Next Article in Journal
Two Polarity-Sensitive Fluorescent Probes Based on Curcumin Analogs for Visualizing Polarity Changes in Lipid Droplets
Previous Article in Journal
Emerging Applications of Nanotechnology in Healthcare and Medicine
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Computational Analysis of Some More Rectangular Tessellations of Kekulenes and Their Molecular Characterizations

1
Department of Mathematics, Rajalakshmi Engineering College, Chennai 602105, India
2
Department of Mathematics, St. Joseph’s College of Engineering, Chennai 600119, India
3
Institute of Mathematics, Khawaja Fareed University of Engineering & Information Technology, Abu Dhabi Road, Rahim Yar Khan 64200, Pakistan
4
Department of Mathematical Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
5
PG & Research Department of Mathematics, Sanatana Dharma College, Kerala University, Kerala 688003, India
*
Author to whom correspondence should be addressed.
Molecules 2023, 28(18), 6625; https://doi.org/10.3390/molecules28186625
Submission received: 8 August 2023 / Revised: 31 August 2023 / Accepted: 2 September 2023 / Published: 14 September 2023
(This article belongs to the Section Computational and Theoretical Chemistry)

Abstract

:
Cycloarene molecules are benzene-ring-based polycyclic aromatic hydrocarbons that have been fused in a circular manner and are surrounded by carbon–hydrogen bonds that point inward. Due to their magnetic, geometric, and electronic characteristics and superaromaticity, these polycyclic aromatics have received attention in a number of studies. The kekulene molecule is a cyclically organized benzene ring in the shape of a doughnut and is the very first example of such a conjugated macrocyclic compound. Due to its structural characteristics and molecular characterizations, it serves as a great model for theoretical research involving the investigation of π electron conjugation circuits. Therefore, in order to unravel their novel electrical and molecular characteristics and foresee potential applications, the characterization of such components is crucial. In our current research, we describe two unique series of enormous polycyclic molecules made from the extensively studied base kekulene molecule, utilizing the essential graph-theoretical tools to identify their structural characterization via topological quantities. Rectangular kekulene Type-I and rectangular kekulene Type-II structures were obtained from base kekulene molecules arranged in a rectangular fashion. We also employ two subcases for each Type and, for all of these, we derived ten topological indices. We can investigate the physiochemical characteristics of rectangular kekulenes using these topological indices.

Graphical Abstract

1. Introduction

Organic compounds known as polycyclic aromatic hydrocarbons are composed of two or more single or fused aromatic rings with a pair of carbon atoms shared between rings in their molecules [1,2,3,4]. Having various structures and toxicities, they are environmentally stable compounds with low vapor pressure, aqueous solubility, and high boiling points and melting points [5,6]. These polycyclic aromatics’ chemical and bioactive properties have generated a great deal of interest in a variety of industries, including liquid crystals, medicines, agriculture, electronics, functional plastics, and photographic products [7]. They are also classified as pollutants of the environment because of their toxic and carcinogenic nature; thus, studying how they affect the ecosystem enables us to develop corrective actions for both biological and physical systems [7,8]. Due to their improved stabilization caused by the macrocyclic conjugation, these compounds also exhibit the superaromaticity phenomenon, which has recently attracted the interest of theoretical and experimental investigation [4,5,7,9].
In terms of the issue of π -bond delocalization, cycloarenes are a fascinating class of aromatic systems. They are produced by combining linear and angular annelations of benzene units, and they contain fully-annealed macrocyclic structures that enclose avoid that carbon–hydrogen bonds point into [10,11,12,13,14]. McWeeny was the one who first proposed their electronic structure [15,16], though several attempts had been undertaken to synthesize them since 1951. Nearly 30 years later, the pioneer in this sector, cyclo[d.e.d.e.d.e.d.e.d.e.d.e] dodecakisbenzene—C48H24, as a chemical formula—was effectively synthesized [17]; it later came to be known as kekulene. At a later time, Kumar et al. [18] and Funhoff et al. [19] synthesized two further novel cycloarene compounds, septulene and cyclo[d.e.d.e.e.d.e.d.e.e] decakisbenzene. Surprisingly, there are few Clar structures with such fragrant sextets, in sharp contrast to the highly conjugated character of cycloarenes [20,21]. Over the years, there has been a lot of interest in the synthesis and characterization of these intriguing molecules because of their paradoxical behavior and the possibility that the entire molecule contains globally delocalized electrons [10,11,12,13,14,22,23].
With twelve annelated benzene rings making up a complete cycle, the structure of kekulene presents the enticing promise of improved stabilization with intriguing magnetic characteristics and magnetocaloric effects. Using ab initio methods, it was discovered that the current density maps display global diamagnetic and parameter circulations along the inner and outer perimeters that include six local benzenoid diamagnetic π circulations [24]. It was revealed through a comparison analysis of this compound’s geometric and magnetic properties with those of phenanthrene; anthracene; and 1, 2:7, 8-dibenzanthracene that it has six benzenoid sextets and a D6h Clar structure, making it a typical aromatic molecule [25]. Although this molecule has remarkable physicochemical characteristics, its uses have long been restricted due to its difficult synthesis procedures [11]. Pozo et al. [26] recently addressed this issue and established an effective approach for the synthesis of kekulene using aryne chemistry. As a result, it makes it possible for large-scale manufacture, which, in turn, draws chemists’ attention to the investigation of its exciting applications. It was then suggested that this structure’s transition order from ferromagnetic (FM) to paramagnetic (PM) is a second-order process, making it an eligible candidate for magnetic refrigeration [27]. In addition, the compound’s unique mix of qualities including strong Li mobility, high cell voltage, and extremely high storage capacity enables it to be a practical material for anodes for lithium-ion batteries [28]. This unique structure’s theoretical characterization will, therefore, be important for further research into its intriguing characteristics and potential uses.
From this point forward, Graph theory, group theory, and combinatorial mathematics’ enumerative mathematical tools are needed to improve the exhaustive production and synthesis of these prospective novel compounds. These theoretical techniques mainly rely on molecular similarity measurements and associated tenets; they are essential for assisting computer-aided drug discovery (CADD) procedures. Any parameter that explores the topology of the chemical structure is found to be extremely useful in the characterization of novel biological structures and DNA permutations due to the intimate relationship between the pharmacological and biomedical attributes and their subatomic configurations that is revealed by a large number of medication tests. One class of molecular parameters known as topological indices characterizes the structural geometry of molecules to describe the size and shape of chemical species [29,30,31]. They offer crucial information for understanding a variety of physicochemical characteristics, such as chromatographic retention times, anesthetic potency, carcinogenic behavior, and aromaticity [29,32,33,34]. With the aid of these descriptors, the theoretical possibility of examining and manipulating a newly synthesized compound is increased, which, in turn, enables us to select between molecular structures that deserve to be synthesized and tested and those that are not, allowing us to significantly lower the cost of our experimental work. The importance of mathematical and computational techniques in helping pharmaceutical and medical professionals understand the biological and chemical properties of novel medications was well demonstrated by a recent review [35,36].
By converting the compound’s atomic structure into a molecular graph, where every vertex denotes a single atom and every edge represents a chemical bond across atoms, the topological descriptors of the compound are numerically established. It is necessary to assign each compound with a specific numerical code in order to study the relationships between the actual chemical structure and its biological and physicochemical activities; further, enabling the investigation of correlations between quantitative structure–activity relationships (QSAR), quantitative structure–toxicity relationships (QSTR), quantitative structure–property relationships (QSPR), and topological indices makes this encoding possible [37,38,39]. These topological descriptors’ ciphers provide the necessities for successful examination of biological and medical information of new medications without the need for experimental apparatus by encoding a quantitative measure for each molecule based on its underlying topology, which is often graph-invariant in nature. As a result, topological indices and their subsequent advances have received a lot of interest, and many papers are now devoted to the research of novel molecular descriptors and the associated computational techniques [29,40,41,42,43,44,45,46,47]. Some further works on topological indices and related topics can be seen in [48]; we can extend our future works to these areas [49,50,51,52], and numerous similar issues can be solved if new topological indices are defined or modified. Through the use of strength-weighted graphs, this study establishes the topological characterization of rectangular kekulene meshes Type I and II using a variety of Bond additive, distance-based, distance- and degree-based, associated topological descriptors, thus enhancing our understanding of the numerous chemical and physical characteristics of these compounds, such as their aromaticity, topological resonance energy, ring current diamagnetism, and the functions performed by graph-theoretical internal substructures like conjugated circuits.

2. Background

An ordered pair ( V , E ) is a graph in which V stands for the set of vertices and E for the set of edges. The degree of a vertex v is a non-negative number denoted as d G ( v ) that indicates how many edges have entered the vertex. How many edges there are in a shortest path determines the distance between two vertices u and v in a graph G, which is indicated by the symbol d G ( u , v ) . Thus, an edge f = x y and a vertex u with distance d G ( u , f ) is defined as the minimum of { d G ( u , y ) , d G ( u , x ) } ; meanwhile, the minimum of { d G ( v , f ) , d G ( u , f ) } with the distance between two edges e = u v and f = x y is denoted by D G ( e , f ) . The collection of vertices that are adjacent to a vertex u is said to be its neighborhood, or N G ( u ) . If d G ( u , v ) = d H ( u , v ) for a subgraph H of G, then H is known as G’s isometric subgraph, and the convex subgraph H of G is known if the whole shortest path in H connecting any pair of vertices lies entirely within H. We denote N u ( e | G ) and M u ( e | G ) to the collection of G’s vertices and edges, respectively, which are nearer to u than v for an edge e = u v E ( G ) and n u ( e | G ) , and m u ( e | G ) represent how many members there are in these collections. Similarly, n v ( e | G ) and m v ( e | G ) are defined. Denote { 1 , 2 , , η } by [ η ] and { η + 1 , η + 2 , , 2 η + 1 } by [ 2 η + 1 ] [ η ] . Also, we denote the strength-weighted quotient graph by SWQG and the quotient graph by QG.
The first appearance of the strength-weighted graph (SWG) was in [45] and extensively addressed in [46,47,53,54,55,56,57,58,59,60] as G s w = ( G , ( w v , s v ) , s e ) , where w v : V ( G s w ) R 0 + is the vertex-weight, s v : V ( G s w ) R 0 + is the vertex-strength, and s e : E ( G s w ) R 0 + is the edge-strength. In the strength-weighted graph, d G s w ( u , v ) = d G ( u , v ) , d G s w ( u , f ) = d G ( u , f ) , D G s w ( e , f ) = D G ( e , f ) , N u ( e | G s w ) = N u ( e | G ) , and M u ( e | G s w ) = M u ( e | G ) . In order to determine the measures of closeness cardinality, n u ( e | G s w ) = x N u ( e | G s w ) w v ( x ) ,   m u ( e | G s w ) = x N u ( e | G s w ) s v ( x ) + f M u ( e | G s w ) s e ( f ) , and t u ( e | G s w ) = n u ( e | G s w ) + m u ( e | G s w ) . The computations of n v ( e | G s w ) , m v ( e | G s w ) and t v ( e | G s w ) are similar. A vertex degree in G s w of u is determined by d G s w ( u ) = x N G s w ( u ) s e ( u x ) . The critically vital distance-based topological indices (TI) of G s w are now being shown and take notice of the equality of T I ( G s w ) and T I ( G ) when s e = 1 , w v = 1 , and s v = 0 .
  • Wiener W ( G s w ) = { u , v } V ( G s w ) w v ( u ) w v ( v ) d G s w ( u , v ) ;
  • Edge-Wiener W e ( G s w ) = { u , v } V ( G s w ) s v ( u ) s v ( v ) d G s w ( u , v ) + { e , f } E ( G s w ) s e ( e ) s e ( f ) D G s w ( e , f )
    + u V ( G s w ) f E ( G s w ) s v ( u ) s e ( f ) d G s w ( u , f ) ;
  • Vertex-edge-Wiener W v e ( G s w ) = 1 2 [ { u , v } V ( G s w ) w v ( u ) s v ( v ) + w v ( v ) s v ( u ) d G s w ( u , v )
    + u V ( G s w ) f E ( G s w ) w v ( u ) s e ( f ) d G s w ( u , f ) ] ;
  • Vertex-Szeged S z v ( G s w ) = e = u v E ( G s w ) s e ( e ) n u ( e | G s w ) n v ( e | G s w ) ;
  • Edge-Szeged S z e ( G s w ) = e = u v E ( G s w ) s e ( e ) m u ( e | G s w ) m v ( e | G s w ) ;
  • Edge-vertex-Szeged S z e v ( G s w ) = 1 2 e = u v E ( G s w ) s e ( e ) [ n u ( e | G s w ) m v ( e | G s w ) +   n v ( e | G s w ) m u ( e | G s w ) ] ;
  • Total-Szeged S z t ( G s w ) = S z v ( G s w ) + S z e ( G s w ) + 2 S z e v ( G s w ) ;
  • Padmakar–Ivan P I ( G s w ) = e = u v E ( G s w ) s e ( e ) m u ( e | G s w ) + m v ( e | G s w ) ;
  • Schultz S ( G s w ) = { u , v } V ( G s w ) w v ( v ) ( d G s w ( u ) + s v ( u ) ) + w v ( u ) ( d G s w ( v ) + s v ( v ) ) d G s w ( u , v ) ;
  • Gutman G u t ( G s w ) = { u , v } V ( G s w ) ( d G s w ( u ) + s v ( u ) ) ( d G s w ( v ) + s v ( v ) ) d G s w ( u , v ) .
For handling topological descriptors based on distance, the cut method approach is incredibly beneficial [61,62]. It was effectively used very frequently to compute distance-based topological indices for benzenoid frameworks [45,46,55,56,63]. The Djoković–Winkler Θ relation is the fundamental concept behind the cut method, which has the following definition: Regarding any pair of edges of G with e = u v and f = c d , d G ( u , c ) + d G ( v , d ) d G ( u , d ) + d G ( v , c ) , the relation Θ is symmetric and reflexive, though not necessarily transitive. However, its transitive closure Θ * results in the formation of an equivalence relation. Let F = { F 1 , F 2 , F r } represent the G’s Θ * -partition and every class F i ; the disconnected graph G F i is utilized to generate the quotient graph G / F i , in which vertices of G / F i are connected components of G F i and C j i , and C k i are two adjacent components whenever vertex x C j i and vertex y C k i are adjacent to one another such that x y F i . It is argued that a partition E = { E 1 , E 2 , E k } of E ( G ) is coarser than F of E ( G ) if every set E i is expressed as the union of at least one Θ * -class of G. For details on TIs with respect to this notation, see [40,45,46].

