Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = hydrogenation of polycyclic aromatic hydrocarbons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2904 KB  
Article
Morphological and Structural Analysis of Pyrolytic Carbon from Simple Thermal Methane Pyrolysis
by Michał Wojtasik, Wojciech Krasodomski, Grażyna Żak, Katarzyna Wojtasik and Wojciech Pakieła
Appl. Sci. 2025, 15(19), 10742; https://doi.org/10.3390/app151910742 - 6 Oct 2025
Viewed by 232
Abstract
This study presents a comprehensive morphological and structural analysis of carbon materials produced via simple thermal methane pyrolysis conducted under laboratory conditions in a quartz reactor without the use of catalysts. The process, carried out at 1000 °C, achieved moderate methane conversion (36.5%), [...] Read more.
This study presents a comprehensive morphological and structural analysis of carbon materials produced via simple thermal methane pyrolysis conducted under laboratory conditions in a quartz reactor without the use of catalysts. The process, carried out at 1000 °C, achieved moderate methane conversion (36.5%), process efficiency (36.1%), and very high selectivity (98.9%) towards hydrogen production, highlighting its potential as a CO2-free hydrogen generation method. Distinct carbon morphologies were observed depending on the formation areas within the reactor: a predominant flake-like silver carbon formed on reactor walls at temperatures between 600 and 980 °C (accounting for 91% of the solid product) and a minor powdery carbon formed near 980–1000 °C (9% of the solids). The powdery carbon exhibited a high specific surface area (125.3 m2/g), substantial mesoporosity (60%), and porous spherical aggregates, indicating an amorphous structure. In contrast, flake-like carbon demonstrated a low surface area (1.99 m2/g), high structural order confirmed by Raman spectroscopy, and superior thermal stability, making it suitable for advanced applications requiring mechanical robustness. Additionally, polycyclic aromatic hydrocarbons were detected in cooler zones of the reactor, suggesting side reactions in low-temperature areas. The study underscores the impact of temperature zones on carbon structure and properties, emphasizing the importance of precise thermal control to tailor carbon materials for diverse industrial applications while producing clean hydrogen. Full article
Show Figures

Figure 1

16 pages, 3156 KB  
Article
Adsorptive Behavior of Corn-Cob- and Straw-Derived Biochar for Polycyclic Aromatic Hydrocarbon Removal from Aqueous Systems
by Jelena Beljin, Marijana Kragulj Isakovski, Jasmina Agbaba, Maja Vujić, Snežana Maletić and Aleksandra Tubić
Processes 2025, 13(5), 1521; https://doi.org/10.3390/pr13051521 - 15 May 2025
Viewed by 1467
Abstract
This study investigates the potential of biochar derived from agricultural residues—corn cob and wheat straw—for removing polycyclic aromatic hydrocarbons (PAHs) from aqueous systems. Biochars were produced via pyrolysis at 700 °C and characterized using BET, SEM, EDS, FTIR, and pXRD to evaluate physicochemical [...] Read more.
This study investigates the potential of biochar derived from agricultural residues—corn cob and wheat straw—for removing polycyclic aromatic hydrocarbons (PAHs) from aqueous systems. Biochars were produced via pyrolysis at 700 °C and characterized using BET, SEM, EDS, FTIR, and pXRD to evaluate physicochemical properties. Adsorption experiments with naphthalene, fluorene, fluoranthene, and pyrene revealed high adsorption affinities (Log Kd = 4.35–5.69 L/kg), with Freundlich isotherm modeling indicating nonlinear behavior (n = 0.732–0.923), suggesting a combination of pore filling and chemical interactions such as π-π stacking and hydrogen bonding. Corn-cob biochar, rich in lignin, exhibited a higher surface area (111 m2/g) and greater affinity for fluorene, while wheat-straw biochar, with a higher oxygen content and more functional groups, performed better for naphthalene and pyrene. FTIR and pXRD confirmed aromatic and graphitic structures facilitating PAH interactions. These results underscore the importance of feedstock selection and pyrolysis conditions in tailoring biochar properties for specific pollutants. While both biochars compare favorably with conventional adsorbents like activated carbon, further research on long-term stability in complex matrices is needed. Overall, the findings support the development of cost-effective, scalable, and eco-friendly biochar-based technologies for water remediation. Full article
(This article belongs to the Special Issue Green Conversion Processes of Waste and Biomass Materials)
Show Figures

