Loop-Mediated Isothermal Amplification for the Rapid Detection of the Mutation of Carbendazim-Resistant Isolates in Didymella bryoniae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates and Reagents
2.2. DNA Extraction
2.3. LAMP Primer Design
2.4. Specificity of LAMP Primer
2.5. Optimization of LAMP Reaction Time
2.6. Sensitivity of LAMP Assay
2.7. Confirmation of the LAMP Assay
2.8. Application of LAMP on Monitoring Carbendazim-Resistance of D. bryoniae in Diseased Watermelon Samples
3. Results
3.1. Selection and Specificity of LAMP Primer
3.2. Optimization of LAMP Reaction Time
3.3. The Sensitivity of LAMP Primer
3.4. Confirmation of the LAMP Assay
3.5. Application of LAMP on Monitoring Carbendazim-Resistance of D. bryoniae in Diseased Watermelon Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perez, J.; Martínez, B.; Covas, B.; García, H. Symptoms and identification of the causal agent of the gummy stem blight in watermelon (Citrulus lunatus (Thunb) Matsum y Nakai) in the Isle of Youth. Rev. De Prot. Veg. 2012, 27, 13–18. [Google Scholar]
- Babadoost, M.; Zitter, T.A. Fruit rots of pumpkin: A serious threat to the pumpkin industry. Plant Dis. 2009, 93, 772–782. [Google Scholar] [PubMed]
- Kothera, R.T.; Keinath, A.P.; Farnham, M.W. AFLP analysis of a worldwide collection of Didymella bryoniae. Mycol. Res. 2003, 107, 297–304. [Google Scholar] [PubMed]
- Ling, K.; Wechter, W.; Somai, B.; Walcott, R.; Keinath, A. An improved real-time PCR system for broad-spectrum detection of Didymella bryoniae, the causal agent of gummy stem blight of cucurbits. Seed Sci. Technol. 2010, 38, 692–703. [Google Scholar] [CrossRef]
- Garampalli, R.H.; Gapalkrishna, M.K.; Li, H.X.; Brewer, M.T. Two Stagonosporopsis species identified as causal agents of gummy stem blight epidemics of gherkin cucumber (Cucumis sativus) in Karnataka, India. Eur. J. Plant Pathol. 2016, 145, 507–512. [Google Scholar]
- Ma, Z.; Michailides, T.J. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot. 2005, 24, 853–863. [Google Scholar]
- Keinath, A.P.; Zitter, T.A. Resistance to benomyl and thiophanate-methyl in Didymella bryoniae from South Carolina and New York. Plant Dis. 1998, 82, 479–484. [Google Scholar] [CrossRef]
- Keinath, A.P. Sensitivity to azoxystrobin in Didymella bryoniae isolates collected before and after field use of strobilurin fungicides. Pest Manag. Sci. 2009, 65, 1090–1096. [Google Scholar]
- Avenot, H.F.; Thomas, A.; Gitaitis, R.D.; Langston, D.B., Jr.; Stevenson, K.L. Molecular characterization of boscalid-and penthiopyrad-resistant isolates of Didymella bryoniae and assessment of their sensitivity to fluopyram. Pest Manag. Sci. 2012, 68, 645–651. [Google Scholar]
- Gullino, M.L.; Leroux, P.; Smith, C.M. Uses and challenges of novel compounds for plant disease control. Crop Prot. 2000, 19, 1–11. [Google Scholar]
- McGrath, M.T. Fungicide resistance in cucurbit powdery mildew: Experiences and challenges. Plant Dis. 2001, 85, 236–245. [Google Scholar] [PubMed]
- Fluit, A.C.; Visser, M.R.; Schmitz, F.-J. Molecular detection of antimicrobial resistance. Clin. Microbiol. Rev. 2001, 14, 836–871. [Google Scholar] [PubMed]
- Li, J.; Katiyar, S.K.; Edlind, T.D. Site-directed mutagenesis of Saccharomyces cerevisiae β-tubulin: Interaction between residue 167 and benzimidazole compounds. FEBS Lett. 1996, 385, 7–10. [Google Scholar] [PubMed]
- Liu, S.; Yang, Y.; LI, Y.; Wang, S.; Yu, Y.; Bi, C. Baseline sensitivity and resistance monitoring of Didymella bryoniae to carbendazim. In Proceedings of the 2015 Annual Meeting of the Chinese Society of Plant Pathology, Pasadena, CA, USA, 1–5 August 2015. [Google Scholar]
