Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (544)

Search Parameters:
Keywords = hydrogen infrastructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2660 KB  
Article
Reliable and Economically Viable Green Hydrogen Infrastructures—Challenges and Applications
by Przemyslaw Komarnicki
Hydrogen 2026, 7(1), 22; https://doi.org/10.3390/hydrogen7010022 - 2 Feb 2026
Abstract
The smart grid concept is based on the full integration of different types of energy sources and intelligent devices. Due to the short- and long-term volatility of these sources, new flexibility measures are necessary to ensure the smart grid operates stably and reliably. [...] Read more.
The smart grid concept is based on the full integration of different types of energy sources and intelligent devices. Due to the short- and long-term volatility of these sources, new flexibility measures are necessary to ensure the smart grid operates stably and reliably. One option is to convert renewable energy into hydrogen, especially during periods of generation overcapacity, in order that the hydrogen that is produced can be stored effectively and used “just in time” to stabilize the power system by undergoing a reverse conversion process in gas turbines or fuel cells which then supply power to the network. On the other hand, in order to achieve a sustainable general energy system (GES), it is necessary to replace other forms of fossil energy use, such as that used for heating and other industrial processes. Research indicates that a comprehensive hydrogen supply infrastructure is required. This infrastructure would include electrolyzers, conversion stations, pipelines, storage facilities, and hydrogen gas turbines and/or fuel cell power stations. Some studies in Germany suggest that the existing gas infrastructure could be used for this purpose. Further, nuclear and coal power plants are not considered reserve power plants (as in the German case), and an additional 20–30 GW of generation capacity in H2-operated gas turbines and strong H2 transportation infrastructure will be required over the next 10 years. The novelty of the approach presented in this article lies in the development of a unified modeling framework that enables the simultaneous and coherent representation of both economic and technical aspects of hydrogen production systems which will be used for planning and pre-decision making. From the technical perspective, the model, based on the black box approach, captures the key operational characteristics of hydrogen production, including energy consumption, system efficiency, and operational constraints. In parallel, the economic layer incorporates capital expenditures (CAPEX), operational expenditures (OPEX), and cost-related performance indicators, allowing for a direct linkage between technical operation and economic outcomes. This paper describes the systematic transformation from today’s power system to one that includes a hydrogen economy, with a particular focus on practical experiences and developments, especially in the German energy system. It discusses the components of this new system in depth, focusing on current challenges and applications. Some scaled current applications demonstrate the state of the art in this area, including not only technical requirements (reliability, risks) and possibilities, but also economic aspects (cost, business models, impact factors). Full article
Show Figures