3. Rectangular Kekulene Systems

In light of its significance in numerous scientific domains, including electronics [64], organic photovoltaics [65], and optoelectronic devices [66], polycyclic aromatic hydrocarbons have become the subject of extensive experimental and theoretical research. Some of the larger polycyclic compounds are often used as a cutout and model for materials made of glassy carbon and graphite sheets [67]. In general, these large polycyclics are totally made of condensed hexagon rings either by increasing the basic molecule’s size; by circumscribing it in benzene rings; or by a basic molecule that is squeezed into oligomers, trimers, and dimers [68,69,70]. A number of TIs for a 2D sheet made up of numerous kekulenes were computed in [53]. In this study, we thoroughly examine two of these new hollow-sited PAH compounds made from kekulene structures.
Figure 1 shows the kekulene molecule’s basic chemical structure. Additionally, it is used in different configurations to create new series of big PAH compounds that are based on kekulenes. The different Θ * -classes of kekulene structure that are crucial to our computation in large polycyclic aromatic compounds are now illustrated. The Θ * -classes are zigzag vertical ( V R Z ), zigzag acute ( A C Z ), zigzag obtuse ( O B Z ) , horizontal ( T H , H ) , obtuse ( O B ) , and acute ( A C ) , as shown in Figure 2.

Kekulene

The kekulene units are arranged in a rectangular mesh configuration, as depicted in Figure 3a, to form the rectangular kekulene system R K ( m , n ) Type-I. It has 36 m n 2 m + 32 n 18 number of vertices and 48 m n + 40 n 4 m 24 number of edges. The kekulene units are arranged in a rectangular mesh configuration, as depicted in Figure 3b, to form a R K ( m , n ) Type-II rectangular kekulene system. It has 36 m n + 50 n 2 m 36 number of vertices and 48 m n + 64 n 4 m 48 number of edges. Now, for this planar tiling-based kekulene system, we calculate the distance-based topological indices.
Theorem 1.
Let G be a R K ( m , n ) Type-I rectangular kekulene system with m = 3 n 1 .
(i)
Wiener
  • W ( G ) = ( 19440 m 3 n 2 2160 m 3 n + 60 m 3 + 12960 m 2 n 3 + 49680 m 2 n 2 34080 m 2 n + 1560 m 2 + 123120 m n 4 1080 m n 3 2250 m n 2 29550 m n + 765 m 106272 n 5 + 134100 n 4 42680 n 3 5880 n 2 + 5372 n 3015 ) / 15 .
(ii)
Edge-Wiener
  • W e ( G ) = ( 34560 m 3 n 2 5760 m 3 n + 240 m 3 + 23040 m 2 n 3 + 69120 m 2 n 2 59160 m 2 n + 4020 m 2 + 218880 m n 4 43200 m n 3 27960 m n 2 24180 m n + 210 m 188928 n 5 + 248160 n 4 109120 n 3 3360 n 2 + 26488 n 11310 ) / 15 .
(iii)
Vertex-Edge-Wiener
  • W v e ( G ) = ( 34560 m 3 n 2 5760 m 3 n + 240 m 3 + 23040 m 2 n 3 + 69120 m 2 n 2 59160 m 2 n + 4020 m 2 + 218880 m n 4 43200 m n 3 27960 m n 2 24180 m n + 210 m 188928 n 5 + 248160 n 4 109120 n 3 3360 n 2 + 26488 n 11310 ) / 15 .
(iv)
Vertex-Szeged
  • S z v ( G ) = ( 103680 m 3 n 3 12960 m 3 n 2 4080 m 3 n + 279360 m 2 n 3 175200 m 2 n 2 + 14160 m 2 n 1080 m 2 + 699840 m n 5 146880 m n 4 + 59000 m n 3 202800 m n 2 + 64300 m n 7380 m 699840 n 6 + 784224 n 5 159160 n 4 6000 n 3 66560 n 2 + 28476 n 4620 ) / 15 .
(v)
Edge-Szeged
  • S z e ( G ) = ( 184320 m 3 n 3 40320 m 3 n 2 960 m 3 n 480 m 3 + 433920 m 2 n 3 339840 m 2 n 2 + 50160 m 2 n 5160 m 2 + 1244160 m n 5 453120 m n 4 + 57760 m n 3 333600 m n 2 + 153320 m n 20100 m 1244160 n 6 + 1462272 n 5 437760 n 4 + 29280 n 3 104400 n 2 + 76608 n 21540 ) / 15 .
(vi)
Edge-Vertex-Szeged
  • S z e v ( G ) = ( 138240 m 3 n 3 23760 m 3 n 2 3240 m 3 n 120 m 3 + 348960 m 2 n 3 245040 m 2 n 2 + 28080 m 2 n 2520 m 2 + 933120 m n 5 267840 m n 4 + 57840 m n 3 260760 m n 2 + 100440 m n 12180 m 933120 n 6 + 1071168 n 5 274120 n 4 + 6320 n 3 83120 n 2 + 47932 n 11040 ) / 15 .
(vii)
Total-Szeged
  • S z t ( G ) = ( 564480 m 3 n 3 100800 m 3 n 2 11520 m 3 n 720 m 3 + 1411200 m 2 n 3 1005120 m 2 n 2 + 120480 m 2 n 11280 m 2 + 3810240 m n 5 1135680 m n 4 + 232440 m n 3 1057920 m n 2 + 418500 m n 51840 m 3810240 n 6 + 4388832 n 5 1145160 n 4 + 35920 n 3 337200 n 2 + 200948 n 48240 ) / 15 .
(viii)
Padmakar–Ivan
  • P I ( G ) = ( 4608 m 2 n 2 1008 m 2 n + 72 m 2 + 6912 m n 3 + 6432 m n 2 6624 m n + 624 m + 5056 n 3 672 n 2 4624 n + 1848 ) / 3 .
(ix)
Schultz
  • S ( G ) = ( 103680 m 3 n 2 14400 m 3 n + 480 m 3 + 69120 m 2 n 3 + 253440 m 2 n 2 183600 m 2 n + 10440 m 2 + 656640 m n 4 41760 m n 3 21120 m n 2 142920 m n + 4800 m 566784 n 5 + 729840 n 4 257600 n 3 20640 n 2 + 34424 n 18360 ) / 15 .
(x)
Gutman
  • G u t ( G ) = ( 138240 m 3 n 2 23040 m 3 n + 960 m 3 + 92160 m 2 n 3 + 322560 m 2 n 2 246480 m 2 n + 16680 m 2 + 875520 m n 4 103680 m n 3 37440 m n 2 171120 m n + 6840 m 755712 n 5 + 992640 n 4 382400 n 3 12480 n 2 + 52592 n 27360 ) / 15 .
Proof. 
We begin by describing the Θ * -classes for the m = 3 n 1 scenario. Let { A C Z 1 i : i [ n ] } , { A C Z 2 i : i [ m n ] } , and { A C Z 3 i : i [ n 1 ] } be the zigzag acute classes shown in Figure 4a, with the isomorphic SWQGs are shown in Figure 4b–d. Let { A C 1 i : i [ n ] } , { A C 2 i : i [ n ] } , { A C 3 i : i [ n 1 ] } , { A C 4 i : i [ n ] } , { A C 5 i : i [ n 1 ] } , { A C 6 i : i [ n 1 ] } , and A C be acute classes shown in Figure 5 with the isomorphic SWQGs are shown in Figure 6a–g. When we rotate all of these zigzag acutes and acute classes 60 anti-clockwise, we obtain zigzag obtuse { O B Z 1 i : i [ n ] } , { O B Z 2 i : i [ m n ] } , { O B Z 3 i : i [ n 1 ] } and obtuse classes { O B 1 i : i [ n ] } , { O B 2 i : i [ n ] } , { O B 3 i : i [ n 1 ] } , { O B 4 i : i [ n ] } , { O B 5 i : i [ n 1 ] } , { O B 6 i : i [ n 1 ] } , and O B with no change in isomorphic SWQGs. The terminal horizontal classes and horizontal classes { T H 1 i : i [ n ] } , { T H 2 i : i [ n 1 ] } , and { H i : i [ 2 m ] } are accordingly depicted in Figure 7a as well as the quotient graphs for them in Figure 7b–d. Figure 8a depicts the vertical zigzag classes { V R Z i : i [ 2 n 1 ] } in addition to the quotient graph in Figure 8b. The above quotient graphs’ vertex strength-weighted values are shown in Table 1.
W ( G ) = 2 [ i [ n ] [ 2 u 1 u 2 + 4 i ( u 1 + u 2 + 4 i 1 ) ] + i [ m n ] [ 2 u 3 u 4 + 4 n ( u 3 + u 4 + 4 n 1 ) ] + i [ n 1 ] [ 2 u 5 u 6 + ( 4 i + 2 ) ( u 5 + u 6 + 4 i + 1 ) ] ] + i [ 2 n 1 ] [ 2 u 7 u 8 + ( 2 m + 2 ) ( u 7 + u 8 + 2 m + 1 ) ] + i [ n ] u 9 u 10 + i [ n 1 ] u 11 u 12 + i [ 2 m ] u 13 u 14 + 2 [ i [ n ] u 15 u 16 + i [ n ] u 17 u 18 + i [ n 1 ] u 19 u 20 + i [ n ] u 21 u 22 + i [ n 1 ] u 23 u 24 + i [ n 1 ] u 25 u 26 ] + 2 u 27 u 28 .
W e ( G ) = 2 [ i [ n ] [ 2 v 1 v 2 + 4 i ( v 1 + v 2 + 4 i 1 ) ] + i [ m n ] [ 2 v 3 v 4 + 4 n ( v 3 + v 4 + 4 n 1 ) ] + i [ n 1 ] [ 2 v 5 v 6 + ( 4 i + 2 ) ( v 5 + v 6 + 4 i + 1 ) ] ] + i [ 2 n 1 ] [ 2 v 7 v 8 + ( 2 m + 2 ) ( v 7 + v 8 + 2 m + 1 ) ] + i [ n ] v 9 v 10 + i [ n 1 ] v 11 v 12 + i [ 2 m ] v 13 v 14 + 2 [ i [ n ] v 15 v 16 + i [ n ] v 17 v 18 + i [ n 1 ] v 19 v 20 + i [ n ] v 21 v 22 + i [ n 1 ] v 23 v 24 + i [ n 1 ] v 25 v 26 ] + 2 v 27 v 28 .