- Li, H.; Zhou, M. Rapid identification of carbendazim resistant strains of Sclerotinia sclerotiorum using allele-specific oligonucleotide (ASO)-PCR. Siientia Agric. Sin. 2004, 37, 1396–1399. [Google Scholar]
- Orita, M.; Suzuki, Y.; Sekiya, T.; Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 1989, 5, 874–879. [Google Scholar]
- Fraaije, B.; Butters, J.; Coelho, J.; Jones, D.; Hollomon, D. Following the dynamics of strobilurin resistance in Blumeria graminis f. sp. tritici using quantitative allele-specific real-time PCR measurements with the fluorescent dye SYBR Green I. Plant Pathol. 2002, 51, 45–54. [Google Scholar]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar]
- Wu, X.; Lu, C.; Shen, H.; Wu, C.; Zhang, H.; Wang, Y.; Zheng, X. A rapid detection method for the plant pathogen Phialophora gregata f. sp. sojae based on loop-mediated isothermal amplification (LAMP). J. Nanjing Agric. Univ. (Nanjing Nongye Daxue Xuebao) 2015, 38, 568–574. [Google Scholar]
- Duan, Y.; Ge, C.; Zhang, X.; Wang, J.; Zhou, M. A rapid detection method for the plant pathogen Sclerotinia sclerotiorum based on loop-mediated isothermal amplification (LAMP). Australas. Plant Pathol. 2014, 43, 61–66. [Google Scholar]
- Bühlmann, A.; Pothier, J.F.; Rezzonico, F.; Smits, T.H.; Andreou, M.; Boonham, N.; Duffy, B.; Frey, J.E. Erwinia amylovora loop-mediated isothermal amplification (LAMP) assay for rapid pathogen detection and on-site diagnosis of fire blight. J. Microbiol. Methods 2013, 92, 332–339. [Google Scholar]
- Nie, X. Reverse transcription loop-mediated isothermal amplification of DNA for detection of Potato virus Y. Plant Dis. 2005, 89, 605–610. [Google Scholar] [PubMed]
- Duan, Y.; Zhang, X.; Ge, C.; Wang, Y.; Cao, J.; Jia, X.; Wang, J.; Zhou, M. Development and application of loop-mediated isothermal amplification for detection of the F167Y mutation of carbendazim-resistant isolates in Fusarium graminearum. Sci. Rep. 2014, 4, 7094. [Google Scholar] [PubMed]
- Duan, Y.; Yang, Y.; Wang, Y.; Pan, X.; Wu, J.; Cai, Y.; Li, T.; Zhao, D.; Wang, J.; Zhou, M. Loop-mediated isothermal amplification for the rapid detection of the F200Y mutant genotype of carbendazim-resistant isolates of Sclerotinia sclerotiorum. Plant Dis. 2016, 100, 976–983. [Google Scholar] [PubMed] [Green Version]
- Li, J.; Wang, S.; Yu, J.; Wang, L.; Zhou, S. A modified CTAB protocol for plant DNA extraction. Chin. Bull. Bot. 2013, 48, 72. [Google Scholar]
- Cui, L.; Han, J. Comparision of Methods of Extracting DNA from Penicillium. Journal Shanxi University Natural Science Edition 2004, 27, 185–187. [Google Scholar]
- Yasuyoshi, M.; Masataka, K.; Norihiro, T.; Tsugunori, N. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods 2004, 59, 145–157. [Google Scholar]
- Norihiro, T.; Yasuyoshi, M.; Hidetoshi, K.; Tsugunori, N. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 2008, 3, 877–882. [Google Scholar]
- Motoki, G.; Eiichi, H.; Atsuo, O.; Akio, N.; Ken-Ichi, H. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques 2009, 46, 167–172. [Google Scholar]
- Fukuta, S.; Takahashi, R.; Kuroyanagi, S.; Miyake, N.; Nagai, H.; Suzuki, H.; Hashizume, F.; Tsuji, T.; Taguchi, H.; Watanabe, H.; et al. Detection of Pythium aphanidermatum in tomato using loop-mediated isothermal amplification (LAMP) with species-specific primers. Eur. J. Plant Pathol. 2013, 136, 689–701. [Google Scholar]