Figure 1

30 pages, 1179 KB  
Article
Enhancing Energy Supply Security Through Green Hydrogen Integration: The Role of Depleted Gas Reservoirs in Serbia
by Miroslav Crnogorac, Predrag Jovančić, Nikoleta Aleksić, Aleksandar Madžarević and Filip Miletić
Energies 2026, 19(3), 782; https://doi.org/10.3390/en19030782 (registering DOI) - 2 Feb 2026
Abstract
Serbia’s energy sector is undergoing structural transformation driven by European climate policies, market volatility, and the need for long-term energy security. In this context, geological storage of energy carriers represents a strategically important option. Depleted gas reservoirs, particularly within the Pannonian Basin, constitute [...] Read more.
Serbia’s energy sector is undergoing structural transformation driven by European climate policies, market volatility, and the need for long-term energy security. In this context, geological storage of energy carriers represents a strategically important option. Depleted gas reservoirs, particularly within the Pannonian Basin, constitute a technically validated subsurface infrastructure suitable for repurposing as multifunctional storage systems for natural gas, CO2, and green hydrogen. This study analyzes trends in European and Serbian natural gas markets, EU decarbonization targets, and Serbia’s energy balance to assess the feasibility of carbon capture and storage (CCS) and underground hydrogen storage. Key geological parameters governing long-term containment—lithology, effective porosity, permeability, caprock integrity, and structural stability—are evaluated, with emphasis on reservoirs combining favorable properties and proximity to existing infrastructure. Quantitative screening based on reservoir depth (approximately 1000–2500 m), effective porosity (15–25%), permeability (typically >50 mD), verified caprock integrity, and estimated geological storage capacities ranging from 0.17 to 1.25 billion m3 demonstrates that several depleted gas reservoirs in Serbia meet explicit fit-for-purpose criteria for underground storage applications. A comparative analysis of the physical and molecular behavior of H2, CH4, and CO2 in porous media indicates that hydrogen storage is the most sensitive to reservoir integrity. The reported results provide quantitative and qualitative evidence that selected depleted gas reservoirs in Serbia satisfy essential requirements for project-level screening, including reservoir capacity, petrophysical suitability, caprock integrity, and infrastructure accessibility. These findings support the technical readiness of such reservoirs for staged deployment of natural gas storage, CO2 sequestration, and underground hydrogen storage in the post-2035 energy system. Overall, combined subsurface storage of natural gas, CO2, and hydrogen in Serbia is technically feasible, economically justified, and strategically relevant within the national energy transition framework. Full article
(This article belongs to the Section A5: Hydrogen Energy)
18 pages, 783 KB  
Article
What Drives Land Suitability for Hydrogen Fueling Stations? A Meta-Analysis
by Yuanzhi Wang, Hossein Azadi and Frank Witlox
Land 2026, 15(2), 251; https://doi.org/10.3390/land15020251 - 1 Feb 2026
Abstract
Hydrogen storage is an environmentally friendly technology and an enabler for technological advancements in applications such as transportation. However, the appropriate location of hydrogen refueling stations is crucial in increasing the adoption of hydrogen fuel. Therefore, the aim of this study is to [...] Read more.
Hydrogen storage is an environmentally friendly technology and an enabler for technological advancements in applications such as transportation. However, the appropriate location of hydrogen refueling stations is crucial in increasing the adoption of hydrogen fuel. Therefore, the aim of this study is to investigate the influence of key variables (such as policy requirements, construction and maintenance costs, social demand, and environmental variables) on the location of hydrogen refueling stations on a global scale. For this purpose, this study examined the findings of 26 primary articles published between 2000 and 2025, using the weighted meta-analysis method. The results of this study showed that environmental variables (such as road access and weather conditions), compared to construction and maintenance costs, had a higher impact of around 76% on the better siting of liquid hydrogen stations. In addition, the meta-regression results showed that environmental variables can affect achieving a better location of compressed hydrogen stations by 23% and a better location of liquid hydrogen stations by 20%. The findings indicate an 18% reduction in the impact of variables affecting the location of compressed hydrogen stations in studies after 2020, as well as a spatial focus of most studies on Europe with a share of about 2%. This study demonstrates how zoning laws, infrastructural corridors, and environmental restrictions determine the best site for hydrogen refueling stations, which compete with other land uses (urban and suburban). Therefore, the emphasis on land science research is evident through choices about energy infrastructure siting, spatial growth patterns, and land use sustainability. Full article
Show Figures