W v e ( G ) = 1 2 [ 2 [ i [ n ] [ 4 i ( u 1 + u 2 + v 1 + v 2 + 8 i 2 ) + 2 ( u 1 v 2 + u 2 v 1 ) ] + i [ m n ] [ 4 n ( u 3 + u 4 + v 3 + v 4 + 8 n 2 ) + 2 ( u 3 v 4 + u 4 v 3 ) ] + i [ n 1 ] [ ( 4 i + 2 ) ( u 5 + u 6 + v 5 + v 6 + 8 i + 2 ) + 2 ( u 5 v 6 + u 6 v 5 ) ] ] + i [ 2 n 1 ] [ ( 2 m + 2 ) ( u 7 + u 8 + v 7 + v 8 + 4 m + 2 ) + 2 ( u 7 v 8 + u 8 v 7 ) ] + i [ n ] [ u 9 v 10 + u 10 v 9 ] + i [ n 1 ] [ u 11 v 12 + u 12 v 11 ] + i [ 2 m ] [ u 13 v 14 + u 14 v 13 ] + 2 [ i [ n ] [ u 15 v 16 + u 16 v 15 ] + i [ n ] [ u 17 v 18 + u 18 v 17 ] + i [ n 1 ] [ u 19 v 20 + u 20 v 19 ] + i [ n ] [ u 21 v 22 + u 22 v 21 ] + i [ n 1 ] [ u 23 v 24 + u 24 v 23 ] + i [ n 1 ] [ u 25 v 26 + u 26 v 25 ] ] + 2 ( u 27 v 28 + u 28 v 27 ) ] .
S z v ( G ) = 2 [ i [ n ] 4 i ( ( u 1 + 4 i 1 ) ( u 2 + 1 ) + ( u 2 + 4 i 1 ) ( u 1 + 1 ) ) + i [ m n ] 4 n ( ( u 3 + 4 n 1 ) ( u 4 + 1 ) + ( u 4 + 4 n 1 ) ( u 3 + 1 ) ) + i [ n 1 ] ( 4 i + 2 ) ( ( u 5 + 4 i + 1 ) ( u 6 + 1 ) + ( u 6 + 4 i + 1 ) ( u 5 + 1 ) ) ] + i [ 2 n 1 ] ( 2 m + 2 ) ( ( u 7 + 2 m + 1 ) ( u 8 + 1 ) + ( u 8 + 2 m + 1 ) ( u 7 + 1 ) ) + i [ n ] 4 u 9 u 10 + i [ n 1 ] 4 u 11 u 12 + i [ 2 m ] 4 n u 13 u 14 + 2 [ i [ n ] ( 8 i 4 ) u 15 u 16 + i [ n ] ( 8 i 2 ) u 17 u 18 + i [ n 1 ] 8 i u 19 u 20 + i [ n ] ( 8 i 4 ) u 21 u 22 + i [ n 1 ] 8 i u 23 u 24 + i [ n 1 ] [ ( 8 i + 2 ) u 25 u 26 ] ] + 2 ( 8 n 2 ) u 27 u 28 .
S z e ( G ) = 2 [ i [ n ] 4 i ( ( v 1 + 4 i 1 ) ( v 2 + 1 ) + ( v 2 + 4 i 1 ) ( v 1 + 1 ) ) + i [ m n ] 4 n ( ( v 3 + 4 n 1 ) ( v 4 + 1 ) + ( v 4 + 4 n 1 ) ( v 3 + 1 ) ) + i [ n 1 ] ( 4 i + 2 ) ( ( v 5 + 4 i + 1 ) ( v 6 + 1 ) + ( v 6 + 4 i + 1 ) ( v 5 + 1 ) ) ] + i [ 2 n 1 ] ( 2 m + 2 ) ( ( v 7 + 2 m + 1 ) ( v 8 + 1 ) + ( v 8 + 2 m + 1 ) ( v 7 + 1 ) ) + i [ n ] 4 v 9 v 10 + i [ n 1 ] 4 v 11 v 12 + i [ 2 m ] 4 n v 13 v 14 + 2 [ i [ n ] ( 8 i 4 ) v 15 v 16 + i [ n ] ( 8 i 2 ) v 17 v 18 + i [ n 1 ] 8 i v 19 v 20 + i [ n ] ( 8 i 4 ) v 21 v 22 + i [ n 1 ] 8 i v 23 v 24 + i [ n 1 ] ( 8 i + 2 ) v 25 v 26 ] + 2 ( 8 n 2 ) v 27 v 28 .
S z e v ( G ) = 1 2 [ 2 [ i [ n ] 4 i 2 u 1 v 2 + 4 i v 2 + 16 i + 2 v 1 u 2 + 4 i u 2 + 4 i v 1 + 4 i u 1 4 + i [ m n ] 4 n 2 u 3 v 4 + 4 n v 4 + 16 n + 2 v 3 u 4 + 4 n u 4 + 4 n v 3 + 4 n u 3 4 + i [ n 1 ] 2 2 i + 1 2 u 5 v 6 + 2 u 5 + 4 i v 6 + 16 i + 2 v 6 + 2 v 5 u 6 + 2 v 5 + 4 i u 6 + 2 u 6 + 4 i v 5 + 4 i u 5 + 4 ] + i [ 2 n 1 ] 2 m + 2 2 u 7 v 8 + 2 u 7 + 2 m v 8 + 8 m + 2 v 8 + 2 v 7 u 8 + 2 v 7 + 2 m u 8 + 2 u 8 + 2 m v 7 + 2 m u 7 + 4 + i [ n ] 4 ( u 9 v 10 + u 10 v 9 ) + i [ n 1 ] 4 ( u 11 v 12 + u 12 v 11 ) + i [ 2 m ] 4 n ( u 13 v 14 + u 14 v 13 ) + 2 [ i [ n ] ( 8 i 4 ) ( u 15 v 16 + u 16 v 15 ) + i [ n ] ( 8 i 2 ) ( u 17 v 18 + u 18 v 17 ) + i [ n 1 ] 8 i ( u 19 v 20 + u 20 v 19 ) + i [ n ] ( 8 i 4 ) ( u 21 v 22 + u 22 v 21 ) + i [ n 1 ] 8 i ( u 23 v 24 + u 24 v 23 ) + i [ n 1 ] [ ( 8 i + 2 ) ( u 25 v 26 + u 26 v 25 ) ] ] + 2 ( 8 n 2 ) ( u 27 v 28 + u 28 v 27 ) ] .
S z t ( G ) = S z v ( G ) + S z e ( G ) + 2 S z e v ( G ) .
P I ( G ) = 2 i [ n ] 8 i ( v 1 + v 2 + 4 i ) + i [ m n ] 8 n ( v 3 + v 4 + 4 n ) + i [ n 1 ] ( 8 i + 4 ) ( v 5 + v 6 + 4 i + 2 ) + i [ 2 n 1 ] ( 4 m + 4 ) ( v 7 + v 8 + 2 m + 2 ) + i [ n ] 4 ( v 9 + v 10 ) + i [ n 1 ] 4 ( v 11 + v 12 ) + i [ 2 m ] 4 n ( v 13 + v 14 ) + 2 [ i [ n ] ( 8 i 4 ) ( v 15 + v 16 ) + i [ n ] ( 8 i 2 ) ( v 17 + v 18 ) + i [ n 1 ] 8 i ( v 19 + v 20 ) + i [ n ] ( 8 i 4 ) ( v 21 + v 22 ) + i [ n 1 ] 8 i ( v 23 + v 24 ) + i [ n 1 ] ( 8 i + 2 ) ( v 25 + v 26 ) ] + 2 ( 8 n 2 ) ( v 27 + v 28 ) .
S ( G ) = 2 [ i [ n ] [ 96 i 2 + 16 i u 1 + 16 i u 2 + 8 i v 1 + 8 i v 2 + 4 u 1 v 2 16 i + 4 u 2 v 1 ] + i [ m n ] [ 96 n 2 + 16 n u 3 + 16 n u 4 + 8 n v 3 + 8 n v 4 + 4 u 3 v 4 16 n + 4 u 4 v 3 ] + i [ n 1 ] [ 96 i 2 + 8 u 5 + 80 i + 8 u 6 + 4 v 5 + 4 v 6 + 16 i u 5 + 16 i u 6 + 8 i v 5 + 8 i v 6 + 4 u 5 v 6 + 4 u 6 v 5 + 16 ] ] + i [ 2 n 1 ] [ 24 m 2 + 40 m + 8 u 7 + 8 u 8 + 4 v 7 + 4 v 8 + 8 m u 7 + 8 m u 8 + 4 m v 7 + 4 m v 8 + 4 u 7 v 8 + 4 u 8 v 7 + 16 ] + i [ n ] [ u 9 ( 2 v 10 + 4 ) + u 10 ( 2 v 9 + 4 ) ] + i [ n 1 ] [ u 11 ( 2 v 12 + 4 ) + u 12 ( 2 v 11 + 4 ) ] + i [ 2 m ] [ u 13 ( 2 v 14 + 4 n ) + u 14 ( 2 v 13 + 4 n ) ] + 2 [ i [ n ] [ u 15 ( 2 v 16 + 8 i 4 ) + u 16 ( 2 v 15 + 8 i 4 ) ] + i [ n ] [ u 17 ( 2 v 18 + 8 i 2 ) + u 18 ( 2 v 17 + 8 i 2 ) ] + i [ n 1 ] [ u 19 ( 2 v 20 + 8 i ) + u 20 ( 2 v 19 + 8 i ) ] + i [ n ] [ u 21 ( 2 v 22 + 8 i 4 ) + u 22 ( 2 v 21 + 8 i 4 ) ] + i [ n 1 ] [ u 23 ( 2 v 24 + 8 i ) + u 24 ( 2 v 23 + 8 i ) ] + i [ n 1 ] [ u 25 ( 2 v 26 + 8 i + 2 ) + u 26 ( 2 v 25 + 8 i + 2 ) ] ] + 2 [ u 27 ( 2 v 28 + 8 n 2 ) + u 28 ( 2 v 27 + 8 n 2 ) ] .
G u t ( G ) = 2 [ i [ n ] [ 8 i ( 2 ( v 1 + v 2 ) + 8 i ) + 2 [ ( 2 v 1 + 4 i ) ( 2 v 2 + 4 i ) ] + 16 i ( 4 i 1 ) ] + i [ m n ] [ 8 n ( 2 ( v 3 + v 4 ) + 8 n ) + 2 [ ( 2 v 3 + 4 n ) ( 2 v 4 + 4 n ) ] + 16 n ( 4 n 1 ) ] + i [ n 1 ] [ ( 8 i + 4 ) ( 2 ( v 5 + v 6 ) + 8 i + 4 ) + 2 [ ( 2 v 5 + 4 i + 2 ) ( 2 v 6 + 4 i + 2 ) ] + 4 ( 4 i + 2 ) ( 4 i + 1 ) ] ] + i [ 2 n 1 ] [ ( 4 m + 4 ) ( 2 ( v 7 + v 8 ) + 4 m + 4 ) + 2 [ ( 2 v 7 + 2 m + 2 ) ( 2 v 8 + 2 m + 2 ) ] + 4 ( 2 m + 2 ) ( 2 m + 1 ) ] + i [ n ] [ ( 2 v 9 + 4 ) ( 2 v 10 + 4 ) ] + i [ n 1 ] [ ( 2 v 11 + 4 ) ( 2 v 12 + 4 ) ] + i [ 2 m ] [ ( 2 v 13 + 4 n ) ( 2 v 14 + 4 n ) ] + 2 [ i [ n ] [ ( 2 v 15 + 8 i 4 ) ( 2 v 16 + 8 i 4 ) ] + i [ n ] [ ( 2 v 17 + 8 i 2 ) ( 2 v 18 + 8 i 2 ) ] + i [ n 1 ] [ ( 2 v 19 + 8 i ) ( 2 v 20 + 8 i ) ] + i [ n ] [ ( 2 v 21 + 8 i 4 ) ( 2 v 22 + 8 i 4 ) ] + i [ n 1 ] [ ( 2 v 23 + 8 i ) ( 2 v 24 + 8 i ) ] + i [ n 1 ] [ ( 2 v 25 + 8 i + 2 ) ( 2 v 26 + 8 i + 2 ) ] ] + 2 ( 2 v 27 + 8 n 2 ) ( 2 v 28 + 8 n 2 ) .
By substituting the Table 1 values, the proof is complete by just simplifying it. □
Theorem 2.
Let G be a R K ( m , n ) Type-I rectangular kekulene system with m > 3 n 1 .
(i)
Wiener
  • W ( G ) = ( 25920 m 3 n 2 2880 m 3 n + 80 m 3 + 12960 m 2 n 3 + 66960 m 2 n 2 44760 m 2 n + 2100 m 2 + 35640 m n 4 + 15120 m n 3 + 39090 m n 2 44730 m n + 1285 m 18792 n 5 + 36900 n 4 29000 n 3 + 8280 n 2 + 1652 n 3015 ) / 15 .
(ii)
Edge-Wiener
  • W e ( G ) = ( 46080 m 3 n 2 7680 m 3 n + 320 m 3 + 23040 m 2 n 3 + 92160 m 2 n 2 78360 m 2 n + 5460 m 2 + 63360 m n 4 + 17280 m n 3 + 28320 m n 2 50100 m n + 1570 m 33408 n 5 + 66720 n 4 57640 n 3 + 3600 n 2 + 22048 n 11310 ) / 15 .
(iii)
Vertex-Edge-Wiener
  • W v e ( G ) = ( 43200 m 3 n 2 6000 m 3 n + 200 m 3 + 17280 m 2 n 3 + 99360 m 2 n 2 73920 m 2 n + 4380 m 2 69120 m n 4 + 50040 m n 3 + 83640 m n 2 67950 m n + 2470 m + 91584 n 5 83220 n 4 11480 n 3 + 17400 n 2 + 6146 n 6210 ) / 15 .
(iv)
Vertex-Szeged
  • S z v ( G ) = ( 155520 m 3 n 3 18720 m 3 n 2 3920 m 3 n + 417600 m 2 n 3 260640 m 2 n 2 + 18480 m 2 n 1080 m 2 17280 m n 4 + 389720 m n 3 324240 m n 2 + 68460 m n 7380 m + 6624 n 5 49720 n 4 + 107280 n 3 96320 n 2 + 28476 n 4620 ) / 15 .
(v)
Edge-Szeged
  • S z e ( G ) = ( 276480 m 3 n 3 55680 m 3 n 2 320 m 3 n 480 m 3 + 618240 m 2 n 3 493440 m 2 n 2 + 61680 m 2 n 5160 m 2 + 30720 m n 4 + 490720 m n 3 523680 m n 2 + 164200 m n 20100 m + 10752 n 5 25920 n 4 + 70560 n 3 125520 n 2 + 76608 n 21540 ) / 15 .
(vi)
Edge-Vertex-Szeged
  • S z e v ( G ) = ( 276480 m 3 n 3 42960 m 3 n 2 2600 m 3 n 120 m 3 + 671520 m 2 n 3 475440 m 2 n 2 + 42480 m 2 n 2520 m 2 933120 m n 5 + 267840 m n 4 + 822960 m n 3 567000 m n 2 + 114200 m n 12180 m + 933120 n 6 1054272 n 5 + 195320 n 4 + 183920 n 3 138800 n 2 + 47932 n 11040 ) / 15 .
(vii)
Total-Szeged
  • S z t ( G ) = ( 984960 m 3 n 3 160320 m 3 n 2 9440 m 3 n 720 m 3 + 2378880 m 2 n 3 1704960 m 2 n 2 + 165120 m 2 n 11280 m 2 1866240 m n 5 + 549120 m n 4 + 2526360 m n 3 1981920 m n 2 + 461060 m n 51840 m + 1866240 n 6 2091168 n 5 + 315000 n 4 + 545680 n 3 499440 n 2 + 200948 n 48240 ) / 15 .