Figure 1

26 pages, 4247 KB  
Review
Precious Metals Catalyze the Saturated Hydrogenation of Polycyclic Aromatic Hydrocarbons in Coal Tar
by Xiaoyu Qiao, Xinru Wang, Changrui Tan, Liang Ma, Bofeng Zhang, Jingpei Cao and Hongyan Wang
Catalysts 2025, 15(4), 397; https://doi.org/10.3390/catal15040397 - 19 Apr 2025
Cited by 1 | Viewed by 1256
Abstract
As a significant by-product of coal pyrolysis processes, coal tar is rich in polycyclic aromatic hydrocarbons (PAHs), garnering considerable attention for their potential conversion into high-value products through saturation hydrogenation. This paper presents a comprehensive review of recent advancements in two key areas: [...] Read more.
As a significant by-product of coal pyrolysis processes, coal tar is rich in polycyclic aromatic hydrocarbons (PAHs), garnering considerable attention for their potential conversion into high-value products through saturation hydrogenation. This paper presents a comprehensive review of recent advancements in two key areas: progress in high-activity saturated hydrogenation of PAHs catalyzed by precious metals and the regulation of cis–trans isomeric configuration of their hydrogenation products. Furthermore, the investigation addresses two critical challenges involved in the field: the susceptibility of precious metal catalysts to sulfur poisoning during the coal tar’s hydrogenation and the difficulty in controlling the stereo-isomerization of hydrogenation products. This review will advance fundamental understanding of PAHs hydrogenation mechanisms and provide critical technical guidance in coal tar utilization, supporting the sustainable development of clean energy technologies and high-value chemical production from coal by-products. Full article
Show Figures

Figure 1

17 pages, 2618 KB  
Article
Performance Evaluation of Modified Biochar as a Polycyclic Aromatic Hydrocarbon Adsorbent and Microbial-Immobilized Carrier
by Shuying Geng, Shushuai Mao, Guangming Xu, Aizhong Ding, Feiyong Chen, Junfeng Dou and Fuqiang Fan
Processes 2024, 12(12), 2939; https://doi.org/10.3390/pr12122939 - 23 Dec 2024
Cited by 4 | Viewed by 1950
Abstract
Herein, biochars derived from corn stalks, rice husks, and bamboo powder were modified by nitric acid oxidation and sodium hydroxide alkali activation to identify efficient and cost-effective polycyclic aromatic hydrocarbon-adsorbent and microbial-immobilized carriers. The surface characterization and adsorption investigation results suggested that acid/alkali [...] Read more.
Herein, biochars derived from corn stalks, rice husks, and bamboo powder were modified by nitric acid oxidation and sodium hydroxide alkali activation to identify efficient and cost-effective polycyclic aromatic hydrocarbon-adsorbent and microbial-immobilized carriers. The surface characterization and adsorption investigation results suggested that acid/alkali modification promoted the phenanthrene removal ability in an aqueous solution of biochars via facilitating π–π/n–π electron donor–acceptor interactions, electrostatic interactions, hydrogen bonds, and hydrophobic interactions. Subsequently, the degrading bacteria Rhodococcus sp. DG1 was successfully immobilized on the rice husk-derived biochar with nitric acid oxidation (RBO), which exhibited the maximum phenanthrene adsorption efficiency (3818.99 µg·g−1), abundant surface functional groups, and a larger specific surface area (182.6 m2·g−1) and pore volume (0.141 m3·g−1). Degradation studies revealed that the microorganisms immobilized on RBO by the adsorption method yielded a significant phenanthrene removal rate of 80.15% after 30 days, which was 38.78% higher than that of the control. Conversely, the polymer gel network-based microenvironment in the microorganism-immobilized RBO by the combined adsorption–embedding method restricted the migration and diffusion of nutrients and pollutants in the reaction system. This study thus introduces an innovative modified biochar-based microbial immobilization technology characterized by a simple design, convenient operation, and high adsorption efficiency, offering valuable insights into material selection for PAH contamination bioremediation. Full article
(This article belongs to the Special Issue State-of-the-Art Wastewater Treatment Techniques)
Show Figures