Figure 1

26 pages, 2444 KB  
Article
Optimized Elbow Design for Hydrogen Pipeline Using Multi-Objective Genetic Algorithm
by Ho-Jin Choi and Younjea Kim
Energies 2026, 19(3), 748; https://doi.org/10.3390/en19030748 - 30 Jan 2026
Viewed by 77
Abstract
In 90° elbows, abrupt turning induces strong secondary flow, separation, and turbulence, increasing pressure loss and degrading velocity uniformity. A hydrogen pipeline elbow is optimized by combining a nature-inspired cross-section with a guide vane, while tuning vane position/angle and geometric radii/offsets using a [...] Read more.
In 90° elbows, abrupt turning induces strong secondary flow, separation, and turbulence, increasing pressure loss and degrading velocity uniformity. A hydrogen pipeline elbow is optimized by combining a nature-inspired cross-section with a guide vane, while tuning vane position/angle and geometric radii/offsets using a multi-objective genetic algorithm (MOGA). Three-dimensional CFD is performed for compressible gaseous hydrogen using the Peng–Robinson equation of state and the SST k–ω turbulence model. Design points are generated by Latin hypercube sampling, and response surface models based on non-parametric regression (NPR) and genetic aggregation (GA) guide the search. Relative to the reference elbow, the GA-based optimum improves velocity uniformity by 5.825% and reduces the total pressure-drop coefficient by 0.470%; the NPR-based optimum yields 4.021% and 0.229%, respectively. Flow-field analysis shows reduced separation area, axial vorticity, turbulent kinetic energy, and dissipation, indicating suppressed secondary flow and smoother turning. These gains translate to lower pumping power and enhanced energy efficiency, supporting cost-effective deployment of carbon-neutral hydrogen infrastructure. Full article
(This article belongs to the Section A5: Hydrogen Energy)
22 pages, 3650 KB  
Review
Combustion Characteristics of Hydrogen-Enriched Natural Gas with a Focus on Residential Appliances: A Review
by Theodor Mihnea Sîrbu, Cristi Emanuel Iolu and Tudor Prisecaru
Hydrogen 2026, 7(1), 20; https://doi.org/10.3390/hydrogen7010020 - 30 Jan 2026
Viewed by 141
Abstract
This review examines the combustion characteristics of hydrogen-enriched natural gas with a specific focus on residential appliances, where safety, efficiency, and emission performance are critical. Drawing on experimental studies, numerical simulations, and regulatory considerations, the paper synthesizes current knowledge on how hydrogen addition [...] Read more.
This review examines the combustion characteristics of hydrogen-enriched natural gas with a specific focus on residential appliances, where safety, efficiency, and emission performance are critical. Drawing on experimental studies, numerical simulations, and regulatory considerations, the paper synthesizes current knowledge on how hydrogen addition influences flame stability, flashback phenomenon, thermal efficiency, pollutant formation, and flame geometry. Results across cooktop burners, boilers, and other domestic systems show that moderate hydrogen blending not only can reduce CO and CO2 emissions and enhance combustion efficiency but also can increase burning velocity, diffusivity, and flame temperature, thereby elevating flashback and NOx risks. The review highlights the blending limits, design adaptations, and operational strategies required to ensure safe and effective integration of hydrogen into residential gas infrastructures, supporting its role as a transitional low-carbon fuel. Full article
(This article belongs to the Special Issue Hydrogen for a Clean Energy Future)
Show Figures

Figure 1

42 pages, 3480 KB  
Review
The AI-Driven Hydrogen Community: A Critical Review of Design Strategies for Decentralized Integrated Energy Systems
by Florina-Ambrozia Coteț, Sára Ferenci, Elena Simina Lakatos and Loránd Szabó
Designs 2026, 10(1), 12; https://doi.org/10.3390/designs10010012 - 29 Jan 2026
Viewed by 177
Abstract
Hydrogen-integrated decentralized energy systems (DIESs) promise communities higher renewable penetration, greater resilience, and sector coupling across electricity, heat, and mobility. AI supports forecasting, dispatch optimization, multi-asset coordination, and planning, yet designing AI-driven hydrogen communities is challenging because it spans physical infrastructure, cyber-control, and [...] Read more.
Hydrogen-integrated decentralized energy systems (DIESs) promise communities higher renewable penetration, greater resilience, and sector coupling across electricity, heat, and mobility. AI supports forecasting, dispatch optimization, multi-asset coordination, and planning, yet designing AI-driven hydrogen communities is challenging because it spans physical infrastructure, cyber-control, and governance. This review (2020–2025) synthesizes design strategies for AI-enabled hydrogen DIESs, distilling architectural patterns, electricity–hydrogen co-optimization, uncertainty-aware operation, and digital-twin planning. It summarizes AI benefits (flexibility, efficiency, reduced curtailment) and recurring risks (forecast-optimization cascades, objective mismatch, data drift, safety and constraint breaches, digital-twin credibility gaps, cybersecurity and privacy issues, and weak reproducibility) and proposes a pragmatic roadmap prioritizing safety-aware control, standardized metrics, transparent assumptions, and community-appropriate governance. Full article
Show Figures