(viii)
Padmakar–Ivan
  • P I ( G ) = ( 6912 m 2 n 2 1200 m 2 n + 72 m 2 + 10848 m n 2 7968 m n + 624 m + 448 n 3 + 4320 n 2 5776 n + 1848 ) / 3 .
(ix)
Schultz
  • S ( G ) = ( 138240 m 3 n 2 19200 m 3 n + 640 m 3 + 69120 m 2 n 3 + 342720 m 2 n 2 241680 m 2 n + 14040 m 2 + 190080 m n 4 + 66240 m n 3 + 187920 m n 2 224280 m n + 8240 m 100224 n 5 + 198480 n 4 163280 n 3 + 44400 n 2 + 16184 n 18360 ) / 15 .
(x)
Gutman
  • G u t ( G ) = ( 184320 m 3 n 2 30720 m 3 n + 1280 m 3 + 92160 m 2 n 3 + 437760 m 2 n 2 325200 m 2 n + 22440 m 2 + 253440 m n 4 + 69120 m n 3 + 225120 m n 2 279600 m n + 12280 m 133632 n 5 + 266880 n 4 228320 n 3 + 60000 n 2 + 30512 n 27360 ) / 15 .
Proof. 
With regard to the m > 3 n 1 case, all of these Θ * -classes, as in the m = 3 n 1 case, exist. We also have a few other classes as follows: { A C 7 i : i [ m 3 n + 1 ] } and { O B 4 i : i [ m 3 n + 1 ] } . The SWQG’s vertex values of A C 7 i are u 29 = 54 n 2 + 36 n i 14 n 2 i 16 , u 30 = | V | u 29 , v 29 = 72 n 2 + 48 n i 26 n 4 i 20 , and v 30 = | E | v 29 8 n and its edge strength is 8 n . Additionally, it is simple to see the isomorphism between SWQGs of A C 7 i and O B 7 i .
By applying Theorem 1’s justifications and substituting Table 1’s values, the proof is complete by simplifying it. □
Theorem 3.
Let G be a R K ( m , n ) Type-II rectangular kekulene system with m = 3 n 1 .
(i)
Wiener
  • W ( G ) = ( 19440 m 3 n 2 2160 m 3 n + 60 m 3 + 8480 m 2 n 3 + 95220 m 2 n 2 82640 m 2 n + 9060 m 2 + 123120 m n 4 + 31100 m n 3 + 47490 m n 2 153170 m n + 42465 m 106272 n 5 + 151920 n 4 30500 n 3 42645 n 2 10648 n + 19770 ) / 15 .
(ii)
Edge-Wiener
  • W e ( G ) = ( 34560 m 3 n 2 5760 m 3 n + 240 m 3 + 23040 m 2 n 3 + 120960 m 2 n 2 115320 m 2 n + 8340 m 2 + 218880 m n 4 + 31680 m n 3 24360 m n 2 154860 m n + 52410 m 188928 n 5 + 279840 n 4 92320 n 3 106500 n 2 + 69538 n + 300 ) / 15 .
(iii)
Vertex-Edge-Wiener
  • W v e ( G ) = ( 25920 m 3 n 2 3600 m 3 n + 120 m 3 + 15600 m 2 n 3 + 102960 m 2 n 2 90060 m 2 n + 5280 m 2 + 164160 m n 4 + 35320 m n 3 + 9660 m n 2 143260 m n + 40440 m 141696 n 5 + 206220 n 4 54340 n 3 75180 n 2 + 28216 n + 9480 ) / 15 .
(iv)
Vertex-Szeged
  • S z v ( G ) = ( 94720 m 3 n 3 + 19800 m 3 n 2 39640 m 3 n + 11760 m 3 + 397080 m 2 n 3 204600 m 2 n 2 120240 m 2 n + 45000 m 2 + 699840 m n 5 + 86400 m n 4 + 121360 m n 3 581040 m n 2 + 107060 m n + 32460 m 699840 n 6 + 784224 n 5 + 157280 n 4 370940 n 3 178880 n 2 + 225356 n 40680 ) / 15 .
(v)
Edge-Szeged
  • S z e ( G ) = ( 184320 m 3 n 3 40320 m 3 n 2 960 m 3 n 480 m 3 + 710400 m 2 n 3 653760 m 2 n 2 + 92640 m 2 n 10200 m 2 + 1244160 m n 5 38400 m n 4 + 146080 m n 3 1260480 m n 2 + 626600 m n 69540 m 1244160 n 6 + 1462272 n 5 + 72960 n 4 643760 n 3 297600 n 2 + 577748 n 167160 ) / 15 .
(vi)
Edge-Vertex-Szeged
  • S z e v ( G ) = ( 269760 m 3 n 3 27360 m 3 n 2 19920 m 3 n 240 m 3 + 1083520 m 2 n 3 859920 m 2 n 2 + 45200 m 2 n 9840 m 2 + 1866240 m n 5 + 86400 m n 4 + 292320 m n 3 1843680 m n 2 + 785760 m n 85800 m 1866240 n 6 + 2142336 n 5 + 256720 n 4 971360 n 3 507400 n 2 + 804224 n 210240 ) / 15 .
(vii)
Total-Szeged
  • S z t ( G ) = ( 818560 m 3 n 3 75240 m 3 n 2 80440 m 3 n + 10800 m 3 + 3274520 m 2 n 3 2578200 m 2 n 2 + 62800 m 2 n + 15120 m 2 + 5676480 m n 5 + 220800 m n 4 + 852080 m n 3 5528880 m n 2 + 2305180 m n 208680 m 5676480 n 6 + 6531168 n 5 + 743680 n 4 2957420 n 3 1491280 n 2 + 2411552 n 628320 ) / 15 .
(viii)
Padmakar–Ivan
  • P I ( G ) = ( 4608 m 2 n 2 1008 m 2 n + 72 m 2 + 6912 m n 3 + 12192 m n 2 13008 m n + 1248 m + 8512 n 3 + 1872 n 2 15976 n + 7200 ) / 3 .
(ix)
Schultz
  • S ( G ) = ( 103680 m 3 n 2 14400 m 3 n + 480 m 3 + 62400 m 2 n 3 + 429120 m 2 n 2 363360 m 2 n + 21240 m 2 + 656640 m n 4 + 167200 m n 3 + 87120 m n 2 620680 m n + 165360 m 566784 n 5 + 824880 n 4 181360 n 3 290640 n 2 + 50944 n + 63840 ) / 15 .
(x)
Gutman
  • G u t ( G ) = ( 138240 m 3 n 2 23040 m 3 n + 960 m 3 + 92160 m 2 n 3 + 529920 m 2 n 2 471120 m 2 n + 33960 m 2 + 875520 m n 4 + 195840 m n 3 + 25920 m n 2 748800 m n + 221640 m 755712 n 5 + 1119360 n 4 280640 n 3 405120 n 2 + 117632 n + 71760 ) / 15 .
Proof. 
We begin by describing the Θ * -classes for the m = 3 n 1 scenario. Let { A C Z 1 i : i [ n 1 ] } , { A C Z 1 i : i [ n 1 ] } , and { A C Z 2 i : i [ m n + 1 ] } be zigzag acute classes shown in Figure 9a with isomorphic SWQGs shown in Figure 9b,c. It is evident from the figure that A C Z 1 i and A C Z 1 i are similar. The terminal horizontal classes and horizontal classes { T H i : i [ n 1 ] } , { T H i : i [ n 1 ] } , and { H i : i [ 2 m + 1 ] } are accordingly depicted in Figure 10a and let { A C 1 i : i [ n ] } , { A C 2 i : i [ n 1 ] } , { A C 3 i : i [ n 1 ] } , { A C 1 i : i [ n ] } , { A C 2 i : i [ n 1 ] } , { A C 3 i : i [ n 1 ] } , A M , and A M be the acute classes as shown in Figure 10b and the quotient graphs for them in Figure 11a,b and Figure 11c–f respectively. As these zigzag acute and acute classes rotate 60 anti-clockwise, we obtain zigzag obtuse { O B Z 1 i : i [ n 1 ] } , { O B Z 1 i : i [ n 1 ] } , { O B Z 2 i : i [ m n + 1 ] } and obtuse classes { O B 1 i : i [ n ] } , { O B 2 i : i [ n 1 ] } , { O B 3 i : i [ n 1 ] } , { O B 1 i : i [ n ] } , { O B 2 i : i [ n 1 ] } , { O B 3 i : i [ n 1 ] } , O M , and O M , with no change in isomorphic SWQGs. Figure 12a depicts the zigzag vertical classes of two varieties–that is, { V R Z 1 i : i [ n ] } and { V R Z 2 i : i [ n 1 ] } , and their quotient graphs, which are illustrated in Figure 12b,c. The above quotient graphs’ vertex strength-weighted values are shown in Table 2.
W ( G ) = 2 2 i [ n 1 ] [ 2 u 1 u 2 + ( 4 i + 2 ) ( u 1 + u 2 + 4 i + 1 ) ] + i [ m n 1 ] [ 2 u 3 u 4 + 4 n ( u 3 + u 4 + 4 n 1 ) ] + i [ n ] [ 2 u 5 u 6 + ( 2 m + 2 ) ( u 5 + u 6 + 2 m + 1 ) ] + i [ n 1 ] [ 2 u 7 u 8 + ( 2 m + 4 ) ( u 7 + u 8 + 2 m + 3 ) ] + 2 i [ n 1 ] u 9 u 10 + i [ 2 m + 1 ] u 11 u 12 + 4 i [ n ] u 13 u 14 + i [ n 1 ] u 15 u 16 + i [ n 1 ] u 17 u 18 + 4 u 19 u 20 .
W e ( G ) = 2 2 i [ n 1 ] [ 2 v 1 v 2 + ( 4 i + 2 ) ( v 1 + v 2 + 4 i + 1 ) ] + i [ m n 1 ] [ 2 v 3 v 4 + 4 n ( v 3 + v 4 + 4 n 1 ) ] + i [ n ] [ 2 v 5 v 6 + ( 2 m + 2 ) ( v 5 + v 6 + 2 m + 1 ) ] + i [ n 1 ] [ 2 v 7 v 8 + ( 2 m + 4 ) ( v 7 + v 8 + 2 m + 3 ) ] + 2 i [ n 1 ] v 9 v 10 + i [ 2 m + 1 ] v 11 v 12 + 4 i [ n ] v 13 v 14 + i [ n 1 ] v 15 v 16 + i [ n 1 ] v 17 v 18 + 4 v 19 v 20 .
W v e ( G ) = 1 2 [ 2 [ 2 i [ n 1 ] [ ( 4 i + 2 ) ( u 1 + u 2 + v 1 + v 2 + 8 i + 2 ) + 2 ( u 1 v 2 + u 2 v 1 ) ] + i [ m n 1 ] [ 4 n ( u 3 + u 4 + v 3 + v 4 + 8 n 2 ) + 2 ( u 3 v 4 + u 4 v 3 ) ] ] + i [ n ] [ ( 2 m + 2 ) ( u 5 + u 6 + v 5 + v 6 + 4 m + 2 ) + 2 ( u 5 v 6 + u 6 v 5 ) ] + i [ n 1 ] [ ( 2 m + 4 ) ( u 7 + u 8 + v 7 + v 8 + 4 m + 6 ) + 2 ( u 7 v 8 + u 8 v 7 ) ] + 2 i [ n 1 ] [ u 9 v 10 + u 10 v 9 ] + i [ 2 m + 1 ] [ u 11 v 12 + u 12 v 11 ] + 4 i [ n ] [ u 13 v 14 + u 14 v 13 ] + i [ n 1 ] [ u 15 v 16 + u 16 v 15 ] + i [ n 1 ] [ u 17 v 18 + u 18 v 17 ] + 4 [ u 19 v 20 + u 20 v 19 ] ] .
S z v ( G ) = 2 [ 2 i [ n 1 ] ( 4 i + 2 ) ( ( u 1 + 4 i + 1 ) ( u 2 + 1 ) + ( u 2 + 4 i + 1 ) ( u 1 + 1 ) ) + i [ m n 1 ] 4 n ( ( u 3 + 4 n 1 ) ( u 4 + 1 ) + ( u 4 + 4 n 1 ) ( u 3 + 1 ) ) ] + i [ n ] ( 2 m + 2 ) ( ( u 5 + 2 m + 1 ) ( u 6 + 1 ) + ( u 6 + 2 m + 1 ) ( u 5 + 1 ) ) + i [ n 1 ] ( 2 m + 4 ) ( ( u 7 + 2 m + 3 ) ( u 8 + 1 ) + ( u 8 + 2 m + 3 ) ( u 7 + 1 ) ) + 2 i [ n 1 ] 4 u 9 u 10 + 2 m + 1 4 n u 11 u 12 + 4 i [ n ] ( 8 i 4 ) u 13 u 14 + i [ n 1 ] 8 i u 15 u 16 + i [ n 1 ] ( 8 i + 2 ) u 17 u 18 + 4 ( 8 n 2 ) u 19 u 20 .
S z e ( G ) = 2 [ 2 i [ n 1 ] ( 4 i + 2 ) ( ( v 1 + 4 i + 1 ) ( v 2 + 1 ) + ( v 2 + 4 i + 1 ) ( v 1 + 1 ) ) + i [ m n 1 ] 4 n ( ( v 3 + 4 n 1 ) ( v 4 + 1 ) + ( v 4 + 4 n 1 ) ( v 3 + 1 ) ) ] + i [ n ] ( 2 m + 2 ) ( ( v 5 + 2 m + 1 ) ( v 6 + 1 ) + ( v 6 + 2 m + 1 ) ( v 5 + 1 ) ) + i [ n 1 ] ( 2 m + 4 ) ( ( v 7 + 2 m + 3 ) ( v 8 + 1 ) + ( v 8 + 2 m + 3 ) ( v 7 + 1 ) ) + 2 i [ n 1 ] 4 v 9 v 10 + i [ 2 m + 1 ] 4 n v 11 v 12 + 4 i [ n ] ( 8 i 4 ) v 13 v 14 + i [ n 1 ] 8 i v 15 v 16 + i [ n 1 ] ( 8 i + 2 ) v 17 v 18 + 4 ( 8 n 2 ) v 19 v 20 .
S z e v ( G ) = 1 2 [ 2 [ 2 i [ n 1 ] 4 i + 2 2 u 1 v 2 + 2 u 1 + 4 i v 2 + 16 i + 2 v 2 + 2 v 1 u 2 + 2 v 1 + 4 i u 2 + 2 u 2 + 4 i v 1 + 4 i u 1 + 4 + i [ m n 1 ] 4 n 2 u 3 v 4 + 4 n v 4 + 16 n + 2 v 3 u 4 + 4 n u 4 + 4 n v 3 + 4 n u 3 4 ] + i [ n ] 2 m + 2 2 u 5 v 6 + 2 u 5 + 2 m v 6 + 8 m + 2 v 6 + 2 v 5 u 6 + 2 v 5 + 2 m u 6 + 2 u 6 + 2 m v 5 + 2 m u 5 + 4 + i [ n 1 ] 2 m + 4 2 u 7 v 8 + 4 u 7 + 2 m v 8 + 8 m + 4 v 8 + 2 v 7 u 8 + 4 v 7 + 2 m u 8 + 4 u 8 + 2 m v 7 + 2 m u 7 + 12 + 2 i [ n 1 ] 4 ( u 9 v 10 + u 10 v 9 ) + i [ 2 m + 1 ] 4 n ( u 11 v 12 + u 12 v 11 ) + 4 [ i [ n ] ( 8 i 4 ) ( u 13 v 14 + u 14 v 13 ) + i [ n 1 ] 8 i ( u 15 v 16 + u 16 v 15 ) + i [ n 1 ] [ ( 8 i + 2 ) ( u 17 v 18 + u 18 v 17 ) ] ] + 4 ( 8 n 2 ) ( u 19 v 20 + u 20 v 19 ) ] .
S z t ( G ) = S z v ( G ) + S z e ( G ) + 2 S z e v ( G ) .
P I ( G ) = 2 2 i [ n 1 ] ( 8 i + 4 ) ( v 1 + v 2 + 4 i + 2 ) + i [ m n 1 ] 8 n ( v 3 + v 4 + 4 n ) + i [ n ] ( 4 m + 4 ) ( v 5 + v 6 + 2 m + 2 ) + i [ n 1 ] ( 4 m + 8 ) ( v 7 + v 8 + 2 m + 4 ) + 2 i [ n 1 ] 4 ( v 9 + v 10 ) + i [ 2 m + 1 ] 4 n ( v 11 + v 12 ) + 4 i [ n ] ( 8 i 4 ) ( v 13 + v 14 ) + i [ n 1 ] 8 i ( v 15 + v 16 ) + i [ n 1 ] [ ( 8 i + 2 ) ( v 17 + v 18 ) ] + 4 ( 8 n 2 ) ( v 19 + v 20 ) .
S ( G ) = 2 [ 2 i [ n 1 ] [ 96 i 2 + 8 u 1 + 16 i u 1 + 16 i u 2 + 8 i v 1 + 8 i v 2 + 80 i + 8 u 2 + 4 v 1 + 4 v 2 + 4 u 1 v 2 + 4 u 2 v 1 + 16 ] + i [ m n 1 ] [ 96 n 2 + 16 n u 3 + 16 n u 4 + 8 n v 3 + 8 n v 4 + 4 u 3 v 4 16 n + 4 u 4 v 3 ] ] + i [ n ] [ 24 m 2 + 8 m u 5 + 8 m u 6 + 4 m v 5 + 4 m v 6 + 40 m + 8 u 5 + 8 u 6 + 4 v 5 + 4 v 6 + 4 u 5 v 6 + 4 u 6 v 5 + 16 ] + i [ n 1 ] [ 24 m 2 + 8 m u 7 + 8 m u 8 + 4 m v 7 + 4 m v 8 + 88 m + 16 u 7 + 16 u 8 + 8 v 7 + 8 v 8 + 4 u 7 v 8 + 4 u 8 v 7 + 80 ] + 2 i [ n 1 ] [ u 9 ( 2 v 10 + 4 ) + u 10 ( 2 v 9 + 4 ) ] + i [ 2 m + 1 ] [ u 11 ( 2 v 12 + 4 n ) + u 12 ( 2 v 11 + 4 n ) ] + 4 [ i [ n ] [ u 13 ( 2 v 14 + 8 i 4 ) + u 14 ( 2 v 13 + 8 i 4 ) ] + i [ n 1 ] [ u 15 ( 2 v 16 + 8 i ) + u 16 ( 2 v 15 + 8 i ) ] + i [ n 1 ] [ u 17 ( 2 v 18 + 8 i + 2 ) + u 18 ( 2 v 17 + 8 i + 2 ) ] ] + 4 [ u 19 ( 2 v 20 + 8 n 2 ) + u 20 ( 2 v 19 + 8 n 2 ) ] .
G u t ( G ) = 2 [ 2 i [ n 1 ] [ 2 ( 4 i + 2 ) ( 2 ( v 1 + v 2 ) + 2 ( 4 i + 2 ) ) + 2 [ ( 2 v 1 + 4 i + 2 ) ( 2 v 2 + 4 i + 2 ) ] + 4 ( 4 i + 2 ) ( 4 i + 1 ) ] + i [ m n 1 ] [ 8 n ( 2 ( v 3 + v 4 ) + 8 n ) + 2 [ ( 2 v 3 + 4 n ) ( 2 v 4 + 4 n ) ] + 16 n ( 4 n 1 ) ] ] + i [ n ] [ 2 ( 2 m + 2 ) ( 2 ( v 5 + v 6 ) + 2 ( 2 m + 2 ) ) + 2 [ ( 2 v 5 + 2 m + 2 ) ( 2 v 6 + 2 m + 2 ) ] + 4 ( 2 m + 2 ) ( 2 m + 1 ) ] + i [ n 1 ] [ 2 ( 2 m + 4 ) ( 2 ( v 7 + v 8 ) + 2 ( 2 m + 4 ) ) + 2 [ ( 2 v 7 + 2 m + 4 ) ( 2 v 8 + 2 m + 4 ) ] + 4 ( 2 m + 4 ) ( 2 m + 3 ) ] + 2 i [ n 1 ] [ ( 2 v 9 + 4 ) ( 2 v 10 + 4 ) ] + i [ 2 m + 1 ] [ ( 2 v 11 + 4 n ) ( 2 v 12 + 4 n ) ] + 4 [ i [ n ] [ ( 2 v 13 + 8 i 4 ) ( 2 v 14 + 8 i 4 ) ] + i [ n 1 ] [ ( 2 v 15 + 8 i ) ( 2 v 16 + 8 i ) ] + i [ n 1 ] [ ( 2 v 17 + 8 i + 2 ) ( 2 v 18 + 8 i + 2 ) ] ] + 4 [ ( 2 v 19 + 8 n 2 ) ( 2 v 20 + 8 n 2 ) ] .
By substituting Table 2’s values, the proof is complete by just simplifying it. □
Theorem 4.
Let G be a R K ( m , n ) Type-II rectangular kekulene system with m > 3 n 1 .
(i)
Wiener
  • W ( G ) = ( 25920 m 3 n 2 2880 m 3 n + 80 m 3 + 8480 m 2 n 3 + 122220 m 2 n 2 103580 m 2 n + 10140 m 2 + 35640 m n 4 + 18140 m n 3 + 142830 m n 2 203450 m n + 53245 m 18792 n 5 + 54720 n 4 57320 n 3 + 54675 n 2 66748 n + 29490 ) / 15 .
(ii)
Edge-Wiener
  • W e ( G ) = ( 46080 m 3 n 2 7680 m 3 n + 320 m 3 + 23040 m 2 n 3 + 161280 m 2 n 2 153240 m 2 n + 11220 m 2 + 63360 m n 4 + 40320 m n 3 + 123360 m n 2 239100 m n + 72490 m 33408 n 5 + 98400 n 4 101320 n 3 + 31140 n 2 22382 n + 17580 ) / 15 .
(iii)
Vertex-Edge-Wiener
  • W v e ( G ) = ( 43200 m 3 n 2 6000 m 3 n + 200 m 3 + 15600 m 2 n 3 + 169200 m 2 n 2 146580 m 2 n + 8880 m 2 69120 m n 4 + 24520 m n 3 + 247500 m n 2 273700 m n + 69880 m + 91584 n 5 59460 n 4 95020 n 3 + 157260 n 2 115544 n + 35400 ) / 15 .
(iv)
Vertex-Szeged
  • S z v ( G ) = ( 146560 m 3 n 3 + 14040 m 3 n 2 39480 m 3 n + 11760 m 3 + 613080 m 2 n 3 372120 m 2 n 2 111600 m 2 n + 45000 m 2 17280 m n 4 + 884080 m n 3 983280 m n 2 + 193300 m n + 32460 m + 6624 n 5 57280 n 4 + 407620 n 3 627680 n 2 + 303116 n 40680 ) / 15 .
(v)
Edge-Szeged
  • S z e ( G ) = ( 276480 m 3 n 3 55680 m 3 n 2 320 m 3 n 480 m 3 + 1032960 m 2 n 3 957120 m 2 n 2 + 115680 m 2 n 10200 m 2 + 30720 m n 4 + 1327840 m n 3 1934400 m n 2 + 787240 m n 69540 m + 10752 n 5 + 960 n 4 + 457360 n 3 1032960 n 2 + 715988 n 167160 ) / 15 .
(vi)
Edge-Vertex-Szeged
  • S z e v ( G ) = ( 408000 m 3 n 3 46560 m 3 n 2 19280 m 3 n 240 m 3 + 1613440 m 2 n 3 1312080 m 2 n 2 + 74000 m 2 n 9840 m 2 + 2195040 m n 3 2887200 m n 2 + 1021280 m n 85800 m + 16896 n 5 68720 n 4 + 888160 n 3 1657480 n 2 + 1011584 n 210240 ) / 15 .
(vii)
Total-Szeged
  • S z t ( G ) = ( 1239040 m 3 n 3 134760 m 3 n 2 78360 m 3 n + 10800 m 3 + 4872920 m 2 n 3 3953400 m 2 n 2 + 152080 m 2 n + 15120 m 2 + 13440 m n 4 + 6602000 m n 3 8692080 m n 2 + 3023100 m n 208680 m + 51168 n 5 193760 n 4 + 2641300 n 3 4975600 n 2 + 3042272 n 628320 ) / 15 .
(viii)
Padmakar–Ivan
  • P I ( G ) = ( 6912 m 2 n 2 1200 m 2 n + 72 m 2 + 17760 m n 2 15504 m n + 1248 * + 448 n 3 + 11472 n 2 18280 n + 7200 ) / 3 .
(ix)
Schultz
  • S ( G ) = ( 138240 m 3 n 2 19200 m 3 n + 640 m 3 + 62400 m 2 n 3 + 570240 m 2 n 2 476880 m 2 n + 28440 m 2 + 190080 m n 4 + 119680 m n 3 + 584880 m n 2 890680 m n + 224240 m 100224 n 5 + 293520 n 4 298720 n 3 + 212160 n 2 245216 n + 115680 ) / 15 .
(x)
Gutman
  • G u t ( G ) = ( 184320 m 3 n 2 30720 m 3 n + 1280 m 3 + 92160 m 2 n 3 + 714240 m 2 n 2 624720 m 2 n + 45480 m 2 + 253440 m n 4 + 161280 m n 3 + 674400 m n 2 1110720 m n + 301960 m 133632 n 5 + 393600 n 4 403040 n 3 + 243360 n 2 273088 n + 140880 ) / 15 .
Proof. 
With regard to m > 3 n 1 , all of these Θ * -classes are as in the m = 3 n 1 case. We also have a few other classes as follows: { A C 4 i : i [ m 3 n + 1 ] } and { O B 4 i : i [ m 3 n + 1 ] } . The SWQG’s vertex values of A C 4 i are u 21 = 54 n 2 + 36 n i 14 n 2 i 16 , u 22 = | V | u 21 , v 21 = 72 n 2 + 48 n i 26 n 4 i 20 , and v 22 = | E | v 21 8 n and its edge strength is 8 n . Additionally, it is simple to see the isomorphism between SWQGs of A C 4 i and O B 4 i .
By applying Theorem 3’s justifications and substituting Table 2’s values, the proof is complete by just simplifying it. □