Figure 1

13 pages, 1747 KB  
Article
Photoformation of Environmentally Persistent Free Radicals During Phototransformation of Poly-Cyclic Aromatic Hydrocarbons (PAHs) on Particles in an Aqueous Solution: The Hydrogenation of PAHs and Effect of Co-Existing Water Matrix Factors
by Xintong Li, Baocheng Qu, Jingyao Wang and Hongxia Zhao
Toxics 2024, 12(11), 796; https://doi.org/10.3390/toxics12110796 - 31 Oct 2024
Viewed by 1184
Abstract
Environmentally persistent free radicals (EPFRs) generated on particles under irradiation in water have attracted particular attention, and their formation mechanisms are not well understood. This study investigated the photoformation of EPFRs on both actual samples collected from an oil production plant in Panjin, [...] Read more.
Environmentally persistent free radicals (EPFRs) generated on particles under irradiation in water have attracted particular attention, and their formation mechanisms are not well understood. This study investigated the photoformation of EPFRs on both actual samples collected from an oil production plant in Panjin, Liaoning, China, and simulated Fe(III)-montmorillonite samples in water. The EPFRs detected on actual samples were not easily generated compared with those in the soil or in the air, based on the concentrations of identified PAHs. EPR signals in the range of 1017 to 1018 spin/g were detected on the simulated Fe(III)-montmorillonite samples. Their g factors were smaller than 2.0030, which indicated the generation of carbon-centered EPFRs. The primary byproducts were identified by chromatography–mass spectrometry (GC-MS), and a possible EPFR formation pathway during PAH degradation was proposed. Hydrogenation of PAHs during the photoformation of EPFRs was observed and might be due to the catalysis of the simulated particles and the interaction of the intermediates. Meanwhile, the effects of the typical anions (NO2 and Cl) and the surfactant (TWEEN® 80 and sodium dodecyl sulfate) were investigated and indicated that the phototransformation process and adsorption process would affect the formation of EPFRs. Overall, our study provided useful information to understand the photoformation of EPFRs in aqueous environments. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

18 pages, 2078 KB  
Article
The Toxic Effects of Petroleum Diesel, Biodiesel, and Renewable Diesel Exhaust Particles on Human Alveolar Epithelial Cells
by Oskari J. Uski, Gregory Rankin, Håkan Wingfors, Roger Magnusson, Christoffer Boman, Robert Lindgren, Ala Muala, Anders Blomberg, Jenny A. Bosson and Thomas Sandström
J. Xenobiot. 2024, 14(4), 1432-1449; https://doi.org/10.3390/jox14040080 - 9 Oct 2024
Cited by 1 | Viewed by 2323
Abstract
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate [...] Read more.
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate matter (PM) emissions from a diesel engine powered by conventional petroleum diesel fuel (SD10) and two biodiesel and renewable diesel fuels in vitro. The fuels used were rapeseed methyl ester (RME), soy methyl ester (SME), and Hydrogenated Vegetable Oil (HVO), either pure or as 50% blends with SD10. Additionally, a 5% RME blend was also used. The highest concentration of polycyclic aromatic hydrocarbon emissions and elemental carbon (EC) was found in conventional diesel and the 5% RME blend. HVO PM samples also exhibited a high amount of EC. A dose-dependent genotoxic response was detected with PM from SD10, pure SME, and RME as well as their blends. Reactive oxygen species levels were several times higher in cells exposed to PM from SD10, pure HVO, and especially the 5% RME blend. Apoptotic cell death was observed in cells exposed to PM from SD10, 5% RME blend, the 50% SME blend, and HVO samples. In conclusion, all diesel PM samples, including biodiesel and renewable diesel fuels, exhibited toxicity. Full article
Show Figures

