCT) device because it can effectively integrate complex fluid manipulation steps using multiple layers of polymeric substrates. However, it is still highly challenging to design and fabricate temperature measurement and heating system in non-contact with the surface of LOD, which is a prerequisite to successful realization of DNA amplification especially with a rotatable disc. This study presents a Lab-on-a-disc (LOD)-based automatic loop-mediated isothermal amplification (LAMP) system, where a thermochromic coating (<~420 µm) was used to distantly measure the chamber’s temperature and a micro graphite film was integrated into the chamber to remotely absorb laser beam with super high efficiency. We used a deep learning network to more consistently analyze the product of LAMP than we could with the naked eye. Consequently, both temperature heating and measurement were carried out without a physical contact with the surface of LOD. The experimental results show that the proposed approach, which no previous work has attempted, was highly effective in realizing LAMP in LOD. Full article
(This article belongs to the Special Issue Sensors and Lab-on-a-Chip)
Show Figures

Figure 1

13 pages, 1356 KiB  
Article
Endpoint Visual Detection of Three Genetically Modified Rice Events by Loop-Mediated Isothermal Amplification
by Xiaoyun Chen, Xiaofu Wang, Nuo Jin, Yu Zhou, Sainan Huang, Qingmei Miao, Qing Zhu and Junfeng Xu
Int. J. Mol. Sci. 2012, 13(11), 14421-14433; https://doi.org/10.3390/ijms131114421 - 7 Nov 2012
Cited by 64 | Viewed by 9028
Abstract
Genetically modified (GM) rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR), currently the most common [...] Read more.
Genetically modified (GM) rice KMD1, TT51-1, and KF6 are three of the most well known transgenic Bt rice lines in China. A rapid and sensitive molecular assay for risk assessment of GM rice is needed. Polymerase chain reaction (PCR), currently the most common method for detecting genetically modified organisms, requires temperature cycling and relatively complex procedures. Here we developed a visual and rapid loop-mediated isothermal amplification (LAMP) method to amplify three GM rice event-specific junction sequences. Target DNA was amplified and visualized by two indicators (SYBR green or hydroxy naphthol blue [HNB]) within 60 min at an isothermal temperature of 63 °C. Different kinds of plants were selected to ensure the specificity of detection and the results of the non-target samples were negative, indicating that the primer sets for the three GM rice varieties had good levels of specificity. The sensitivity of LAMP, with detection limits at low concentration levels (0.01%–0.005% GM), was 10- to 100-fold greater than that of conventional PCR. Additionally, the LAMP assay coupled with an indicator (SYBR green or HNB) facilitated analysis. These findings revealed that the rapid detection method was suitable as a simple field-based test to determine the status of GM crops. Full article
Show Figures

Back to TopTop