4. Conclusions

Rectangular kekulene system Types (I) and (II) are the unique polycyclic aromatic compounds that we presented. We examined their topological behavioral patterns using a wide variety of molecular descriptors, i.e., we calculated the precise mathematical formulas for Wiener, Edge-Wiener, Vertex-Edge-Wiener, Vertex-Szeged, Edge-Szeged, Edge-Vertex-Szeged, Total-Szeged, Padmakar–Ivan, Schultz, and Gutman, the graphical representation of which can be seen in Figure 13, Figure 14, Figure 15 and Figure 16, numerical data can be seen in Table 3, Table 4, Table 5 and Table 6, We can easily compare the variations in each of the ten topological indices for different values of m and n from this graphical depiction. We are given a comparison between the previously defined rectangular kekulene in [53] and the rectangular kekulene Types I and II in Table 7. As the topological connectivity characteristics of these compounds are described by the molecular descriptors, the findings made in this study may be a crucial tool for comprehending the relevance of these large-sized aromatic molecules when coupled with quantum chemical descriptors in several areas, such as predictive toxicology, drug discovery, materials science, and so forth. The strength-weighted graph technique is used to calculate the analytical expressions of these tessellations. The results serve as a crucial tool for comprehending the relevance of these huge aromatic compounds in a variety of domains, including materials science and astrochemistry, as the molecular descriptors define the structural properties of the compound. Additionally, we anticipate that the analyzed structural characterization will aid in the investigation of the intriguing characteristics of these compounds, assisting in the development of novel materials with the necessary features.

Author Contributions

Methodology, S.P.; Software, S.S.; Validation, S.S.; Formal analysis, M.A.; Investigation, M.U.G. and B.K.J.; Resources, M.I.; Writing—original draft, M.U.G. and M.I. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Our study did not report any data.

Conflicts of Interest

The authors declare there is no conflict of interest.

Sample Availability

Samples of the compounds are not applicable, our research does not need any samples.