Figure 1

35 pages, 2952 KB  
Review
Thermo-Catalytic Carbon Dioxide Hydrogenation to Ethanol
by Xianyu Meng, Ying Wang, Jie Li, Hongxing Wang, Chenglong Yu, Jia Guo, Zhuo Zhang, Qingli Qian and Buxing Han
Chemistry 2026, 8(2), 14; https://doi.org/10.3390/chemistry8020014 - 28 Jan 2026
Viewed by 144
Abstract
The catalytic hydrogenation of carbon dioxide (CO2) represents a transformative approach for reducing greenhouse gas emissions while producing sustainable fuels and chemicals, with ethanol being particularly promising due to its compatibility with existing energy infrastructure. Despite significant progress in converting CO [...] Read more.
The catalytic hydrogenation of carbon dioxide (CO2) represents a transformative approach for reducing greenhouse gas emissions while producing sustainable fuels and chemicals, with ethanol being particularly promising due to its compatibility with existing energy infrastructure. Despite significant progress in converting CO2 to C1 products (e.g., methane, methanol), selective synthesis of C2+ compounds like ethanol remains challenging because of competing reaction pathways and byproduct formation. Recent advances in thermo-catalytic CO2 hydrogenation have explored diverse catalyst systems including noble metals (Rh, Pd, Au, Ir, Pt) and non-noble metals (Co, Cu, Fe), supported on zeolites, metal oxides, perovskites, silica, metal–organic frameworks, and carbon-based materials. These studies reveal that catalytic performance hinges on the synergistic effects of multimetallic sites, tailored support properties and controlled reaction micro-environments to optimize CO2 activation, controlled hydrogenation and C−C coupling. Mechanistic insights highlight the critical balance between CO2 reduction steps and selective C−C bond formation, supported by thermodynamic analysis, advanced characterization techniques and theoretical calculations. However, challenges persist, such as low ethanol yields and undesired byproducts, necessitating innovative catalyst designs and optimized reactor configurations. Future efforts must integrate computational modeling, in situ/operando studies, and renewable hydrogen sources to advance scalable and economically viable processes. This review consolidates key findings, proposes potential reaction mechanisms, and outlines strategies for designing high-efficiency catalysts, ultimately providing reference for industrial application of CO2-to-ethanol technologies. Full article
Show Figures

Figure 1

19 pages, 4252 KB  
Article
Influence of Cyclic Loading Parameters on Sand-Production Characteristics and Particle-Size Distribution in Gas Storage
by Wenhong Zhang, Hantao Zhao, Tianyu Wang, Junjie Xue, Yawen Tan and Shouceng Tian
Processes 2026, 14(3), 465; https://doi.org/10.3390/pr14030465 - 28 Jan 2026
Viewed by 136
Abstract
Depleted oil and gas reservoirs, owing to their large storage capacity and well-established infrastructure, are attractive sites for storing green energy carriers such as natural gas, hydrogen, and compressed air. During injection–production cycling in underground gas storage (UGS), variations in effective stress can [...] Read more.
Depleted oil and gas reservoirs, owing to their large storage capacity and well-established infrastructure, are attractive sites for storing green energy carriers such as natural gas, hydrogen, and compressed air. During injection–production cycling in underground gas storage (UGS), variations in effective stress can cause repeated stress disturbances in the reservoir and surrounding rock, which may trigger borehole sand production. In this study, laboratory sand-production simulation tests were conducted to evaluate the effects of cyclic-loading stage, upper stress limit, and cycling frequency on borehole damage and sand-production behavior. The results show that sand production is stage-dependent. During the rapid-hardening and stable stages, the borehole remains largely intact and sand production is negligible. Once the failure and collapse stages are reached, borehole integrity deteriorates and sand production increases sharply, with fine particles becoming dominant. Cumulative sand production increases with the upper stress limit. Increasing the upper limit from 80% to 95% leads to a 2.53-fold increase in produced sand mass, together with a higher fine-sand fraction and a shift in the particle-size distribution (PSD) toward smaller sizes. The cycling frequency also plays an important role. When the frequency decreases, cumulative sand production increases and becomes 53.1% higher than the baseline at 0.001 Hz. Meanwhile, the median particle size (D50) decreases, indicating stronger particle breakage under low-frequency cycling. These findings provide guidance for designing injection–production schemes for UGS and for selecting appropriate sand-control completion strategies. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