Graphical abstract

16 pages, 1748 KB  
Article
Hydrogen Gas-Grilling in Meat: Impact on Odor Profile and Contents of Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds
by María José Beriain, Inmaculada Gómez, Susana García, José Carlos Urroz, Pedro María Diéguez and Francisco C. Ibañez
Foods 2024, 13(15), 2443; https://doi.org/10.3390/foods13152443 - 2 Aug 2024
Cited by 1 | Viewed by 2090
Abstract
The effect of fuel (hydrogen vs. butane) on the formation of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) was evaluated for grilled horse meat (very low-fat and low-fat) cooking vertically. Gas chromatography-mass spectrometry was used to analyze PAHs and VOCs. An [...] Read more.
The effect of fuel (hydrogen vs. butane) on the formation of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) was evaluated for grilled horse meat (very low-fat and low-fat) cooking vertically. Gas chromatography-mass spectrometry was used to analyze PAHs and VOCs. An electronic nose was used to evaluate the odor profile. Total high-molecular-weight PAHs ranged from 19.59 to 28.65 µg/kg with butane and from 1.83 to 1.61 µg/kg with hydrogen. Conversely, total low-molecular-weight PAHs went from 184.41 to 286.03 µg/kg with butane and from 36.88 to 41.63 µg/kg with hydrogen. Aldehydes and alkanes were the predominant family in a total of 59 VOCs. Hydrogen gas-grilling reduced significantly (p < 0.05) the generation of VOCs related to lipid oxidation. The odor profile was not modified significantly despite the change of PAHs and VOCs. The findings indicate that hydrogen is a viable alternative to butane for grilling horse meat. Hydrogen gas-grilling may be regarded as a safe cooking procedure of meat from a PAH contamination point and perhaps sustainable environmentally compared to a conventional technique. The present study provides the basis for the use of hydrogen gas in grilled meat. Full article
(This article belongs to the Special Issue Green Processing Technology of Meat and Meat Products Volume II)
Show Figures

Graphical abstract

23 pages, 4813 KB  
Article
Efficiency of Hydrogen Peroxide and Fenton Reagent for Polycyclic Aromatic Hydrocarbon Degradation in Contaminated Soil: Insights from Experimental and Predictive Modeling
by Mahdia Smara, Razika Khalladi, Nadji Moulai-Mostefa, Kamilia Madi, Dorsaf Mansour, Sabrina Lekmine, Ouided Benslama, Hichem Tahraoui, Jie Zhang and Abdeltif Amrane
Processes 2024, 12(3), 621; https://doi.org/10.3390/pr12030621 - 21 Mar 2024
Cited by 27 | Viewed by 3630
Abstract
This study investigates the degradation kinetics of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil using hydrogen peroxide (H2O2) and the Fenton process (H2O2/Fe2+). The effect of oxidant concentration and the Fenton molar ratio [...] Read more.
This study investigates the degradation kinetics of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil using hydrogen peroxide (H2O2) and the Fenton process (H2O2/Fe2+). The effect of oxidant concentration and the Fenton molar ratio on PAH decomposition efficiency is examined. Results reveal that increasing H2O2 concentration above 25 mmol/samples leads to a slight increase in the rate constants for both first- and second-order reactions. The Fenton process demonstrates higher efficiency in PAH degradation compared to H2O2 alone, achieving decomposition yields ranging from 84.7% to 99.9%. pH evolution during the oxidation process influences PAH degradation, with alkaline conditions favoring lower elimination rates. Fourier-transform infrared (FTIR) spectroscopy analysis indicates significant elimination of PAHs after treatment, with both oxidants showing comparable efficacy in complete hydrocarbon degradation. The mechanisms of PAH degradation by H2O2 and the Fenton process involve hydroxyl radical formation, with the latter exhibiting greater efficiency due to Fe2+ catalysis. Gaussian process regression (GPR) modeling accurately predicts reduced concentration, with optimized ARD-Exponential kernel function demonstrating superior performance. The Improved Grey Wolf Optimizer algorithm facilitates optimization of reaction conditions, yielding a high degree of agreement between experimental and predicted values. A MATLAB 2022b interface is developed for efficient optimization and prediction of C/C0, a critical parameter in PAH degradation studies. This integrated approach offers insights into optimizing the efficiency of oxidant-based PAH remediation techniques, with potential applications in contaminated soil remediation. Full article
(This article belongs to the Special Issue Bioremediation Processes of Contaminated Soil and Sediments)
Show Figures