References

  1. Bąk, K.M.; Marqes, I.; Kuhn, H.; Christensen, K.; Félix, V.; Beer, P.D. Fullerene functionalized halogen bonding heteroditopic hosts for ion-pair recognition. Org. Chem. 2023. [Google Scholar] [CrossRef]
  2. Khan, A.R.; Ghani, M.U.; Ghaffar, A.; Asif, H.M.; Inc, M. Characterization of temperature indices of silicates. Silicon 2023, 1–7. [Google Scholar] [CrossRef]
  3. Docker, A.; Marques, I.; Kuhn, H.; Zhang, Z.; Félix, V.; Beer, P.D. Selective Potassium Chloride Recognition, Sensing, Extraction, and Transport Using a Chalcogen-Bonding Heteroditopic Receptor. J. Am. Chem. Soc. 2022, 144, 14778–14789. [Google Scholar] [CrossRef] [PubMed]
  4. Menzie, C.A.; Potocki, B.B.; Santodonato, J. Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol. 1992, 26, 1278–1284. [Google Scholar] [CrossRef]
  5. Masih, J.; Singhvi, R.; Kumar, K.; Jain, V.K.; Taneja, A. Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi-arid tract of northern India. Aerosol Air Qual. Res. 2012, 12, 515–525. [Google Scholar] [CrossRef]
  6. Ghani, M.U.; Ali, S.; Imran, M.; Karamti, H.; Sultan, F.; Almusawa, M.Y. Hex-derived molecular descriptors via generalised valency-based entropies. IEEE Access 2023, 11, 42052–42068. [Google Scholar] [CrossRef]
  7. Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
  8. Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef]
  9. Liu, C.; Sandoval-Salinas, M.E.; Hong, Y.; Gopalakrishna, T.Y.; Phan, H.; Aratani, N.; Herng, T.S.; Ding, J.; Yamada, H.; Kim, D.; et al. Macrocyclic polyradicaloids with unusual super-ring structure and global aromaticity. Chem 2018, 4, 1586–1595. [Google Scholar] [CrossRef]
  10. Staab, H.A.; Diederich, F. Cycloarenes, A new class of aromatic compounds, I. Synthesis of Kekulene. Chem. Ber. Recl. 1983, 116, 3487–3503. [Google Scholar] [CrossRef]
  11. Buttrick, J.C.; King, B.T. Kekulenes, cycloarenes and heterocycloarenes: Addressing electronic structure and aromaticity through experiments and calculations. Chem. Soc. Rev. 2017, 46, 7–20. [Google Scholar] [CrossRef] [PubMed]
  12. Randić, M. Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 2003, 103, 3449–3605. [Google Scholar] [CrossRef] [PubMed]
  13. Aihara, J.I.; Makino, M. Constrained clar formulas of coronoid hydrocarbons. J. Phys. Chem. 2014, 118, 1258–1266. [Google Scholar] [CrossRef]
  14. Liu, C.; Ni, Y.; Lu, X.; Li, G.; Wu, J. Global aromaticity in macrocyclic polyradicaloids: Hückel’s Rule or Baird’s Rule? Acc. Chem. Res. 2019, 52, 2309–2321. [Google Scholar] [CrossRef]
  15. Ghani, M.U.; Campena, F.J.H.; Ali, S.; Dehraj, S.; Cancan, M.; Alharbi, F.M.; Galal, A.M. Characterizations of Chemical Networks Entropies by K-Banhatii Topological Indices. Symmetry 2023, 15, 143. [Google Scholar] [CrossRef]
  16. McWeeny, R. The diamagnetic anisotropy of large aromatic systems V: Interpretation of the Results. Proc. Phys. Soc. 1953, 66, 714. [Google Scholar] [CrossRef]
  17. Diederich, F.; Staab, H.A. Benzenoid versus annulenoid aromaticity: Synthesis and properties of kekulene. Angew. Chem. Int. Ed. 1978, 17, 372–374. [Google Scholar] [CrossRef]
  18. Kumar, B.; Viboh, R.L.; Bonifacio, M.C.; Thompson, W.B.; Buttrick, J.C.; Westlake, B.C.; Kim, M.S.; Zoellner, R.W.; Varganov, S.A.; Mörschel, P.; et al. Septulene: The heptagonal homologue of kekulene. Angew. Chem. Int. Ed. 2012, 124, 12967–12972. [Google Scholar] [CrossRef]
  19. Funhoff, D.J.; Staab, H.A. Cyclo[d.e.d.e.e.d.e.d.e.e.] decakisbenzene, a new cycloarene. Angew. Chem.-Int. 1986, 25, 742–744. [Google Scholar] [CrossRef]
  20. Aihara, J.I. On the number of aromatic sextets in a benzenoid hydrocarbon. Bull. Chem. Soc. Jpn. 1976, 49, 1429–1430. [Google Scholar] [CrossRef]
  21. Ghani, M.U.; Kashif Maqbool, M.; George, R.; Ofem, A.E.; Cancan, M. Entropies Via Various Molecular Descriptors of Layer Structure of H3BO3. Mathematics 2022, 10, 4831. [Google Scholar] [CrossRef]
  22. Pauling, L. The diamagnetic anisotropy of aromatic molecules. J. Chem. Phys. 1936, 4, 673–677. [Google Scholar] [CrossRef]
  23. Chu, Y.M.; Khan, A.R.; Ghani, M.U.; Ghaffar, A.; Inc, M. Computation of zagreb polynomials and zagreb indices for benzenoid triangular & hourglass system. Polycycl. Aromat. Compd. 2023, 43, 4386–4395. [Google Scholar]
  24. Steiner, E.; Fowler, P.W.; Jenneskens, L.W.; Acocella, A. Visualisation of counter-rotating ring currents in kekulene. Chem. Commun. 2001, 7, 659–660. [Google Scholar] [CrossRef]
  25. Jiao, H.; Schleyer, P.V.R. Is Kekulene Really Superaromatic? Angew. Chem.-Int. 1996, 35, 2383–2386. [Google Scholar] [CrossRef]
  26. Pozo, I.; Majzik, Z.; Pavliček, N.; Melle-Franco, M.; Guitián, E.; Peña, D.; Gross, L.; Pérez, D. Revisiting kekulene: Synthesis and single-molecule imaging. J. Am. Chem. Soc. 2019, 141, 15488–15493. [Google Scholar] [CrossRef]
  27. Arejdal, M. Prediction of the magnetocaloric behaviors of the kekulene structure for the magnetic refrigeration. Results Phys. 2020, 18, 103342. [Google Scholar] [CrossRef]
  28. Ji, L.; Shu, Y.; Wenxiang, W.; Lingxu, L.; Hongda, L.; Soleymani, H. Potential application of kekulene nanoring in the Li-ion batteries: DFT studies. Comput. Theor. Chem. 2020, 1181, 112796. [Google Scholar] [CrossRef]
  29. Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef]
  30. Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
  31. Khadikar, P.V.; Karmakar, S.; Agrawal, V.K.; Singh, J.; Shrivastava, A.; Lukovits, I.; Diudea, M.V. Szeged index—Applications for drug modeling. Lett. Drug Des. 2005, 2, 606–624. [Google Scholar] [CrossRef]
  32. Rouvray, D.H. The modeling of chemical phenomena using topological indices. J. Comput. Chem. 1987, 8, 470–480. [Google Scholar] [CrossRef]
  33. Haken, J.K.; Korhonen, I.O.O. Gas chromatography of homologous esters: XXXIII. Capillary chromatography of monochlorinated C1-C8n-alkyl acetates, chloroacetates, dichloroacetates and trichloroacetates. J. Chromatogr. A 1986, 357, 253–271. [Google Scholar] [CrossRef]
  34. Aihara, J.I. Graph theory of ring-current diamagnetism. Bull. Chem. Soc. Jpn. 2018, 91, 274–303. [Google Scholar] [CrossRef]
  35. Balasubramanian, K. Mathematical and computational techniques for drug discovery: Promises and developments. Curr. Top. Med. Chem. 2018, 18, 2774–2799. [Google Scholar] [CrossRef]
  36. Ashraful Alam, M.; Ghani, M.U.; Kamran, M.; Shazib Hameed, M.; Hussain Khan, R.; Baig, A.Q. Degree-based entropy for a non-kekulean benzenoid graph. J. Math. 2022, 2022, 2288207. [Google Scholar] [CrossRef]
  37. Basak, S.C.; Mills, D.; Mumtaz, M.M. Quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors. SAR QSAR Environ. Res. 2007, 18, 45–55. [Google Scholar] [CrossRef] [PubMed]
  38. Gutman, I.; Furtula, B. Distance in Molecular Graphs; University of Kragujevac: Kragujevac, Serbia, 2012. [Google Scholar]
  39. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH: Weinheim, Germany, 2000. [Google Scholar]
  40. Klavžar, S.; Nadjafi-Arani, M.J. Wiener index in weighted graphs via unification of Θ*-classes. Eur. J. Comb. 2014, 36, 71–76. [Google Scholar] [CrossRef]
  41. Yousefi-Azari, H.; Khalifeh, M.H.; Ashrafi, A.R. Calculating the edge Wiener and edge Szeged indices of graphs. J. Comput. Appl. Math. 2011, 235, 4866–4870. [Google Scholar] [CrossRef]
  42. Črepnjak, M.; Tratnik, N. The Szeged index and the Wiener index of partial cubes with applications to chemical graphs. Appl. Math. Comput. 2017, 309, 324–333. [Google Scholar] [CrossRef]
  43. Randić, M. On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Commun. Math. Comput. Chem. 2008, 59, 5–124. [Google Scholar]
  44. Estrada, E. The ABC matrix. J. Math. Chem. 2017, 55, 1021–1033. [Google Scholar] [CrossRef]
  45. Arockiaraj, M.; Clement, J.; Balasubramanian, K. Topological indices and their applications to circumcised donut benzenoid systems, kekulenes and drugs. Polycycl. Aromat. Compd. 2020, 40, 280–303. [Google Scholar] [CrossRef]
  46. Arockiaraj, M.; Klavžar, S.; Clement, J.; Mushtaq, S.; Balasubramanian, K. Edge distance-based topological indices of strength-weighted graphs and their application to coronoid Systems, carbon nanocones and SiO2 nanostructures. Mol. Inform. 2019, 38, 1900039. [Google Scholar] [CrossRef]
  47. Arockiaraj, M. Clement, J.; Paul, D.; Balasubramanian, K. Quantitative structural descriptors of sodalite materials. J. Mol. Struct. 2021, 1223, 128766. [Google Scholar] [CrossRef]
  48. Prabhu, S.; Nisha, Y.S.; Arulperumjothi, M.; Jeba, D.S.R.; Manimozhi, V. On detour index of cycloparaphenylene and polyphenylene molecular structures. Sci. Rep. 2021, 11, 15264. [Google Scholar] [CrossRef] [PubMed]
  49. Zou, H.; Xu, P.S.; Liu, R.; Zou, Z.X.; Li, J.; Zhong, A.G.; Hu, J.Z.; Xu, K.P.; Tan, G.S. Selacyclicbiflavone A, an unusual macrocyclic biflavone from Selaginella uncinata (Desv.) Spring. Tetrahedron Lett. 2016, 57, 892–894. [Google Scholar] [CrossRef]
  50. Guo, Z.A.; Xian, J.Y.; Rong, L.R.; Qin, H.; Jie, Z. Theoretical study of metal ion impact on geometric and electronic properties of terbutaline compounds. Monatsh. Chem. 2019, 150, 1355–1364. [Google Scholar] [CrossRef]
  51. Wang, T.S.; Zhong, A.G. Dissecting the role of dispersion on the quantum topology phase diagram of monosaccharide isomers. Monatsh. Chem. 2017, 148, 1269–1276. [Google Scholar] [CrossRef]
  52. Zhong, A.; Chen, D.; Li, R. Revisiting the beryllium bonding interactions from energetic and wavefunction perspectives. Chem. Phys. Lett. 2015, 633, 265–272. [Google Scholar] [CrossRef]
  53. Arockiaraj, M.; Prabhu, S.; Arulperumjothi, M.; Kavitha, S.R.J.; Balasubramanian, K. Topological characterization of hexagonal and rectangular tessellations of kekulenes as traps for toxic heavy metal ions. Theor. Chem. Acc. 2021, 140, 43. [Google Scholar] [CrossRef]
  54. Arockiaraj, M.; Kavitha, S.R.J.; Mushtaq, S.; Balasubramanian, K. Relativistic topological molecular descriptors of metal trihalides. J. Mol. Struct. 2020, 1217, 128368. [Google Scholar] [CrossRef]
  55. Arockiaraj, M.; Kavitha, S.R.J.; Balasubramanian, K.; Rajasingh, I.; Clement, J. Topological characterization of coronoid polycyclic aromatic hydrocarbons. Polycycl. Aromat. Compd. 2020, 40, 784–802. [Google Scholar] [CrossRef]
  56. Prabhu, S.; Murugan, G.; Arockiaraj, M.; Arulperumjothi, M.; Manimozhi, V. Molecular topological characterization of three classes of polycyclic aromatic hydrocarbons. J. Mol. Struct. 2021, 1229, 129501. [Google Scholar] [CrossRef]
  57. Arockiaraj, M.; Liu, J.B.; Arulperumjothi, M.; Prabhu, S. On Certain Topological Indices of Three-Layered Single-Walled Titania Nanosheets. Comb. Chem. High Throughput Screen. 2022, 25, 483–495. [Google Scholar] [CrossRef] [PubMed]
  58. Prabhu, S.; Murugan, G.; Cary, M.; Arulperumjothi, M.; Liu, J.B. On Certain Distance and Degree Based Topological Indices of Zeolite LTA Frameworks. Mater. Res. Express 2020, 7, 055006. [Google Scholar] [CrossRef]
  59. Prabhu, S.; Murugan, G.; Therese, S.K.; Arulperumjothi, M.; Siddiqui, M.K. Molecular Structural Characterization of Cycloparaphenylene and its Variants. Polycycl. Aromat. Compd. 2022, 42, 5550–5566. [Google Scholar] [CrossRef]
  60. Arockiaraj, M.; Clement, J.; Balasubramanian, K. Topological properties of carbon nanocones. Polycycl. Aromat. Compd. 2020, 40, 1332–1346. [Google Scholar] [CrossRef]
  61. Klavžar, S.; Gutman, I.; Mohar, B. Labeling of benzenoid systems which reflects the vertex-distance relation. J. Chem. Inf. Comput. Sci. 1995, 35, 590–593. [Google Scholar] [CrossRef]
  62. Klavžar, S. On the canonical metric representation, average distance, and partial Hamming graphs. Eur. J. Comb. 2006, 27, 68–73. [Google Scholar] [CrossRef]
  63. Arockiaraj, M.; Clement, J.; Balasubramanian, K. Analytical expressions for topological properties of polycyclic benzenoid networks. J. Chemom. 2016, 30, 682–697. [Google Scholar] [CrossRef]
  64. Wu, J.; Pisula, W.; Müllen, K. Graphenes as potential material for electronics. Chem. Rev. 2007, 107, 718–747. [Google Scholar] [CrossRef] [PubMed]
  65. Arockiaraj, M.; Paul, D.; Ghani, M.U.; Tigga, S.; Chu, Y.M. Entropy structural characterization of zeolites BCT and DFT with bond-wise scaled comparison. Sci. Rep. 2023, 13, 10874. [Google Scholar] [CrossRef] [PubMed]
  66. Zhang, L.; Cao, Y.; Colella, N.S.; Liang, Y.; Brédas, J.L.; Houk, K.N.; Briseno, A.L. Unconventional, chemically stable and soluble two-dimensional angular polycyclic aromatic hydrocarbons: From molecular design to device applications. Acc. Chem. Res. 2015, 48, 500–509. [Google Scholar] [CrossRef]
  67. Loh, K.P.; Tong, S.W.; Wu, J. Graphene and graphene-like molecules: Prospects in solar cells. J. Am. Chem. Soc. 2016, 138, 1095–1102. [Google Scholar] [CrossRef]
  68. Hajgató, B.; Ohno, K. Novel series of giant polycyclic aromatic hydrocarbons: Electronic structure and aromaticity. Chem. Phys. Lett. 2004, 385, 512–518. [Google Scholar] [CrossRef]
  69. Ismail, R.; Baby, A.; Xavier, D.A.; Varghese, E.S.; Ghani, M.U.; Nair, A.T.; Karamti, H. Author Correction: A novel perspective for M-polynomials to compute molecular descriptors of borophene nanosheet. Sci. Rep. 2023, 13, 13035. [Google Scholar] [CrossRef] [PubMed]