20 pages, 5225 KB  
Article
Thermal Management and Optimization of Large-Scale Metal Hydride Reactors for Shipboard Hydrogen Storage and Transport
by Seth A. Thomas, Vamsi Krishna Kukkapalli and Sunwoo Kim
Energy Storage Appl. 2026, 3(1), 2; https://doi.org/10.3390/esa3010002 - 27 Jan 2026
Viewed by 85
Abstract
Hydrogen storage is vital to the development of renewables, especially in low-infrastructure countries. Metal hydrides offer a small but safe solid-state candidate for hydrogen storage at medium pressures and near-ambient temperature, yet large-scale applications face heat-management challenges. In this article, we numerically analyze [...] Read more.
Hydrogen storage is vital to the development of renewables, especially in low-infrastructure countries. Metal hydrides offer a small but safe solid-state candidate for hydrogen storage at medium pressures and near-ambient temperature, yet large-scale applications face heat-management challenges. In this article, we numerically analyze examples of two large-scale lanthanum pentanickel (LaNi5)-based metal hydride reactor configurations with shell-and-tube heat exchangers. This research studies two large-scale shell-and-tube metal hydride reactor configurations: a tube-side cooling reactor with hydride powder packed in the shell and coolant flowing through internal tubes, and a shell-side cooling reactor using annular hydride pellets with coolant circulating through the shell. The thermal and kinetic performance of these large-scale reactors was simulated using COMSOL Multiphysics (version 6.1) and analyzed under different geometries and operating conditions typical of industrial scales. The tube-side solution provided 90% hydrogen absorption in 1500–2000 s at 30 bar, while the shell-side solution reached the same level of absorption in 430 s at 10 bar. Results show that tube-side cooling has higher storage, while shell-side cooling improves heat removal and kinetics. For energy and maritime transport applications, these findings reveal optimization insights for large-scale, efficient hydrogen storage systems. Full article
Show Figures

Figure 1

37 pages, 3091 KB  
Review
Safety of Zero-Emission Transportation Systems: A Bibliometric Review and Future Research Perspective
by Donghun Lee, Hyunjoon Nam, Yiliu Liu, Kevin Koosup Yum, Sooyeon Kwon and Hyungju Kim
Appl. Sci. 2026, 16(3), 1221; https://doi.org/10.3390/app16031221 - 24 Jan 2026
Viewed by 207
Abstract
As the global transportation sector accelerates toward net-zero targets, the rapid deployment of alternative fuels like hydrogen, ammonia, and batteries introduces complex and novel safety challenges. This study systematically maps the intellectual structure of safety and risk research on zero-emission transportation systems to [...] Read more.
As the global transportation sector accelerates toward net-zero targets, the rapid deployment of alternative fuels like hydrogen, ammonia, and batteries introduces complex and novel safety challenges. This study systematically maps the intellectual structure of safety and risk research on zero-emission transportation systems to evaluate field maturity and identify critical knowledge gaps. We conducted a comprehensive bibliometric analysis of 151 core publications retrieved from the Web of Science from 2000 to 2025. By integrating quantitative performance analysis with qualitative science mapping techniques, the results identify that the domain is nascent and rapidly expanding, and a distinct inflection in publication occurred in 2020. However, science mapping reveals a fragmented intellectual structure. Among the four identified research clusters, two dominant streams emerge as the primary drivers of the field. The first is a “motor theme” focused on lithium-ion battery reliability and thermal runaway, while the second is a “basic theme” focused on hydrogen dispersion and toxicity risks. The analysis exposes a blind spot regarding the lack of cross-modal research addressing the physical safety interactions between different fuel systems operating in the shared infrastructure. Finally, this study proposes a future research agenda focusing on gathering real-world accident data and using system-theoretic approaches to manage integrated alternative fuel risks. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation: 2nd Edition)
Show Figures