Figure 1

17 pages, 1918 KB  
Article
Sorption Behavior of Organic Pollutants on Biodegradable and Nondegradable Microplastics: pH Effects
by Maja Vujić, Sanja Vasiljević, Jasmina Nikić, Branko Kordić, Jasmina Agbaba and Aleksandra Tubić
Appl. Sci. 2023, 13(23), 12835; https://doi.org/10.3390/app132312835 - 29 Nov 2023
Cited by 9 | Viewed by 2946
Abstract
Microplastics (MPs), chlorinated phenols (CPs), polycyclic aromatic hydrocarbons (PAHs) and halogenated benzenes (HBs) are pollutants that are widely present in freshwater systems. As alternatives to conventional plastics, bioplastics are receiving a lot of attention, but there are limited data on their impact on [...] Read more.
Microplastics (MPs), chlorinated phenols (CPs), polycyclic aromatic hydrocarbons (PAHs) and halogenated benzenes (HBs) are pollutants that are widely present in freshwater systems. As alternatives to conventional plastics, bioplastics are receiving a lot of attention, but there are limited data on their impact on pollutant behavior. This work therefore investigated the impact of pH on the sorption of CPs, PAHs and HBs, as some of the toxic and highly persistent pollutants, on seven different plastics using kinetic and isotherm studies. The pH of the water matrix impacted the adsorption behavior of CPs on all selected MPs, with the highest degree of adsorption occurring at pH 7 for the majority of the selected CPs. The highest adsorption affinity of CPs on the MPs, at pH 7, was obtained for 4-chlorophenol and 2,4-dichlorophenol on powdered polyethylene standard (qt = 221 μg/g), while the lowest was obtained for the adsorption of pentachlorophenol on polyethylene terephthalate (qt = 25 μg/g). On the other hand, the pH value of the water matrix did not affect the adsorption of halogenated benzenes and PAHs on MPs. The pseudo-second-order rate model fit the adsorption kinetics data of all experiments. The results obtained for the adsorption of CPs on MPs indicated a lower sorption affinity of CPs with MPs at pH 4 and pH 10 compared to pH 7. The Langmuir isotherm, at pH 7, implied that 4-chlorophenol’s adsorption affinity was not significantly influenced by the type of MPs. On the other hand, at pH 7, the adsorption of 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol varied greatly, with powdered MP types showing the highest affinity for CP adsorption. Furthermore, the obtained adsorption isotherm results imply that electrostatic attraction, hydrogen bonds, π-π interactions and van der Waals interactions, are an integral part of adsorption mechanisms of the CPs on the MPs. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

30 pages, 5349 KB  
Article
Computational Analysis of Some More Rectangular Tessellations of Kekulenes and Their Molecular Characterizations
by S. Prabhu, M. Arulperumjothi, Muhammad Usman Ghani, Muhammad Imran, S. Salu and Bibin K. Jose
Molecules 2023, 28(18), 6625; https://doi.org/10.3390/molecules28186625 - 14 Sep 2023
Cited by 13 | Viewed by 1745
Abstract
Cycloarene molecules are benzene-ring-based polycyclic aromatic hydrocarbons that have been fused in a circular manner and are surrounded by carbon–hydrogen bonds that point inward. Due to their magnetic, geometric, and electronic characteristics and superaromaticity, these polycyclic aromatics have received attention in a number [...] Read more.
Cycloarene molecules are benzene-ring-based polycyclic aromatic hydrocarbons that have been fused in a circular manner and are surrounded by carbon–hydrogen bonds that point inward. Due to their magnetic, geometric, and electronic characteristics and superaromaticity, these polycyclic aromatics have received attention in a number of studies. The kekulene molecule is a cyclically organized benzene ring in the shape of a doughnut and is the very first example of such a conjugated macrocyclic compound. Due to its structural characteristics and molecular characterizations, it serves as a great model for theoretical research involving the investigation of π electron conjugation circuits. Therefore, in order to unravel their novel electrical and molecular characteristics and foresee potential applications, the characterization of such components is crucial. In our current research, we describe two unique series of enormous polycyclic molecules made from the extensively studied base kekulene molecule, utilizing the essential graph-theoretical tools to identify their structural characterization via topological quantities. Rectangular kekulene Type-I and rectangular kekulene Type-II structures were obtained from base kekulene molecules arranged in a rectangular fashion. We also employ two subcases for each Type and, for all of these, we derived ten topological indices. We can investigate the physiochemical characteristics of rectangular kekulenes using these topological indices. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

19 pages, 1033 KB  
Article
Evaluation of Air Quality inside Self-Contained Breathing Apparatus Used by Firefighters
by Soo Jin Kim and Seunghon Ham
Fire 2023, 6(9), 347; https://doi.org/10.3390/fire6090347 - 6 Sep 2023
Cited by 4 | Viewed by 3677
Abstract
(1) Background: When a fire breaks out, combustibles are burned and toxic substances such as carbon monoxide (CO), polycyclic aromatic hydrocarbons (PAH), benzene, and hydrogen cyanide are produced. The purpose of this study is to evaluate the air quality inside self-contained breathing apparatus [...] Read more.
(1) Background: When a fire breaks out, combustibles are burned and toxic substances such as carbon monoxide (CO), polycyclic aromatic hydrocarbons (PAH), benzene, and hydrogen cyanide are produced. The purpose of this study is to evaluate the air quality inside self-contained breathing apparatus (SCBA) by comparing it to that in the environment where the SCBA charger is installed. (2) Methods: The design of this study was a simulation-based case-control experiment study, and the experiment was conducted at two fire stations located on land and on water. When charging the SCBA, it was differentiated according to the presence or absence of exposure to harmful substances and the degree of exposure. The air quality inside the SCBA in the charging room installed in the fire station garages located on land and in the water, which were not completely isolated from harmful substances, was evaluated. CO, carbon dioxide (CO2), water, and oil mist were measured and analyzed to determine the air quality inside the SCBA. (3) Results: In the case of land firefighting stations, the mean CO among the SCBA internal air quality items was 20 times higher than the outside the SCBA, and higher than the safe range in the group with the highest exposure at the sites of firefighting buildings completely isolated from hazardous substances. The CO levels of all items of water were analyzed to be higher than the safe range in the floating fire station. (4) Conclusions: It was confirmed that the installation environment of an SCBA charging room can affect the safety of the charged internal air quality components. The results of this study can be actively used for the operation and management of SCBA charging room environments when building firefighting buildings in the future for the hygiene, safety, and health of firefighters. Full article
23 pages, 3959 KB  
Article
An Experimental Study on the Quantitative and Qualitative Characteristics of Tar Formed during Ex Situ Coal Gasification
by Marian Wiatowski
Energies 2023, 16(6), 2777; https://doi.org/10.3390/en16062777 - 16 Mar 2023
Cited by 6 | Viewed by 3895
Abstract
Over the three-day gasification test of a large coal block with oxygen in atmospheric pressure conditions, the yield and composition of the tar collected was investigated. The tar was sampled approximately every 7 h into sorption tubes directly from the reactor outlet. Sand, [...] Read more.
Over the three-day gasification test of a large coal block with oxygen in atmospheric pressure conditions, the yield and composition of the tar collected was investigated. The tar was sampled approximately every 7 h into sorption tubes directly from the reactor outlet. Sand, with a moisture content of 11%, was used as an insulating material to simulate the environment of the gasified coal seam. Light aromatic hydrocarbons (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs) were determined in the tar. The results that were obtained were recalculated into the concentrations of the individual components of the tar and its mass stream in the process gas. The residence time of the tar in the reactor, its molar mass, and the H/C ratio were also calculated. As the reaction progressed, the water that was contained in the wet sand started to react with the gasified coal, which significantly affected the composition and amount of the obtained process gas and the produced tar. Due to an increase in the amount of generated gases and steam, the residence time of the tar vapours in the reactor decreased as the gasification progressed, ranging from approximately 1 s at the beginning of the process to 0.35 s at the end. The obtained tar was characterised by a high average content of BTEX fractions at approximately 82.6%, PAHs at 14.7%, and phenols at 2.7%. Benzene was the dominant BTEX compound, with a concentration of 83.7%. The high content of the BTEX compounds, especially benzene, was a result of secondary processes taking place in the tar (hydrocracking and steam reforming), and as a result of which, in the presence of hydrogen and steam, the heavier components of the tar were transformed into lighter ones. The total yield of the tar from this UCG (underground coal gasification) process—calculated per 1 ton of gasified coal—was 1.8% (counted on the basis of the analysed tar composition). Comparing this result to the efficiency of the classic coking process, the tar yield was about three times lower. Full article
Show Figures

Figure 1

20 pages, 2571 KB  
Article
Rhodococcus Strains from the Specialized Collection of Alkanotrophs for Biodegradation of Aromatic Compounds
by Anastasiia Krivoruchko, Maria Kuyukina, Tatyana Peshkur, Colin J. Cunningham and Irina Ivshina
Molecules 2023, 28(5), 2393; https://doi.org/10.3390/molecules28052393 - 5 Mar 2023
Cited by 15 | Viewed by 3696
Abstract
The ability to degrade aromatic hydrocarbons, including (i) benzene, toluene, o-xylene, naphthalene, anthracene, phenanthrene, benzo[a]anthracene, and benzo[a]pyrene; (ii) polar substituted derivatives of benzene, including phenol and aniline; (iii) N-heterocyclic compounds, including pyridine; 2-, 3-, and 4-picolines; 2- and 6-lutidine; 2- and 4-hydroxypyridines; [...] Read more.
The ability to degrade aromatic hydrocarbons, including (i) benzene, toluene, o-xylene, naphthalene, anthracene, phenanthrene, benzo[a]anthracene, and benzo[a]pyrene; (ii) polar substituted derivatives of benzene, including phenol and aniline; (iii) N-heterocyclic compounds, including pyridine; 2-, 3-, and 4-picolines; 2- and 6-lutidine; 2- and 4-hydroxypyridines; (iv) derivatives of aromatic acids, including coumarin, of 133 Rhodococcus strains from the Regional Specialized Collection of Alkanotrophic Microorganisms was demonstrated. The minimal inhibitory concentrations of these aromatic compounds for Rhodococcus varied in a wide range from 0.2 up to 50.0 mM. o-Xylene and polycyclic aromatic hydrocarbons (PAHs) were the less-toxic and preferred aromatic growth substrates. Rhodococcus bacteria introduced into the PAH-contaminated model soil resulted in a 43% removal of PAHs at an initial concentration 1 g/kg within 213 days, which was three times higher than that in the control soil. As a result of the analysis of biodegradation genes, metabolic pathways for aromatic hydrocarbons, phenol, and nitrogen-containing aromatic compounds in Rhodococcus, proceeding through the formation of catechol as a key metabolite with its following ortho-cleavage or via the hydrogenation of aromatic rings, were verified. Full article
Show Figures

Figure 1

18 pages, 2445 KB  
Review
Recent Advances in Bacterial Degradation of Hydrocarbons
by Emiliana Pandolfo, Anna Barra Caracciolo and Ludovica Rolando
Water 2023, 15(2), 375; https://doi.org/10.3390/w15020375 - 16 Jan 2023
Cited by 73 | Viewed by 22507
Abstract
Hydrocarbons occur in fossil fuels such as crude oil and consist mainly of hydrogen and carbon. Although they are natural chemicals, crude oil refining results in commercial products with new physico-chemical properties, which can increase their complexity and toxicity, and hamper their degradation. [...] Read more.
Hydrocarbons occur in fossil fuels such as crude oil and consist mainly of hydrogen and carbon. Although they are natural chemicals, crude oil refining results in commercial products with new physico-chemical properties, which can increase their complexity and toxicity, and hamper their degradation. The presence of biodiverse natural microbial communities is a prerequisite for an effective homeostatic response to the various hydrocarbons, that contaminate ecosystems. However, their removal depends on the compartment contaminated (water, sediment, soil), their molecular weight, and their toxicity not hampering microbial activity. This paper reports different bacterial species involved in the biodegradation of aliphatic and aromatic hydrocarbons. Hydrocarbon contamination is generally due to the co-presence of a mixture of these chemicals, and their removal from the environment cannot rely on only a single species but generally requires bacterial consortia. Versatile bacterial metabolism relies on specific genes encoding the key enzymes involved in the peripheral metabolic and central metabolic pathways for degrading aliphatic and polycyclic aromatic hydrocarbons. Although microbial metabolism can have the potential for natural attenuation of these contaminants, hydrocarbon bioremediation, through biostimulation (e.g., use of surfactants, plants, earthworms, and nanoparticles) and bioaugmentation, can be a valid tool for removing them from actually contaminated soil, freshwater, groundwater, and seawater. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

12 pages, 2152 KB  
Article
Predictive Models of Gas/Particulate Partition Coefficients (KP) for Polycyclic Aromatic Hydrocarbons and Their Oxygen/Nitrogen Derivatives
by Qiang Wu, Siqi Cao, Zhenyi Chen, Xiaoxuan Wei, Guangcai Ma and Haiying Yu
Molecules 2022, 27(21), 7608; https://doi.org/10.3390/molecules27217608 - 6 Nov 2022
Cited by 3 | Viewed by 2148
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their oxygen/nitrogen derivatives released into the atmosphere can alternate between a gas phase and a particulate phase, further affecting their environmental behavior and fate. The gas/particulate partition coefficient (KP) is generally used to characterize such [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) and their oxygen/nitrogen derivatives released into the atmosphere can alternate between a gas phase and a particulate phase, further affecting their environmental behavior and fate. The gas/particulate partition coefficient (KP) is generally used to characterize such partitioning equilibrium. In this study, the correlation between log KP of fifty PAH derivatives and their n-octanol/air partition coefficient (log KOA) was first analyzed, yielding a strong linear correlation (R2 = 0.801). Then, Gaussian 09 software was used to calculate quantum chemical descriptors of all chemicals at M062X/6-311+G (d,p) level. Both stepwise multiple linear regression (MLR) and support vector machine (SVM) methods were used to develop the quantitative structure-property relationship (QSPR) prediction models of log KP. They yield better statistical performance (R2 > 0.847, RMSE < 0.584) than the log KOA model. Simulation external validation and cross validation were further used to characterize the fitting performance, predictive ability, and robustness of the models. The mechanism analysis shows intermolecular dispersion interaction and hydrogen bonding as the main factors to dominate the distribution of PAH derivatives between the gas phase and particulate phase. The developed models can be used to predict log KP values of other PAH derivatives in the application domain, providing basic data for their ecological risk assessment. Full article
Show Figures

Figure 1

Back to TopTop