- Chen, J.-H.; Lu, F.; Lim, C.S.; Kim, J.-Y.; Ahn, H.-J.; Suh, I.-B.; Takeo, S.; Tsuboi, T.; Sattabongkot, J.; Han, E.-T. Detection of Plasmodium vivax infection in the Republic of Korea by loop-mediated isothermal amplification (LAMP). Acta Trop. 2010, 113, 61–65. [Google Scholar]
- Kong, L.; Wang, H.-B.; Wang, S.-S.; Xu, P.-P.; Zhang, R.-F.; Dong, S.; Zheng, X.-B. Rapid detection of potato late blight using a loop-mediated isothermal amplification assay. J. Integr. Agric. 2020, 19, 1274–1282. [Google Scholar]
- Chen, Z.-D.; Kang, H.-J.; Chai, A.-L.; Shi, Y.-X.; Xie, X.-W.; Li, L.; Li, B.-J. Development of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Pseudomonas syringae pv. tomato in planta. Eur. J. Plant Pathol. 2020, 156, 739–750. [Google Scholar]
- Parkinson, L.E.; Le, D.P.; Dann, E.K. Development of three loop-mediated isothermal amplification (LAMP) assays for the rapid detection of Calonectria ilicicola, Dactylonectria macrodidyma, and the Dactylonectria genus in avocado roots. Plant Dis. 2019, 103, 1865–1875. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Li, P.; Xu, J.; Zhang, M.; Ren, R.; Liu, G.; Yang, X. Rapid and sensitive detection of Didymella bryoniae by visual loop-mediated isothermal amplification assay. Front. Microbiol. 2016, 7, 1372. [Google Scholar]
- Tian, Y.; Liu, D.; Zhao, Y.; Wu, J.; Hu, B.; Walcott, R. Visual detection of Didymella bryoniae in cucurbit seeds using a loop-mediated isothermal amplification assay. Eur. J. Plant Pathol. 2017, 147, 255–263. [Google Scholar]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 2002, 16, 223–229. [Google Scholar] [CrossRef]
Primer | Sequence |
---|---|
RF3 | 5′-TACAACGCCACCCTCTCC-3′ |
RB3 | 5′-TGAGCTGACCGGGGAAAC-3′ |
RBIP | 5′-ACAACCCCTCTTACGGTGACCT-GCAGGTGGTTACACCAGAC-3′ |
RFIP-1 | 5′-TGTCGTAGAGGGCCTCGTTGTC-TTGTCGAGAACTCTGACGC-3′ |
RFIP-2 | 5′-TGTCGTAGAGGGCCTCGTTGTC-TTGTCGAGAACTCTGACCC-3′ |
RFIP-3 | 5′-TGTCGTAGAGGGCCTCGTTGTC-TTGTCGAGAACTCTGAGGC-3′ |
RFIP-4 | 5′-TGTCGTAGAGGGCCTCGTTGTC-TTGTCGAGAACTCTGACGCC-3′ |
RFIP-5 | 5′-TGTCGTAGAGGGCCTCGTTGTC-TTGTCGAGAACTCTGACGCGT-3′ |
Primer Set | R1 | R2 | R3 | R4 | R5 |
---|---|---|---|---|---|
Primers | RF3 + RB3 + RBIP + RFIP-1 | RF3 + RB3 + RBIP + RFIP-2 | RF3 + RB3 + RBIP + RFIP-3 | RF3 + RB3 + RBIP + RFIP-4 | RF3 + RB3 + RBIP + RFIP-5 |
Template DNA | S/R | S/R | S/R | S/R | S/R |
Oder | 1/6 | 2/7 | 3/8 | 4/9 | 5/10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Huang, M.; Fang, A.; Yang, Y.; Yu, Y.; Bi, C. Loop-Mediated Isothermal Amplification for the Rapid Detection of the Mutation of Carbendazim-Resistant Isolates in Didymella bryoniae. Agronomy 2022, 12, 2057. https://doi.org/10.3390/agronomy12092057
Shen L, Huang M, Fang A, Yang Y, Yu Y, Bi C. Loop-Mediated Isothermal Amplification for the Rapid Detection of the Mutation of Carbendazim-Resistant Isolates in Didymella bryoniae. Agronomy. 2022; 12(9):2057. https://doi.org/10.3390/agronomy12092057
Chicago/Turabian StyleShen, Lina, Mengyu Huang, Anfei Fang, Yuheng Yang, Yang Yu, and Chaowei Bi. 2022. "Loop-Mediated Isothermal Amplification for the Rapid Detection of the Mutation of Carbendazim-Resistant Isolates in Didymella bryoniae" Agronomy 12, no. 9: 2057. https://doi.org/10.3390/agronomy12092057
APA StyleShen, L., Huang, M., Fang, A., Yang, Y., Yu, Y., & Bi, C. (2022). Loop-Mediated Isothermal Amplification for the Rapid Detection of the Mutation of Carbendazim-Resistant Isolates in Didymella bryoniae. Agronomy, 12(9), 2057. https://doi.org/10.3390/agronomy12092057