Figure 1

24 pages, 393 KB  
Article
Global Transition of Energy Vectors in the Maritime Sector: Role of Liquefied Natural Gas, Green Hydrogen, and Ammonia in Achieving Net Zero by 2050
by Carmen Luisa Vásquez Stanescu, Rhonmer Pérez-Cedeño, Jesús C. Hernández and Teresa Batista
Energies 2026, 19(2), 568; https://doi.org/10.3390/en19020568 - 22 Jan 2026
Viewed by 119
Abstract
The global transition toward net-zero emissions by 2050, encompassing the International Energy Agency’s Roadmap for the energy sector, the IMO’s revised strategy for the maritime industry, and broader climate guidelines, necessitates a profound transformation of both global energy systems and the shipping sector. [...] Read more.
The global transition toward net-zero emissions by 2050, encompassing the International Energy Agency’s Roadmap for the energy sector, the IMO’s revised strategy for the maritime industry, and broader climate guidelines, necessitates a profound transformation of both global energy systems and the shipping sector. In this context, energy vectors such as Liquefied Natural Gas, Green Hydrogen, and Ammonia are emerging as key elements for this shift. This review article proposes a comprehensive analysis of these vectors, contrasting their roles: Liquefied Natural Gas as a transitional solution and Hydrogen and Ammonia as long-term pillars for decarbonization. The research moves beyond a simple comparative analysis, offering a detailed mapping and evaluation of the global port infrastructure required for their safe handling, cryogenic storage, and bunkering operations. We examine their technical specifications, decarbonization potential, and the challenges related to operational feasibility, costs, regulation, and sustainability. The objective is to provide a critical perspective on how the evolution of maritime ports into energy hubs is a sine qua non condition for the secure and efficient management of these vectors, thereby ensuring the sector effectively meets the Net Zero 2050 climate goals. Full article
23 pages, 1500 KB  
Systematic Review
Life Cycle Assessment of Hydrogen Fuel Cell Buses: A Systematic Review of Methodological Approaches
by Camila Padovan, Ana Carolina Maia Angelo, Márcio de Almeida D’Agosto and Pedro Carneiro
Future Transp. 2026, 6(1), 23; https://doi.org/10.3390/futuretransp6010023 - 22 Jan 2026
Viewed by 137
Abstract
Growing concerns over greenhouse gas (GHG) emissions have positioned hydrogen fuel cell buses (HFCBs) as a promising alternative for sustainable urban mobility. By eliminating tailpipe emissions and enabling significant reductions in well-to-wheel GHG intensities when hydrogen is sourced from renewables, HFCBs can contribute [...] Read more.
Growing concerns over greenhouse gas (GHG) emissions have positioned hydrogen fuel cell buses (HFCBs) as a promising alternative for sustainable urban mobility. By eliminating tailpipe emissions and enabling significant reductions in well-to-wheel GHG intensities when hydrogen is sourced from renewables, HFCBs can contribute to improved urban air quality, energy diversification, and alignment with climate goals. Despite these benefits, large-scale adoption faces challenges related to production costs, hydrogen infrastructure, and efficiency improvements across the supply chain. Life cycle assessment (LCA) provides a valuable framework to assess these trade-offs holistically, capturing environmental, economic, and social dimensions of HFCB deployment. However, inconsistencies in system boundaries, functional units, and impact categories highlight the need for more standardized and comprehensive methodologies. This paper examines the potential of hydrogen buses by synthesizing evidence from peer-reviewed studies and identifying opportunities for integration into urban fleets. Findings suggest that when combined with robust LCA approaches, hydrogen buses offer a pathway toward decarbonized, cleaner, and more resilient public transport systems. Strategic adoption could not only enhance environmental performance but also foster innovation, infrastructure development, and long-term economic viability, positioning HFCBs as a cornerstone of sustainable urban transportation transitions. Full article
Show Figures

Graphical abstract

58 pages, 20266 KB  
Review
A Global Perspective on Decarbonising Economies Through Clean Hydrogen: Adaptation, Supply Chain, Utilisation, National Hydrogen Initiatives, and Challenges
by Amila Premakumara, Shanaka Kristombu Baduge, Upeka Gunarathne, Susiri Costa, Sadeep Thilakarathna, Priyan Mendis, Adam Swanger, Saif Al Ghafri, William Notardonato and Gang Li
Energies 2026, 19(2), 524; https://doi.org/10.3390/en19020524 - 20 Jan 2026
Viewed by 222
Abstract
Hydrogen has emerged as a cornerstone of global decarbonisation strategies, offering a flexible pathway to reduce dependence on fossil fuels and accelerate progress towards net-zero targets. However, the development of a globally integrated hydrogen economy remains uneven, reflecting disparities in renewable energy potential, [...] Read more.
Hydrogen has emerged as a cornerstone of global decarbonisation strategies, offering a flexible pathway to reduce dependence on fossil fuels and accelerate progress towards net-zero targets. However, the development of a globally integrated hydrogen economy remains uneven, reflecting disparities in renewable energy potential, infrastructure readiness, investment capacity, and policy commitment. To better understand these differences and the barriers they create, this study undertakes a comprehensive comparative assessment of the global hydrogen supply chain encompassing resources, production, storage, transport, and end-use applications. Further, a structured analytical framework comprising ten principles and twenty-nine sub-factors was developed to evaluate national hydrogen policies, technological readiness, and enabling conditions across twenty-six countries. The results show that the United States, China, Japan, South Korea, and Germany lead global progress, while many countries remain at an early stage of engagement. These findings further inform persistent regional asymmetries and emphasise the need for stronger international coordination. Drawing on these findings, the paper advances targeted policy and research recommendations to lower production costs, expand storage and transport capacity, and harmonise regulatory frameworks, thereby defining a coherent pathway towards a secure, cost-competitive, and equitable global hydrogen economy by 2050. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Graphical abstract

