Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = hydrogen PEM fuel cell and electrolyser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3338 KiB  
Article
Mitigation of Reverse Power Flows in a Distribution Network by Power-to-Hydrogen Plant
by Fabio Massaro, John Licari, Alexander Micallef, Salvatore Ruffino and Cyril Spiteri Staines
Energies 2025, 18(15), 3931; https://doi.org/10.3390/en18153931 - 23 Jul 2025
Viewed by 249
Abstract
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this [...] Read more.
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this paper, a linear optimisation study is presented for the sizing of a Power-to-Hydrogen plant consisting of a PEM electrolyser, a hydrogen storage system composed of multiple compressed hydrogen tanks, and a fuel cell for the eventual reconversion of hydrogen to electricity. The plant was sized with the objective of minimising reverse power flows in a medium-voltage distribution network characterised by a high presence of photovoltaic systems, considering economic aspects such as investment costs and the revenue obtainable from the sale of hydrogen and excess energy generated by the photovoltaic systems. The study also assessed the impact that the electrolysis plant has on the power grid in terms of power losses. The results obtained showed that by installing a 737 kW electrolyser, the annual reverse power flows are reduced by 81.61%, while also reducing losses in the transformer and feeders supplying the ring network in question by 17.32% and 29.25%, respectively, on the day with the highest reverse power flows. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

19 pages, 3631 KiB  
Article
Modelling Methodologies to Design and Control Renewables and Hydrogen-Based Telecom Towers Power Supply Systems
by Paolo Aliberti, Marco Sorrentino, Marco Califano, Cesare Pianese, Luca Capozucca, Laura Cristiani, Gianpiero Lops and Roberto Mancini
Energies 2023, 16(17), 6316; https://doi.org/10.3390/en16176316 - 30 Aug 2023
Cited by 8 | Viewed by 1921
Abstract
Proton exchange membrane fuel cell (PEMFCS) and electrolyser (PEMELS) systems, together with a hydrogen storage tank (HST), are suitable to be integrated with renewable microgrids to cover intermittency and fully exploit the excess of electrical energy. Such an integration perfectly fits telecom tower [...] Read more.
Proton exchange membrane fuel cell (PEMFCS) and electrolyser (PEMELS) systems, together with a hydrogen storage tank (HST), are suitable to be integrated with renewable microgrids to cover intermittency and fully exploit the excess of electrical energy. Such an integration perfectly fits telecom tower power supply needs, both in off-grid and grid-connected sites. In this framework, a model-based tool enabling both optimal sizing and proper year-through energy management of both the above applications is proposed. Respectively, the islanded optimisation is performed considering two economic indices, i.e., simple payback (SPB) and levelised cost of energy (LCOE), together with two strategies of hydrogen tank management, charge sustaining and depleting, and also accounting for the impact of grid extension distance. On the other hand, the grid connection is addressed through the dynamic programming method, while downsizing PEMELS and HST sizes to improve techno-economic effectiveness, thanks to grid contribution towards renewables curtailment issues mitigation. For both the above introduced HST management strategies, a reduction of more than 70% of the nominal PEMELS power and 90% of the HST size, which will in turn lead to SPB and LCOE being reduced by 80% and 60% in comparison to the islanded case, respectively, is achieved. Furthermore, the charge depleting strategy, relying on possible hydrogen purchase, interestingly provides an SPB and LCOE of 9% and 7% lower than the charge sustaining one. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

24 pages, 9530 KiB  
Article
Dimensioning and Lifetime Prediction Model for a Hybrid, Hydrogen-Based Household PV Energy System Using Matlab/Simulink
by Marius C. Möller and Stefan Krauter
Solar 2023, 3(1), 25-48; https://doi.org/10.3390/solar3010003 - 4 Jan 2023
Cited by 4 | Viewed by 4289
Abstract
This paper presents a model of an energy system for a private household extended by a lifetime prognosis. The energy system was designed for fully covering the year-round energy demand of a private household on the basis of electricity generated by a photovoltaic [...] Read more.
This paper presents a model of an energy system for a private household extended by a lifetime prognosis. The energy system was designed for fully covering the year-round energy demand of a private household on the basis of electricity generated by a photovoltaic (PV) system, using a hybrid energy storage system consisting of a hydrogen unit and a lithium-ion battery. Hydrogen is produced with a Proton Exchange Membrane (PEM) electrolyser by PV surplus during the summer months and then stored in a hydrogen tank. Mainly during winter, in terms of lack of PV energy, the hydrogen is converted back into electricity and heat by a fuel cell. The model was created in Matlab/Simulink and is based on real input data. Heat demand was also taken into account and is covered by a heat pump. The simulation period is a full year to account for the seasonality of energy production and demand. Due to high initial costs, the longevity of such an energy system is of vital interest. Therefore, this model was extended by a lifetime prediction in order to optimize the dimensioning with the aim of lifetime extension of a hydrogen-based energy system. Lifetime influencing factors were identified on the basis of a literature review and were integrated in the model. An extensive parameter study was performed to evaluate different dimensionings regarding the energy balance and the lifetime of the three components, electrolyser, fuel cell and lithium-ion battery. The results demonstrate the benefits of a holistic modelling approach and enable a design optimization regarding the use of resources, lifetime and self-sufficiency of the system. Full article
Show Figures

Graphical abstract

9 pages, 2496 KiB  
Communication
The Effect of Resorcinol on the Kinetics of Underpotentially Deposited Hydrogen and the Oxygen Evolution Reaction, Studied on Polycrystalline Pt in a 0.5 M H2SO4 Solution
by Mateusz Kuczyński, Mateusz Łuba, Tomasz Mikołajczyk and Bogusław Pierożyński
Energies 2022, 15(3), 1092; https://doi.org/10.3390/en15031092 - 1 Feb 2022
Cited by 3 | Viewed by 2691
Abstract
This article reports on the influence of resorcinol (RC) on the kinetics of underpotential deposition of hydrogen (UPD of H) and the oxygen evolution reaction (OER), studied on a polycrystalline Pt electrode in a 0.5 M sulphuric acid supporting solution. It is well [...] Read more.
This article reports on the influence of resorcinol (RC) on the kinetics of underpotential deposition of hydrogen (UPD of H) and the oxygen evolution reaction (OER), studied on a polycrystalline Pt electrode in a 0.5 M sulphuric acid supporting solution. It is well known that both PEM fuel cells and water electrolysers’ electrodes often contain significant amounts of nanostructured Pt or other types of noble metal particles. These materials provide the superior catalytic activity of electrochemical reactions such as OER (oxygen evolution reaction), HER (hydrogen evolution reaction) and ORR (oxygen reduction reaction). The trace amounts of phenolic substances contained in air or water could be harmful (when in contact with a fuel cell/water electrolyser’s working environment) to the abovementioned catalytic surfaces. Hence, they could potentially have severe detrimental effects on the kinetics of these processes. The results obtained in this work provided evidence for the detrimental role of Pt surface-adsorbed resorcinol molecules (or their electrodegradation products) on the kinetics of UPD of H and the oxygen evolution reaction. The above was revealed through evaluation of the associated charge-transfer resistance and capacitance parameters, comparatively derived on a platinum electrode, for the initial and the resorcinol-modified H2SO4 electrolyte. Full article
Show Figures

Figure 1

15 pages, 1576 KiB  
Article
The Impact of Process Heat on the Decarbonisation Potential of Offshore Installations by Hybrid Energy Systems
by Luca Riboldi, Marcin Pilarczyk and Lars O. Nord
Energies 2021, 14(23), 8123; https://doi.org/10.3390/en14238123 - 3 Dec 2021
Cited by 6 | Viewed by 2349
Abstract
An opportunity to decarbonise the offshore oil and gas sector lies in the integration of renewable energy sources with energy storage in a hybrid energy system (HES). Such concept enables maximising the exploitation of carbon-free renewable power, while minimising the emissions associated with [...] Read more.
An opportunity to decarbonise the offshore oil and gas sector lies in the integration of renewable energy sources with energy storage in a hybrid energy system (HES). Such concept enables maximising the exploitation of carbon-free renewable power, while minimising the emissions associated with conventional power generation systems such as gas turbines. Offshore plants, in addition to electrical and mechanical power, also require process heat for their operation. Solutions that provide low-emission heat in parallel to power are necessary to reach a very high degree of decarbonisation. This paper investigates different options to supply process heat in offshore HES, while the electric power is mostly covered by a wind turbine. All HES configurations include energy storage in the form of hydrogen tied to proton exchange membrane (PEM) electrolysers and fuel cells stacks. As a basis for comparison, a standard configuration relying solely on a gas turbine and a waste heat recovery unit is considered. A HES combined with a waste heat recovery unit to supply heat proved efficient when low renewable power capacity is integrated but unable to deliver a total CO2 emission reduction higher than around 40%. Alternative configurations, such as the utilization of gas-fired or electric heaters, become more competitive at large installed renewable capacity, approaching CO2 emission reductions of up to 80%. Full article
Show Figures

Figure 1

25 pages, 3107 KiB  
Article
Modelling and Control of a Grid-Connected RES-Hydrogen Hybrid Microgrid
by Jonny Esteban Villa Londono, Andrea Mazza, Enrico Pons, Harm Lok and Ettore Bompard
Energies 2021, 14(6), 1540; https://doi.org/10.3390/en14061540 - 11 Mar 2021
Cited by 23 | Viewed by 5604
Abstract
This paper proposes a Hybrid Microgrid (HμG) model including distributed generation (DG) and a hydrogen-based storage system, controlled through a tailored control strategy. The HμG is composed of three DG units, two of them supplied by solar and wind [...] Read more.
This paper proposes a Hybrid Microgrid (HμG) model including distributed generation (DG) and a hydrogen-based storage system, controlled through a tailored control strategy. The HμG is composed of three DG units, two of them supplied by solar and wind sources, and the latter one based on the exploitation of theProton Exchange Membrane (PEM) technology. Furthermore, the system includes an alkaline electrolyser, which is used as a responsive load to balance the excess of Variable Renewable Energy Sources (VRES) production, and to produce the hydrogen that will be stored into the hydrogen tank and that will be used to supply the fuel cell in case of lack of generation. The main objectives of this work are to present a validated dynamic model for every component of the HμG and to provide a strategy to reduce as much as possible the power absorption from the grid by exploiting the VRES production. The alkaline electrolyser and PEM fuel cell models are validated through real measurements. The State of Charge (SoC) of the hydrogen tank is adjusted through an adaptive scheme. Furthermore, the designed supervisor power control allows reducing the power exchange and improving the system stability. Finally, a case, considering a summer load profile measured in an electrical substation of Politecnico di Torino, is presented. The results demonstrates the advantages of a hydrogen-based micro-grid, where the hydrogen is used as medium to store the energy produced by photovoltaic and wind systems, with the aim to improve the self-sufficiency of the system. Full article
Show Figures

Figure 1

44 pages, 2796 KiB  
Review
Composite Polymers Development and Application for Polymer Electrolyte Membrane Technologies—A Review
by Gabriele G. Gagliardi, Ahmed Ibrahim, Domenico Borello and Ahmad El-Kharouf
Molecules 2020, 25(7), 1712; https://doi.org/10.3390/molecules25071712 - 8 Apr 2020
Cited by 69 | Viewed by 8694
Abstract
Nafion membranes are still the dominating material used in the polymer electrolyte membrane (PEM) technologies. They are widely used in several applications thanks to their excellent properties: high proton conductivity and high chemical stability in both oxidation and reduction environment. However, they have [...] Read more.
Nafion membranes are still the dominating material used in the polymer electrolyte membrane (PEM) technologies. They are widely used in several applications thanks to their excellent properties: high proton conductivity and high chemical stability in both oxidation and reduction environment. However, they have several technical challenges: reactants permeability, which results in reduced performance, dependence on water content to perform preventing the operation at higher temperatures or low humidity levels, and chemical degradation. This paper reviews novel composite membranes that have been developed for PEM applications, including direct methanol fuel cells (DMFCs), hydrogen PEM fuel cells (PEMFCs), and water electrolysers (PEMWEs), aiming at overcoming the drawbacks of the commercial Nafion membranes. It provides a broad overview of the Nafion-based membranes, with organic and inorganic fillers, and non-fluorinated membranes available in the literature for which various main properties (proton conductivity, crossover, maximum power density, and thermal stability) are reported. The studies on composite membranes demonstrate that they are suitable for PEM applications and can potentially compete with Nafion membranes in terms of performance and lifetime. Full article
(This article belongs to the Special Issue Proton Exchange Membrane Fuel Cells (PEMFCs))
Show Figures

Figure 1

46 pages, 7711 KiB  
Review
Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review
by Xinwei Sun, Stian Christopher Simonsen, Truls Norby and Athanasios Chatzitakis
Membranes 2019, 9(7), 83; https://doi.org/10.3390/membranes9070083 - 11 Jul 2019
Cited by 156 | Viewed by 19264
Abstract
Polymer electrolyte membrane (PEM) fuel cells and electrolysers offer efficient use and production of hydrogen for emission-free transport and sustainable energy systems. Perfluorosulfonic acid (PFSA) membranes like Nafion® and Aquivion® are the state-of-the-art PEMs, but there is a need to increase [...] Read more.
Polymer electrolyte membrane (PEM) fuel cells and electrolysers offer efficient use and production of hydrogen for emission-free transport and sustainable energy systems. Perfluorosulfonic acid (PFSA) membranes like Nafion® and Aquivion® are the state-of-the-art PEMs, but there is a need to increase the operating temperature to improve mass transport, avoid catalyst poisoning and electrode flooding, increase efficiency, and reduce the cost and complexity of the system. However, PSFAs-based membranes exhibit lower mechanical and chemical stability, as well as proton conductivity at lower relative humidities and temperatures above 80 °C. One approach to sustain performance is to introduce inorganic fillers and improve water retention due to their hydrophilicity. Alternatively, polymers where protons are not conducted as hydrated H3O+ ions through liquid-like water channels as in the PSFAs, but as free protons (H+) via Brønsted acid sites on the polymer backbone, can be developed. Polybenzimidazole (PBI) and sulfonated polyetheretherketone (SPEEK) are such materials, but need considerable acid doping. Different composites are being investigated to solve some of the accompanying problems and reach sufficient conductivities. Herein, we critically discuss a few representative investigations of composite PEMs and evaluate their significance. Moreover, we present advances in introducing electronic conductivity in the polymer binder in the catalyst layers. Full article
(This article belongs to the Special Issue Membrane Materials for Next-Generation Fuel Cells)
Show Figures

Figure 1

Back to TopTop