  70. Ghani, M.U.; Inc, M.; Sultan, F.; Cancan, M.; Houwe, A. Computation of Zagreb Polynomial and Indices for Silicate Network and Silicate Chain Network. J. Math. 2023, 2023, 9722878. [Google Scholar] [CrossRef]
Figure 1. Kekulene molecular structure.
Figure 1. Kekulene molecular structure.
Molecules 28 06625 g001
Figure 2. (a) Zigzag Acute. (b) Zigzag Vertical. (c) Zigzag Obtuse. (d) Acute. (e) Horizontal. (f) Obtuse.
Figure 2. (a) Zigzag Acute. (b) Zigzag Vertical. (c) Zigzag Obtuse. (d) Acute. (e) Horizontal. (f) Obtuse.
Molecules 28 06625 g002
Figure 3. (a) Kekulene Type-I. (b) Kekulene Type-II.
Figure 3. (a) Kekulene Type-I. (b) Kekulene Type-II.
Molecules 28 06625 g003
Figure 4. (a) A C Z 1 i , A C Z 2 i , A C Z 3 i ; (b) G / A C Z 1 i , i [ n ] ; (c) G / A C Z 2 i , i [ m n ] ; (d) G / A C Z 3 i ,   i [ n 1 ] .
Figure 4. (a) A C Z 1 i , A C Z 2 i , A C Z 3 i ; (b) G / A C Z 1 i , i [ n ] ; (c) G / A C Z 2 i , i [ m n ] ; (d) G / A C Z 3 i ,   i [ n 1 ] .
Molecules 28 06625 g004
Figure 5. A C 1 i , A C 2 i , A C 3 i , A C 4 i , A C 5 i , A C 6 i , and A C .
Figure 5. A C 1 i , A C 2 i , A C 3 i , A C 4 i , A C 5 i , A C 6 i , and A C .
Molecules 28 06625 g005
Figure 6. (a) G / A C 1 i , i [ n ] ; (b) G / A C 2 i , i [ n ] ; (c) G / A C 3 i , i [ n 1 ] ; (d) G / A C 4 i , i [ n ] ; (e) G / A C 5 i , i [ n 1 ] ; (f) G / A C 6 i , i [ n 1 ] ; (g) G / A C .
Figure 6. (a) G / A C 1 i , i [ n ] ; (b) G / A C 2 i , i [ n ] ; (c) G / A C 3 i , i [ n 1 ] ; (d) G / A C 4 i , i [ n ] ; (e) G / A C 5 i , i [ n 1 ] ; (f) G / A C 6 i , i [ n 1 ] ; (g) G / A C .
Molecules 28 06625 g006
Figure 7. (a) T H i , H i ; (b) G / T H 1 i , i [ n ] ; (c) G / T H 2 i , i [ n 1 ] ; (d) G / H i , i [ 2 m ] .
Figure 7. (a) T H i , H i ; (b) G / T H 1 i , i [ n ] ; (c) G / T H 2 i , i [ n 1 ] ; (d) G / H i , i [ 2 m ] .
Molecules 28 06625 g007
Figure 8. (a) V R Z i ; (b) G / V R Z i , i [ 2 n 1 ] .
Figure 8. (a) V R Z i ; (b) G / V R Z i , i [ 2 n 1 ] .
Molecules 28 06625 g008
Figure 9. (a) A C Z 1 i , A C Z 2 i ; (b) G / A C Z 1 i , i [ n 1 ] ; (c) G / A C Z 2 i , i [ m n + 1 ] .
Figure 9. (a) A C Z 1 i , A C Z 2 i ; (b) G / A C Z 1 i , i [ n 1 ] ; (c) G / A C Z 2 i , i [ m n + 1 ] .
Molecules 28 06625 g009
Figure 10. (a) T H i , H i , (b) A C 1 i , A C 2 i , A C 3 i , A M .
Figure 10. (a) T H i , H i , (b) A C 1 i , A C 2 i , A C 3 i , A M .
Molecules 28 06625 g010
Figure 11. (a) G / T H i , i [ n 1 ] ; (b) G / H i , i [ 2 m + 1 ] ; (c) G / A C 1 i , i [ n ] ; (d) G / A C 2 i , i [ n 1 ] ; (e) G / A C 3 i , i [ n 1 ] ; (f) G / A M .
Figure 11. (a) G / T H i , i [ n 1 ] ; (b) G / H i , i [ 2 m + 1 ] ; (c) G / A C 1 i , i [ n ] ; (d) G / A C 2 i , i [ n 1 ] ; (e) G / A C 3 i , i [ n 1 ] ; (f) G / A M .
Molecules 28 06625 g011
Figure 12. (a) V R Z 1 i , V R Z 2 i ; (b) G / V R Z 1 i , i [ n ] ; (c) G / V R Z 2 i , i [ n 1 ] .
Figure 12. (a) V R Z 1 i , V R Z 2 i ; (b) G / V R Z 1 i , i [ n ] ; (c) G / V R Z 2 i , i [ n 1 ] .
Molecules 28 06625 g012
Figure 13. Graphical representation of R K ( m , n ) Type-I, m = 3 n 1 .
Figure 13. Graphical representation of R K ( m , n ) Type-I, m = 3 n 1 .
Molecules 28 06625 g013
Figure 14. Graphical representation of R K ( m , n ) Type-II, m = 3 n 1 .
Figure 14. Graphical representation of R K ( m , n ) Type-II, m = 3 n 1 .
Molecules 28 06625 g014
Figure 15. Graphical representation of R K ( m , n ) Type-I, m > 3 n 1 .
Figure 15. Graphical representation of R K ( m , n ) Type-I, m > 3 n 1 .
Molecules 28 06625 g015
Figure 16. Graphical representation of R K ( m , n ) Type-II, m > 3 n 1 .
Figure 16. Graphical representation of R K ( m , n ) Type-II, m > 3 n 1 .
Molecules 28 06625 g016
Table 1. Type-I rectangular kekulene quotient graphs’ strength-weighted values, m = 3 n 1 .
Table 1. Type-I rectangular kekulene quotient graphs’ strength-weighted values, m = 3 n 1 .
QG w v s v
G / A C Z 1 i
i [ n ]
u 1 = 18 i 2 + 4 i
u 2 = | V | u 1 4 i
v 1 = 24 i 2 + 2 i
v 2 = | E | v 1 8 i
G / A C Z 2 i
i [ m n ]
u 3 = 18 n 2 + 4 n + 36 n i 2 i
u 4 = | V | u 3 4 n
v 3 = 24 n 2 + 2 n + 48 n i 4 i
v 4 = | E | v 3 8 n
G / A C Z 3 i
i [ n 1 ]
u 5 = 18 i 2 + 22 i 2
u 6 = | V | u 5 ( 4 i + 2 )
v 5 = 24 i 2 + 26 i 4
v 6 = | E | v 5 ( 8 i + 4 )
G / V R Z i
i [ 2 n 1 ]
u 7 = 18 m i + 16 i 2 m 10
u 8 = | V | u 7 2 ( m + 1 )
v 7 = 24 m i + 20 i 4 m 14
v 8 = | E | v 7 4 ( m + 1 )
G / T H 1 i
i [ n ]
u 9 = 7
u 10 = | V | u 9
v 9 = 6
v 10 = | E | v 9 4
G / T H 2 i
i [ n 1 ]
u 11 = 7
u 12 = | V | u 11
v 11 = 6
v 12 = | E | v 11 4
G / H i
i [ 2 m ]
u 13 = 18 n i i + 7 n
u 14 = | V | u 13
v 13 = 24 n i + 6 n 2 i
v 14 = | E | v 13 4 n
G / A C 1 i
i [ n ]
u 15 = 54 i 2 68 i + 21
u 16 = | V | u 15
v 15 = 72 i 2 98 i + 32
v 16 = | E | v 15 ( 8 i 4 )
G / A C 2 i
i [ n ]
u 17 = 54 i 2 32 i + 6
u 18 = | V | u 17
v 17 = 72 i 2 50 i + 10
v 18 = | E | v 17 ( 8 i 2 )
G / A C 3 i
i [ n 1 ]
u 19 = 54 i 2 + 4 i
u 20 = | V | u 19
v 19 = 72 i 2 2 i
v 20 = | E | v 19 8 i
G / A C 4 i
i [ n ]
u 21 = 54 i 2 50 i + 3
u 22 = | V | u 21
v 21 = 72 i 2 74 i + 8
v 22 = | E | v 21 ( 8 i 4 )
G / A C 5 i
i [ n 1 ]
u 23 = 54 i 2 14 i 8
u 24 = | V | u 23
v 23 = 72 i 2 26 i 10
v 24 = | E | v 23 8 i
G / A C 6 i
i [ n 1 ]
u 25 = 54 i 2 + 22 i 5
u 26 = | V | u 25
v 25 = 72 i 2 + 22 i 8
v 26 = | E | v 25 ( 8 i + 2 )
G / A C u 27 = 54 n 2 14 n 12
u 28 = | V | u 27
v 27 = 72 n 2 26 n 14
v 28 = | E | v 27 ( 8 n 2 )
Table 2. Type-II rectangular kekulene quotient graphs’ strength-weighted values, m = 3 n 1 .
Table 2. Type-II rectangular kekulene quotient graphs’ strength-weighted values, m = 3 n 1 .
QG w v s v
G / A C Z 1 i
i [ n 1 ]
u 1 = 18 i 2 + 22 i 2
u 2 = | V | u 1 ( 4 i + 2 )
v 1 = 24 i 2 + 26 i 4
v 2 = | E | v 1 2 ( 4 i + 2 )
G / A C Z 2 i
i [ m n 1 ]
u 3 = 18 n 2 14 n + 36 n i 2 i 16
u 4 = | V | u 3 4 n
v 3 = 24 n 2 22 n + 48 n i 4 i 20
v 4 = | E | v 3 8 n
G / V R Z 1 i
i [ n ]
u 5 = 36 m i 20 m + 50 i 44
u 6 = | V | u 5 2 ( m + 1 )
v 5 = 48 m i 28 m + 64 i 58
v 6 = | E | v 5 4 ( m + 1 )
G / V R Z 2 i
i [ n 1 ]
u 7 = 50 m i 16 m + 64 i 34
u 8 = | V | u 7 2 ( m + 2 )
v 7 = 48 m i 4 m + 64 i 28
v 8 = | E | v 7 4 ( m + 2 )
G / T H i
i [ n 1 ]
u 9 = 7
u 10 = | V | u 9
v 9 = 6
v 10 = | E | v 9 4
G / H i
i [ 2 m + 1 ]
u 11 = 18 n i + 7 n i 17
u 12 = | V | u 11
v 11 = 24 n i + 6 n 2 i 22
v 12 = | E | v 11 4 n
G / A C 1 i
i [ n ]
u 13 = 54 i 2 50 i + 3
u 14 = | V | u 13
v 13 = 72 i 2 74 i + 8
v 14 = | E | v 13 ( 8 i 4 )
G / A C 2 i
i [ n 1 ]
u 15 = 54 i 2 14 i 8
u 16 = | V | u 15
v 15 = 72 i 2 26 i 10
v 16 = | E | v 15 8 i
G / A C 3 i
i [ n 1 ]
u 17 = 54 i 2 + 22 i 5
u 18 = | V | u 17
v 17 = 72 i 2 + 22 i 8
v 18 = | E | v 17 ( 8 i + 2 )
G / A M u 19 = 54 n 2 14 n 12
u 20 = | V | u 19
v 19 = 72 n 2 26 n 14
v 20 = | E | v 19 ( 8 n 2 )
Table 3. Numerical data for various topological indices of R K ( m , n ) Type-I rectangular kekulene, m = 3 n 1 .
Table 3. Numerical data for various topological indices of R K ( m , n ) Type-I rectangular kekulene, m = 3 n 1 .
TI n = 2 , m = 5 n = 3 , m = 8 n = 4 , m = 11 n = 5 , m = 14 n = 6 , m = 17 n = 7 , m = 20
W1,529,32612,892,58356,651,252176,719,457445,629,018971,766,315
W e 2,441,35221,357,44695,542,356301,219,250764,945,2481,676,476,958
W v e 1,932,74416,595,58473,574,892230,728,252583,866,9441,276,405,096
S z v 14,122,936178,900,1601,049,163,2964,093,341,86412,391,103,01631,532,413,808
S z e 22,602,448296,922,1641,771,941,6886,984,978,10821,289,569,95254,441,498,564
S z e v 17,870,172230,496,8841,363,540,1725,347,312,02016,242,326,14041,433,430,836
S z t 72,465,728936,816,0925,548,185,32821,772,944,01266,165,325,248168,840,774,044
P I 261,5201,461,9444,817,20012,030,55225,302,92847,332,920
S7,935,31267,508,352297,984,656932,079,3282,354,695,5045,141,520,960
G u t 10,293,18488,370,384391,844,2401,229,017,9523,110,525,8566,800,795,568
Table 4. Numerical data for various topological indices of R K ( m , n ) Type-II rectangular kekulene, m = 3 n 1 .
Table 4. Numerical data for various topological indices of R K ( m , n ) Type-II rectangular kekulene, m = 3 n 1 .
TI n = 2 , m = 5 n = 3 , m = 8 n = 4 , m = 11 n = 5 , m = 14 n = 6 , m = 17 n = 7 , m = 20
W1,722,52914,156,65560,785,723186,359,801463,838,1731,001,303,643
W e 2,761,79423,703,170104,161,626324,060,362814,813,1381,772,189,810
W v e 2,181,60818,339,13279,752,744246,548,292617,258,8241,338,352,780
S z v 16,210,052198,646,4881,132,439,6284,327,184,31212,897,023,15632,430,540,184
S z e 26,031,212334,230,9561,953,733,5807,584,990,38022,857,516,33257,945,771,308
S z e v 41,091,656516,150,1682,984,300,21611,509,390,15234,529,108,84087,252,559,544
S z t 124,424,5761,565,177,7809,054,773,64034,930,954,996104,812,757,168264,881,430,580
P I 286,5041,579,9445,137,72012,704,56826,522,88849,332,744
S8,949,99274,572,496322,939,352995,869,8242,489,185,2245,390,821,680
G u t 11,625,28097,990,320426,964,4001,321,733,7923,312,442,3367,187,653,584
Table 5. Numerical data for various topological indices of R K ( m , n ) Type-I rectangular kekulene, m > 3 n 1 .
Table 5. Numerical data for various topological indices of R K ( m , n ) Type-I rectangular kekulene, m > 3 n 1 .
TI n = 2 , m = 6 n = 2 , m = 7 n = 2 , m = 8 n = 3 , m = 9 n = 3 , m = 10 n = 3 , m = 11
W2,382,8253,509,4044,948,26317,307,56222,640,91728,982,536
W e 3,840,6745,699,8288,086,52628,793,52437,803,72248,544,840
W v e 3,163,4744,832,9007,005,42223,012,17630,916,82440,457,928
S z v 22,992,28434,960,30450,491,572247,647,280332,059,920433,745,600
S z e 37,104,63656,790,07282,453,956412,500,280554,800,556726,607,952
S z e v 31,416,48050,319,73275,393,800336,115,552469,051,260632,132,168
S z t 122,929,880192,389,840283,733,1281,332,378,6641,824,962,9962,424,617,888
P I 363,720482,800618,7601,819,2482,215,6722,651,216
S12,386,34418,267,79225,785,73690,702,304118,735,472152,082,736
G u t 16,096,08023,772,11233,592,128118,832,080155,668,576199,507,072
Table 6. Numerical data for various topological indices of R K ( m , n ) Type-II rectangular kekulene, m > 3 n 1 .
Table 6. Numerical data for various topological indices of R K ( m , n ) Type-II rectangular kekulene, m > 3 n 1 .
TI n = 2 , m = 6 n = 2 , m = 7 n = 2 , m = 8 n = 3 , m = 9 n = 3 , m = 10 n = 3 , m = 11
W2,643,0443,846,7195,372,75418,846,72224,482,89331,155,056
W e 4,275,4286,266,5588,802,89631,661,63241,247,97452,618,996
W v e 3,511,2245,296,2167,600,98425,190,46433,579,14843,653,584
S z v 25,849,43238,707,99655,250,320271,762,600360,917,096467,700,696
S z e 41,831,84863,024,53290,404,464458,729,552610,907,812793,550,696
S z e v 65,777,29698,796,088141,363,616707,258,416940,568,8081,220,296,896
S z t 199,235,872299,324,704428,382,0162,145,008,9842,852,962,5243,701,845,184
P I 393,104516,584656,9441,950,6562,360,4882,809,440
S13,754,49620,042,79228,020,96099,313,648129,050,688164,258,496
G u t 17,894,24026,106,99236,534,384130,568,400169,736,320216,121,280
Table 7. Comparison of numerical data of R K ( m , n ) Type-I and Type-II rectangular kekulene defined in [53].
Table 7. Comparison of numerical data of R K ( m , n ) Type-I and Type-II rectangular kekulene defined in [53].
S. No.Des RK ( m , n ) I RK ( m , n ) II Old RK ( m , n ) RK ( m , n ) I RK ( m , n ) II Old RK ( m , n )
n = 2 , m = 5 n = 2 , m = 5 n = 2 , m = 5 n = 3 , m = 8 n = 3 , m = 8 n = 3 , m = 8
1 | V | 396414378926962890
2 | E | 516540492121612641168
3W1,529,3261,722,5291,351,71512,892,58314,156,65511,606,991
4 W e 2,441,3522,761,7942,147,79821,357,44623,703,17019,178,010
5 W v e 1,932,7442,181,6081,704,35616,595,58418,339,13214,921,548
6 S z v 14,122,93616,210,05212,220,444178,900,160198,646,488158,477,928
7 S z e 22,602,44826,031,21219,484,452296,922,164334,230,956262,471,644
8 S z e v 17,870,1724,1091,65615,732,036230,496,884516,150,168212,184,156
9 S z t 72,465,728124,424,57663,168,968936,816,0921,565,177,780845,317,884
10 P I 261,520286,504253,0321,461,9441,579,9441,445,120
11S7,935,3128,949,9927,003,40067,508,35274,572,49660,725,712
12 G u t 10,293,18411,625,280907,092888,370,38497,990,32079,424,784
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Prabhu, S.; Arulperumjothi, M.; Ghani, M.U.; Imran, M.; Salu, S.; Jose, B.K. Computational Analysis of Some More Rectangular Tessellations of Kekulenes and Their Molecular Characterizations. Molecules 2023, 28, 6625. https://doi.org/10.3390/molecules28186625

AMA Style

Prabhu S, Arulperumjothi M, Ghani MU, Imran M, Salu S, Jose BK. Computational Analysis of Some More Rectangular Tessellations of Kekulenes and Their Molecular Characterizations. Molecules. 2023; 28(18):6625. https://doi.org/10.3390/molecules28186625

Chicago/Turabian Style

Prabhu, S., M. Arulperumjothi, Muhammad Usman Ghani, Muhammad Imran, S. Salu, and Bibin K. Jose. 2023. "Computational Analysis of Some More Rectangular Tessellations of Kekulenes and Their Molecular Characterizations" Molecules 28, no. 18: 6625. https://doi.org/10.3390/molecules28186625

APA Style

Prabhu, S., Arulperumjothi, M., Ghani, M. U., Imran, M., Salu, S., & Jose, B. K. (2023). Computational Analysis of Some More Rectangular Tessellations of Kekulenes and Their Molecular Characterizations. Molecules, 28(18), 6625. https://doi.org/10.3390/molecules28186625

Article Metrics

Back to TopTop