16 pages, 1483 KB  
Article
Hydrogen Fuel in Aviation: Quantifying Risks for a Sustainable Future
by Ozan Öztürk and Melih Yıldız
Fuels 2026, 7(1), 5; https://doi.org/10.3390/fuels7010005 - 19 Jan 2026
Viewed by 223
Abstract
The aviation industry, responsible for approximately 2.5–3.5% of global greenhouse gas emissions, faces increasing pressure to adopt sustainable energy solutions. Hydrogen, with its high gravimetric energy density and zero carbon emissions during use, has emerged as a promising alternative fuel to support aviation [...] Read more.
The aviation industry, responsible for approximately 2.5–3.5% of global greenhouse gas emissions, faces increasing pressure to adopt sustainable energy solutions. Hydrogen, with its high gravimetric energy density and zero carbon emissions during use, has emerged as a promising alternative fuel to support aviation decarbonization. However, its large-scale implementation remains hindered by cryogenic storage requirements, safety risks, infrastructure adaptation, and economic constraints. This study aims to identify and evaluate the primary technical and operational risks associated with hydrogen utilization in aviation through a comprehensive Monte Carlo Simulation-based risk assessment. The analysis specifically focuses on four key domains—hydrogen leakage, cryogenic storage, explosion hazards, and infrastructure challenges—while excluding economic and lifecycle aspects to maintain a technical scope only. A 10,000-iteration simulation was conducted to quantify the probability and impact of each risk factor. Results indicate that hydrogen leakage and explosion hazards represent the most critical risks, with mean risk scores exceeding 20 on a 25-point scale, whereas investment costs and technical expertise were ranked as comparatively low-level risks. Based on these findings, strategic mitigation measures—including real-time leak detection systems, composite cryotank technologies, and standardized safety protocols—are proposed to enhance system reliability and support the safe integration of hydrogen-powered aviation. This study contributes to a data-driven understanding of hydrogen-related risks and provides a technological roadmap for advancing carbon-neutral air transport. Full article
(This article belongs to the Special Issue Sustainable Jet Fuels from Bio-Based Resources)
Show Figures

Figure 1

39 pages, 5114 KB  
Article
Optimal Sizing of Electrical and Hydrogen Generation Feeding Electrical and Thermal Load in an Isolated Village in Egypt Using Different Optimization Technique
by Mohammed Sayed, Mohamed A. Nayel, Mohamed Abdelrahem and Alaa Farah
Energies 2026, 19(2), 452; https://doi.org/10.3390/en19020452 - 16 Jan 2026
Viewed by 139
Abstract
This paper analyzes the functional feasibility and strategic value of hybrid hydrogen storage and photovoltaic (PV) energy systems at isolated areas, specifically at Egypt’s Shalateen station. The paper is significant as it formulates a solution to the energy independence coupled with economic feasibility [...] Read more.
This paper analyzes the functional feasibility and strategic value of hybrid hydrogen storage and photovoltaic (PV) energy systems at isolated areas, specifically at Egypt’s Shalateen station. The paper is significant as it formulates a solution to the energy independence coupled with economic feasibility issue in regions where the basic energy infrastructure is non-existent or limited. Through the integration of a portfolio of advanced optimization algorithms—Differential Evolution (DE), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), Multi-Objective Genetic Algorithm (MOGA), Pattern Search, Sequential Quadratic Programming (SQP), and Simulated Annealing—the paper evaluates the performance of two scenarios. The first evaluates the PV system in the absence of hydrogen production to demonstrate how system parameters are optimized by Pattern Search and PSO to achieve a minimum Cost of Energy (COE) of 0.544 USD/kWh. The second extends the system to include hydrogen production, which becomes important to ensure energy continuity during solar irradiation-free months like those during winter months. In this scenario, the same methods of optimization enhance the COE to 0.317 USD/kWh, signifying the economic value of integrating hydrogen storage. The findings underscore the central role played by hybrid renewable energy systems in ensuring high resilience and sustainability of supplies in far-flung districts, where continued enhancement by means of optimization is needed to realize maximum environmental and technological gains. The paper offers a futuristic model towards sustainable, dependable energy solutions key to the energy independence of the future in such challenging environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop