The Effect of Resorcinol on the Kinetics of Underpotentially Deposited Hydrogen and the Oxygen Evolution Reaction, Studied on Polycrystalline Pt in a 0.5 M H2SO4 Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrochemical Measurements
3. Results and Discussion
3.1. Cyclic Voltammetry Behaviour of Pt in 0.5 M Sulphuric Acid, in the Absence and Presence of Resorcinol
3.2. Ac. Impedance Behaviour of Pt in 0.5 M H2SO4, in the Absence and Presence of Resorcinol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conway, B.E.; Tilak, B.V. Behavior and characterization of kinetically involved chemisorbed intermediates in electrocatalysis of gas evolution reactions. Adv. Catal. 1992, 38, 1–147. [Google Scholar]
- Conway, B.E.; Bai, L. Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J. Electroanal. Chem. Interfac. Electrochem. 1986, 198, 149–175. [Google Scholar] [CrossRef]
- Morin, S.; Dumont, H.; Conway, B.E. Evaluation of the effect of two-dimensional geometry of Pt single-crystal faces on the kinetics of upd of H using impedance spectroscopy. J. Electroanal. Chem. 1996, 412, 39–52. [Google Scholar] [CrossRef]
- Pierozynski, B. Hydrogen evolution reaction at Pd-modified carbon fibre and nickel-coated carbon fibre materials. Int. J. Hydrogen Energy 2013, 38, 7733–7740. [Google Scholar] [CrossRef]
- Doyle, R.L.; Lyons, M.E.G. An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Phys. Chem. Chem. Phys. 2013, 15, 5224–5237. [Google Scholar] [CrossRef]
- Pierozynski, B.; Mikolajczyk, T.; Luba, M.; Zolfaghari, A. Kinetics of oxygen evolution reaction on nickel foam and platinum-modified nickel foam materials in alkaline solution. J. Electroanal. Chem. 2019, 847, 113194. [Google Scholar] [CrossRef]
- Porras, S.P.; Hartonen, M.; Ylinen, K.; Tornaeus, J.; Tuomi, T.; Santonen, T. Environmental and occupational exposure to resorcinol in Finland. Toxicol. Lett. 2018, 298, 125–133. [Google Scholar] [CrossRef]
- Korbahti, B.K.; Demirbuken, P. Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode: Reaction kinetics and process optimization with response surface methodology. Front. Chem. 2017, 5, 75. [Google Scholar] [CrossRef] [Green Version]
- Lynch, B.S.; Delzell, E.S.; Bechtel, D.H. Toxicology review and risk assessment of resorcinol: Thyroid effects. Regul. Toxicol. Pharm. 2002, 36, 198–210. [Google Scholar] [CrossRef]
- Rajkumar, D.; Palanivelu, K.; Mohan, N. Electrochemical oxidation of resorcinol for wastewater treatment—A kinetic study. Indian J. Chem. Technol. 2003, 10, 396–401. [Google Scholar]
- Nady, H.; El-Rabieci, M.M.; Abd El-Hafez, G.M. Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution. Egypt. J. Pet. 2017, 26, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Mikolajczyk, T.; Pierozynski, B.; Smoczynski, L.; Wiczkowski, W. Electrodegradation of resorcinol on pure and catalyst-modified Ni foam anodes, studied under alkaline and neutral pH conditions. Molecules 2018, 23, 1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierozynski, B.; Morin, S.; Conway, B.E. Influence of adsorption of guanidonium cations on H UPD at Pt(hkl) surfaces: Lattice-specific anion-mimetic effects. J. Electroanal. Chem. 1999, 467, 30–42. [Google Scholar] [CrossRef]
- Zeradjanin, A.R.; Masa, J.; Spanos, I.; Schlogl, R. Activity and stability of oxides during oxygen evolution reaction-from mechanistic controversies toward relevant electrocatalytic descriptors. Front. Energy Res. 2021, 8, 613092. [Google Scholar] [CrossRef]
- Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; Toma, F.M.; Ross, P.N.; Yano, J.; Liu, Z.; Crumlin, E.J. Elucidating the alkaline oxygen evolution reaction mechanism on platinum. J. Mater. Chem. A. 2017, 5, 11634–11643. [Google Scholar] [CrossRef] [Green Version]
- Clavilier, J.; El Achi, K.; Petit, M.; Rodes, A.; Zamakhchari, M.A. Electrochemical monitoring of the thermal reordering of platinum single-crystal surfaces after metallographic polishing from the early stage to the equilibrium surfaces. J. Electroanal. Chem. 1990, 295, 33–356. [Google Scholar] [CrossRef]
- Clavilier, J.; Rodes, A.; El Achi, K.; Zamakhchari, M.A. Electrochemistry at platinum single crystal surfaces in acidic media: Hydrogen and oxygen adsorption. J. Chim. Phys. 1991, 88, 1291–1337. [Google Scholar] [CrossRef]
- Mikolajczyk, T.; Luba, M.; Pierozynski, B.; Kowalski, I.M.; Wiczkowski, W. The influence of solution pH on the kinetics of resorcinol electrooxidation (degradation) on polycrystalline platinum. Molecules 2019, 24, 2309. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Zhao, Y.; Liu, W.; Chang, L. Investigation on electro-catalytic oxidation properties of carbon nanotube-Ce-modified PbO2 electrode and its application for degradation of m-nitrophenol. Arab. J. Chem. 2019, 12, 709–717. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Liu, W.; Tu, Y.; Zhang, Y.; Han, W.; Wang, L. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode. Chemosphere 2014, 113, 48–55. [Google Scholar] [CrossRef]
- Pierozynski, B.; Piotrowska, G. Electrochemical degradation of phenol and resorcinol molecules through the dissolution of sacrificial anodes of macro-corrosion galvanic cells. Water 2018, 10, 770. [Google Scholar] [CrossRef] [Green Version]
- Conway, B.E.; Pierozynski, B.A.c. impedance behaviour of processes involving adsorption and reactivity of guanidonium-type cations at Pt(100) surface. J. Electroanal. Chem. 2008, 622, 10–14. [Google Scholar] [CrossRef]
- Audichon, T.; Napporn, T.W.; Kokoh, K.B.; Canaff, C.; Morais, C.; Comminges, C. IrO2 coated on RuO2 as efficient and stable electroactive nanocatalysts for electrochemical water splitting. J. Phys. Chem. C 2016, 120, 2562–2573. [Google Scholar] [CrossRef]
0.5 M H2SO4 | |||
---|---|---|---|
UPD of H | |||
E/mV | RH/Ω cm2 | Cdl/µF cm−2 | CpH/µF cm−2 |
100 | 0.47 ± 0.07 | 21 ± 1 | 209 ± 37 |
150 | 1.13 ± 0.08 | 72 ± 6 | 212 ± 28 |
200 | 1.51 ± 0.33 | 64 ± 6 | 173 ± 59 |
250 | 1.64 ± 0.19 | 54 ± 7 | 263 ± 9 |
350 | 2.10 ± 0.20 | 68 ± 2 | 225 ± 8 |
400 | 2.65 ± 0.24 | 79 ± 2 | 179 ± 5 |
OER | |||
Rct/Ω cm2 | Cdl/µF cm−2 | ||
1700 | 874.2 ± 4.7 | 54 ± 0 | |
1800 | 195.9 ± 1.5 | 58 ± 1 | |
1900 | 45.5 ± 0.3 | 69 ± 1 | |
2000 | 12.2 ± 0.1 | 88 ± 1 | |
2100 | 2.8 ± 0.0 | 90 ± 4 | |
0.5 M H2SO4 + 1.0 × 10−5 M RC | |||
UPD of H | |||
RH/Ω cm2 | Cdl/µF cm−2 | CpH/µF cm−2 | |
100 | 1.16 ± 0.12 | 37 ± 4 | 297 ± 37 |
150 | 1.71 ± 0.23 | 114 ± 3 | 408 ± 45 |
200 | 1.82 ± 0.16 | 72 ± 7 | 159 ± 18 |
250 | 3.16 ± 0.44 | 42 ± 2 | 155 ± 12 |
350 | 4.44 ± 0.71 | 68 ± 6 | 73 ± 3 |
400 | 5.08 ± 0.52 | 31 ± 1 | 50 ± 4 |
OER | |||
Rct/Ω cm2 | Cdl/µF cm−2 | ||
1700 | 1097.0 ± 9.9 | 51 ± 0 | |
1800 | 244.4 ± 3.3 | 53 ± 1 | |
1900 | 55.4 ± 0.6 | 58 ± 1 | |
2000 | 13.2 ± 0.1 | 77 ± 1 | |
2100 | 3.3 ± 0.0 | 74 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuczyński, M.; Łuba, M.; Mikołajczyk, T.; Pierożyński, B. The Effect of Resorcinol on the Kinetics of Underpotentially Deposited Hydrogen and the Oxygen Evolution Reaction, Studied on Polycrystalline Pt in a 0.5 M H2SO4 Solution. Energies 2022, 15, 1092. https://doi.org/10.3390/en15031092
Kuczyński M, Łuba M, Mikołajczyk T, Pierożyński B. The Effect of Resorcinol on the Kinetics of Underpotentially Deposited Hydrogen and the Oxygen Evolution Reaction, Studied on Polycrystalline Pt in a 0.5 M H2SO4 Solution. Energies. 2022; 15(3):1092. https://doi.org/10.3390/en15031092
Chicago/Turabian StyleKuczyński, Mateusz, Mateusz Łuba, Tomasz Mikołajczyk, and Bogusław Pierożyński. 2022. "The Effect of Resorcinol on the Kinetics of Underpotentially Deposited Hydrogen and the Oxygen Evolution Reaction, Studied on Polycrystalline Pt in a 0.5 M H2SO4 Solution" Energies 15, no. 3: 1092. https://doi.org/10.3390/en15031092
APA StyleKuczyński, M., Łuba, M., Mikołajczyk, T., & Pierożyński, B. (2022). The Effect of Resorcinol on the Kinetics of Underpotentially Deposited Hydrogen and the Oxygen Evolution Reaction, Studied on Polycrystalline Pt in a 0.5 M H2SO4 Solution. Energies, 15(3), 1092. https://doi.org/10.3390/en15031092