Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = hydrocarbon fires

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1186 KiB  
Article
The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels
by Jitka Sikorova, Frantisek Hopan, Lenka Kubonova, Jiri Horak, Alena Milcova, Pavel Rossner, Antonin Ambroz, Kamil Krpec, Oleksandr Molchanov and Tana Zavodna
Toxics 2025, 13(8), 619; https://doi.org/10.3390/toxics13080619 - 25 Jul 2025
Viewed by 129
Abstract
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This [...] Read more.
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This study compares the genotoxic potential of the emissions of four boilers of modern and old design (automatic, gasification, down-draft, over-fire) operating at reduced output to simulate the real-life combustion fed by various fossil and renewable solid fuels (hard coal, brown coal, brown coal briquettes, wood pellets, wet and dry spruce). Organic emissions were tested for genotoxic potential by analysing bulky DNA adducts and 8-oxo-dG adduct induction. There was no consistent genotoxic pattern among the fuels used within the boilers. Genotoxicity was strongly correlated with polycyclic aromatic hydrocarbon (PAH) content, and even stronger correlation was observed with particulate matter (PM). In all measured variables (PM, PAHs, genotoxicity), the technology of the boilers was a more important factor in determining the genotoxic potential than the fuels burned. The highest levels of both bulky and 8-oxo-dG DNA adducts were induced by organics originating from the over-fire boiler, while the automatic boiler exhibited genotoxic potential that was ~1000- and 100-fold lower, respectively. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

26 pages, 3013 KiB  
Review
Intumescent Coatings and Their Applications in the Oil and Gas Industry: Formulations and Use of Numerical Models
by Taher Hafiz, James Covello, Gary E. Wnek, Abdulkareem Melaiye, Yen Wei and Jiujiang Ji
Polymers 2025, 17(14), 1923; https://doi.org/10.3390/polym17141923 - 11 Jul 2025
Viewed by 399
Abstract
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to [...] Read more.
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to heat, thereby reducing heat transfer and delaying structural failure. This review article provides an overview of recent developments in the effectiveness of ICs in mitigating fire risks, enhancing structural resilience, and reducing environmental impacts within the oil and gas industry. The literature surveyed shows that analytical techniques, such as thermogravimetric analysis, scanning electron microscopy, and large-scale fire testing, have been used to evaluate the thermal insulation performances of the coatings. The results indicate significant temperature reductions on protected steel surfaces that extend critical failure times under hydrocarbon fire conditions. Recent advancements in nano-enhanced and bio-derived ICs have also improved thermal stability and mechanical durability. Furthermore, numerical modeling based on heat transfer, mass conservation, and kinetic equations aids in optimizing formulations for real-world applications. Nevertheless, challenges remain in terms of standardizing modeling frameworks and enhancing the environmental sustainability of ICs. This review highlights the progress made and the opportunities for continuous advances and innovation in IC technologies to meet the ever-evolving challenges and complexities in oil and gas industry operations. Consequently, the need to enhance fire protection by utilizing a combination of tools improves predictive modeling and supports regulatory compliance in high-risk industrial environments. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

15 pages, 1319 KiB  
Article
Pyrogenic Transformation and Carbon Sequestration in Forested Bog Soils of the Middle Taiga in Northeastern European Russia
by Nikolay M. Gorbach, Viktor V. Startsev, Evgenia V. Yakovleva, Anton S. Mazur and Alexey A. Dymov
Soil Syst. 2025, 9(3), 74; https://doi.org/10.3390/soilsystems9030074 - 11 Jul 2025
Viewed by 216
Abstract
A comprehensive paleoecological study of a forested bog located in the middle taiga subzone of northeastern European Russia was carried out. According to the 14C radiocarbon dating and botanical composition analysis, the bog began forming 8200 calibrated years ago, evolving in three [...] Read more.
A comprehensive paleoecological study of a forested bog located in the middle taiga subzone of northeastern European Russia was carried out. According to the 14C radiocarbon dating and botanical composition analysis, the bog began forming 8200 calibrated years ago, evolving in three stages from grassy wetlands to its current state as a pine-Sphagnum peatland. Analysis revealed substantial carbon storage (81.4 kg m−2) within the peat deposit. Macrocharcoal particles were consistently present throughout the peat deposits, demonstrating continuous fire activity across the bog’s developing. High charcoal particle accumulation rates occurred not only during warm periods like the Holocene thermal maximum but also during colder and wetter periods. These periods include recent centuries, when high charcoal accumulation rates are likely due to increased human activity. Statistical analysis showed significant relationships between macrocharcoal content and several peat characteristics: higher charcoal levels correlated with increased soil carbon (r = 0.6), greater aromatic compounds (r = 0.8), and elevated polycyclic aromatic hydrocarbons (r = 0.7), all with p < 0.05. These findings highlight how fire has consistently shaped this ecosystem’s development and carbon storage capacity over millennia, with apparent intensification during recent centuries potentially linked to anthropogenic influences on fire regimes in the boreal zone. Full article
Show Figures

Figure 1

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 421
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

19 pages, 3827 KiB  
Article
Pyrolysis Kinetics and Gas Evolution of Flame-Retardant PVC and PE: A TG-FTIR-GC/MS Study
by Wen-Wei Su, Yang Li, Peng-Rui Man, Ya-Wen Sheng and Jian Wang
Fire 2025, 8(7), 262; https://doi.org/10.3390/fire8070262 - 30 Jun 2025
Viewed by 448
Abstract
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene [...] Read more.
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene (PE) insulation materials using advanced TG-FTIR-GC/MS techniques. Distinct pyrolysis stages were identified through thermogravimetric analysis (TGA) at heating rates of 10–40 K/min, while the KAS model-free method and Málek fitting function quantified activation energies and reaction mechanisms. Results revealed that flame-retardant PVC undergoes two major stages: (1) dehydrochlorination, characterized by the rapid release of HCl and low activation energy, and (2) main-chain scission, producing aromatic compounds that contribute to fire toxicity. In contrast, flame-retardant PE demonstrates a more stable pyrolysis process dominated by random chain scission and the formation of a dense char layer, significantly enhancing its flame-retardant performance. FTIR and GC/MS analyses further highlighted distinct gas evolution behaviors: PVC primarily generates HCl and aromatic hydrocarbons, whereas PE releases olefins and alkanes with significantly lower toxicity. Additionally, the application of a classification and regression tree (CART) model accurately predicted mass loss behavior under various heating rates, achieving exceptional fitting accuracy (R2 > 0.98). This study provides critical insights into the pyrolysis mechanisms of flame-retardant cable insulation and offers a robust data framework for optimizing fire modeling and improving material design. Full article
Show Figures

Figure 1

20 pages, 14971 KiB  
Article
The Influence of Australian Bushfire on the Upper Tropospheric CO and Hydrocarbon Distribution in the South Pacific
by Donghee Lee, Jin-Soo Kim, Kaley Walker, Patrick Sheese, Sang Seo Park, Taejin Choi, Minju Park, Hwan-Jin Song and Ja-Ho Koo
Remote Sens. 2025, 17(12), 2092; https://doi.org/10.3390/rs17122092 - 18 Jun 2025
Viewed by 421
Abstract
To determine the long-term effect of Australian bushfires on the upper tropospheric composition in the South Pacific, we investigated the variation in CO and hydrocarbon species in the South Pacific according to the extent of Australian bushfires (2004–2020). We conducted analyses using satellite [...] Read more.
To determine the long-term effect of Australian bushfires on the upper tropospheric composition in the South Pacific, we investigated the variation in CO and hydrocarbon species in the South Pacific according to the extent of Australian bushfires (2004–2020). We conducted analyses using satellite data on hydrocarbon and CO from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and on fire (fire count, burned area, and fire radiative power) from the Moderate Resolution Imaging Spectroradiometer (MODIS). Additionally, we compared the effects of bushfires between Northern and Southeastern Australia (N_Aus and SE_Aus, respectively). Our analyses show that Australian bushfires in austral spring (September to November) result in the largest increase in CO and hydrocarbon species in the South Pacific and even in the west of South America, indicating the trans-Pacific transport of smoke plumes. In addition to HCN (a well-known wildfire indicator), CO and other hydrocarbon species (C2H2, C2H6, CH3OH, HCOOH) are also considerably increased by Australian bushfires. A unique finding in this study is that the hydrocarbon increase in the South Pacific mostly relates to the bushfires in N_Aus, implying that we need to be more vigilant of bushfires in N_Aus, although the severe Australian bushfire in 2019–2020 occurred in SE_Aus. Due to the surface conditions in springtime, bushfires on grassland in N_Aus during this time account for most Australian bushfires. All results show that satellite data enables us to assess the long-term effect of bushfires on the air composition over remote areas not having surface monitoring platforms. Full article
Show Figures

Graphical abstract

12 pages, 245 KiB  
Article
Chronic Reproductive Toxicity of Fomtec Enviro USP, a Fluorine-Free Firefighting Foam, to Northern Bobwhite (Colinus virginianus)
by Anna S. Longwell, Farzana Hossain, Seenivasan Subbiah, Adcharee Karnjanapiboonwong, Jamie G. Suski and Todd A. Anderson
Toxics 2025, 13(6), 474; https://doi.org/10.3390/toxics13060474 - 3 Jun 2025
Viewed by 444
Abstract
Long-chain per- and polyfluoroalkyl substances (PFASs) have been the standard active chemicals in aqueous film-forming foams (AFFFs or firefighting foams) since the mid-1960s. Some characteristics of PFASs are environmental persistence and bioaccumulation. Non-fluorinated firefighting foams are an alternative to potentially reducing the ecological/environmental [...] Read more.
Long-chain per- and polyfluoroalkyl substances (PFASs) have been the standard active chemicals in aqueous film-forming foams (AFFFs or firefighting foams) since the mid-1960s. Some characteristics of PFASs are environmental persistence and bioaccumulation. Non-fluorinated firefighting foams are an alternative to potentially reducing the ecological/environmental impact of PFAS-based AFFF. We used northern bobwhite (NOBO, Colinus virginianus) to test the ecotoxicity of one candidate (non-fluorinated) foam. Fomtec Enviro USP is a fluorine-free commercial AFFF used primarily for extinguishing Class B hydrocarbon fuel fires. Following a photostimulation phase to initiate egg laying, breeding pairs were exposed for 60+ days to 0.01%, 0.1%, and 0.25% Fomtec in drinking water. The endpoints of the study included survival, growth, and reproductive output. Water consumption was evaluated and used to determine the average daily intake (ADI) based on Fomtec components: sodium dodecyl sulfate or SDS (0.05, 0.15, and 0.32 mg/kg/day for the 0.01%, 0.1%, and 0.25% Fomtec exposures, respectively) and diethylene glycol monobutyl ether or DGMBE (0.49, 6.54, and 18.37 mg/kg/day for the 0.01%, 0.1%, and 0.25% Fomtec exposures, respectively). Over the 60 days, control females laid an average of 59 ± 0.8 eggs compared to 28 ± 9 (0.01% Fomtec exposure), 51 ± 4 (0.1% Fomtec exposure), and 56 ± 2 (0.25% Fomtec exposure); the number of eggs produced per hen was affected by exposure to the lowest Fomtec concentration. Hatching success was not significantly different among treatment groups, and it was within normal reproduction parameters for quail. Our findings in this avian model help to fill data gaps for non-fluorinated foam products, many of which have little toxicological information. Full article
Show Figures

Graphical abstract

16 pages, 1398 KiB  
Article
Oral Microbiota Dysbiosis in Firefighters and the Potential Contributing Environmental and Lifestyle Factors Based on a Case-Control Study
by Sukanta S. Bhattacharya, Brijesh Yadav, Roman Jandarov, William A. Jetter and Jagjit S. Yadav
Microorganisms 2025, 13(5), 1154; https://doi.org/10.3390/microorganisms13051154 - 18 May 2025
Viewed by 1515
Abstract
Epidemiological studies show firefighters have increased risks of cancer, diabetes, and cardiovascular disease. To explore links between occupational/environmental exposures and dysbiosis-associated health risks, this case-control study compared oral microbiota of age-matched firefighters (n = 13) and non-firefighters (n = 13) using next-generation sequencing. [...] Read more.
Epidemiological studies show firefighters have increased risks of cancer, diabetes, and cardiovascular disease. To explore links between occupational/environmental exposures and dysbiosis-associated health risks, this case-control study compared oral microbiota of age-matched firefighters (n = 13) and non-firefighters (n = 13) using next-generation sequencing. Firefighters exhibited significantly reduced overall microbial diversity (p ≤ 0.05) and compositional shifts. Firmicutes increased from 53.5% to 68.5%, and Bacteroidetes from 9.5% to 14.1%, while Proteobacteria decreased from 24.6% to 8.3%, and Fusobacteria from 3.3% to 1.1%. This resulted in a higher Firmicutes to Bacteroidetes ratio (5.63 vs. 4.89 in controls), indicating a pro-inflammatory oral microenvironment. At the family level, Streptococcaceae (45.1% to 60.3%) and Prevotellaceae (6.2% to 10.0%) increased, whereas Neisseriaceae (17.7% to 4.9%) and Fusobacteriaceae (2.1% to 0.8%) decreased. The genus Streptococcus dominated firefighters’ microbiota, rising from 45.1% to 60.3%. Diversity indices confirmed reduced microbial evenness and richness in firefighters. Metadata analysis linked frequent fire exposures to perturbations in Comamonadaceae and Carnobacteriaceae (p ≤ 0.05). Barbecue consumption, a source of polycyclic aromatic hydrocarbons, correlated with elevated Spirochaetaceae and Peptostreptococcaceae. This first report on oral dysbiosis in firefighters reveals significant alterations in microbiota abundance, diversity, and evenness, implying potential health risks for this group. Full article
Show Figures

Figure 1

18 pages, 3713 KiB  
Article
Estimation of Biomass Burning Emissions in South and Southeast Asia Based on FY-4A Satellite Observations
by Yajun Wang, Yu Tian and Yusheng Shi
Atmosphere 2025, 16(5), 582; https://doi.org/10.3390/atmos16050582 - 13 May 2025
Cited by 1 | Viewed by 678
Abstract
In recent years, frequent open biomass burning (OBB) activities such as agricultural residue burning and forest fires have led to severe air pollution and carbon emissions across South and Southeast Asia (SSEA). We selected this area as our study area and divided it [...] Read more.
In recent years, frequent open biomass burning (OBB) activities such as agricultural residue burning and forest fires have led to severe air pollution and carbon emissions across South and Southeast Asia (SSEA). We selected this area as our study area and divided it into two sub-regions based on climate characteristics and geographical location: the South Asian Subcontinent (SEAS), which includes India, Laos, Thailand, Cambodia, etc., and Equatorial Asia (EQAS), which includes Indonesia, Malaysia, etc. However, existing methods—primarily emission inventories relying on burned area, fuel load, and emission factors—often lack accuracy and temporal resolution for capturing fire dynamics. Therefore, in this study, we employed high-resolution fire point data from China’s Feng Yun-4A (FY-4A) geostationary satellite and the Fire Radiative Power (FRP) method to construct a daily OBB emission inventory at a 5 km resolution in this region for 2020–2022. The results show that the average annual emissions of carbon (C), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), non-methane organic gases (NMOGs), hydrogen (H2), nitrogen oxide (NOX), sulfur dioxide (SO2), fine particulate matter (PM2.5), total particulate matter (TPM), total particulate carbon (TPC), organic carbon (OC), black carbon (BC), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), non-methane hydrocarbons (NMHCs), and particulate matter ≤ 10 μm (PM10) are 178.39, 598.10, 33.11, 1.44, 4.77, 0.81, 1.02, 0.28, 3.47, 5.58, 2.29, 2.34, 0.24, 0.58, 0.43, 0.99, 1.87, and 3.84 Tg/a, respectively. Taking C emission as an example, 90% of SSEA’s emissions come from SEAS, especially concentrated in Laos and western Thailand. Due to the La Niña climate anomaly in 2021, emissions surged, while EQAS showed continuous annual growth at 16.7%. Forest and woodland fires were the dominant sources, accounting for over 85% of total emissions. Compared with datasets such as the Global Fire Emissions Database (GFED) and the Global Fire Assimilation System (GFAS), FY-4A showed stronger sensitivity and regional adaptability, especially in SEAS. This work provides a robust dataset for carbon source identification, air quality modeling, and regional pollution control strategies. Full article
Show Figures

Figure 1

18 pages, 2105 KiB  
Article
Effectiveness of Self-Contained Breathing Apparatus: An Observational Study on Exposure to Polycyclic Aromatic Hydrocarbons and Associated Respiratory Risks
by Joana Teixeira, Cristina Delerue-Matos, Alice Santos-Silva, Francisca Rodrigues and Marta Oliveira
Fire 2025, 8(5), 182; https://doi.org/10.3390/fire8050182 - 2 May 2025
Viewed by 587
Abstract
Background: An effective risk assessment and management methodology is essential to minimize/mitigate health risks associated with firefighting activities. The use of a self-contained breathing apparatus (SCBA) is mandatory during structure fires to protect firefighters from hazardous fire effluents, yet the protectiveness of the [...] Read more.
Background: An effective risk assessment and management methodology is essential to minimize/mitigate health risks associated with firefighting activities. The use of a self-contained breathing apparatus (SCBA) is mandatory during structure fires to protect firefighters from hazardous fire effluents, yet the protectiveness of the SCBA system has rarely been evaluated. Objective: This study characterizes, for the first time, the levels of 18 polycyclic aromatic hydrocarbons (PAHs) inside the SCBA facemask, during 7 structure-firefighting exercises and estimates associated respiratory risks. Methods: Cotton disk samples were collected via passive air sampling and analyzed using liquid chromatography with fluorescence and UV–Vis detection. Results: Levels of total PAHs (∑PAHs: 9.17–29.6 ng/m3) and ∑PAHscarcinogenic (0.41–5.73 ng/m3) were below the occupational limits defined by governmental agencies. The low-molecular-weight PAHs were predominant (79.5–91.4%), and the (possible/known) carcinogenic naphthalene (0.26–2.00 ng/m3), anthracene (0.088–0.31 ng/m3), chrysene (0.046–0.39 ng/m3), benzo(b+j)fluoranthene (0.18–0.40 ng/m3), and benzo(a)pyrene (0.041–0.18 ng/m3) were detected in all samples. The respiratory health risk analysis demonstrated negligible risks associated with the inhalation of PAHs. A health principal component analysis could identify firefighters at increased respiratory risk. Conclusions: The effectiveness of SCBA was demonstrated, reinforcing the need to ensure its correct use during all the phases of structure fires, including during overhaul. Full article
(This article belongs to the Special Issue Advances in Industrial Fire and Urban Fire Research: 2nd Edition)
Show Figures

Figure 1

21 pages, 23010 KiB  
Article
Optimization Methodologies for Analyzing the Impact of Operational Parameters on a Light-Duty Methane/Diesel Reactivity-Controlled Compression Ignition (RCCI) Engine
by Anwer Hamed Salih Alattwani, Mehmet Zafer Gul and Mustafa Yilmaz
Appl. Sci. 2025, 15(7), 3849; https://doi.org/10.3390/app15073849 - 1 Apr 2025
Cited by 1 | Viewed by 490
Abstract
This study aims to evaluate and optimize the influences of operational factors, including the engine’s rotational speed, methane mass, diesel mass, and the duration of injected diesel fuel on the methane/diesel reactivity-controlled compression ignition (RCCI) light-duty engine’s performance and emissions by executing the [...] Read more.
This study aims to evaluate and optimize the influences of operational factors, including the engine’s rotational speed, methane mass, diesel mass, and the duration of injected diesel fuel on the methane/diesel reactivity-controlled compression ignition (RCCI) light-duty engine’s performance and emissions by executing the Nondominated Sorting Genetic Algorithm-II (NSGAII). The optimizations aimed to minimize peak firing pressure simultaneously, decrease indicated specific fuel consumption, and reduce tailpipe emissions. It is found that the excess air ratios of (2.22 to 2.37) are the range of feasible results of the RCCI engine, and the power should be less than 0.89 from the maximum design load of the diesel engine when it works without it after treatment. The methane/diesel RCCI engine achieves an indicative thermal efficiency of 51%. The Pareto results from the NSGA algorithm occur on multiple fronts, and there is a tradeoff between power and nitrogen oxide (NOx) in addition to unburned hydrocarbons (UHCs) and carbon monoxide (CO) with NOx emissions. Moreover, EURO IV emissions regulations can occur when using a start of injection (SOI) of −35 CA, a diesel mass of 1.82 mg, a methane mass of 9.74 mg, a diesel injection duration of 2.63 CA, and a rotational speed of 2540 rpm. This accomplished a reduction in indicative specific fuel consumption by 27.8%, higher indicative efficiency by 21.9%, and emissions reductions compared to a conventional diesel engine. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

34 pages, 2370 KiB  
Review
Enhancing the Performance of Natural Ester Insulating Liquids in Power Transformers: A Comprehensive Review on Antioxidant Additives for Improved Oxidation Stability
by Esther Ogwa Obebe, Yazid Hadjadj, Samson Okikiola Oparanti and Issouf Fofana
Energies 2025, 18(7), 1690; https://doi.org/10.3390/en18071690 - 28 Mar 2025
Cited by 2 | Viewed by 1068
Abstract
The reliability of the electrical grid is vital to economic prosperity and quality of life. Power transformers, key components of transmission and distribution systems, represent major capital investments. Traditionally, these machines have relied on petroleum-based mineral oil as an insulating liquid. However, with [...] Read more.
The reliability of the electrical grid is vital to economic prosperity and quality of life. Power transformers, key components of transmission and distribution systems, represent major capital investments. Traditionally, these machines have relied on petroleum-based mineral oil as an insulating liquid. However, with a global shift toward sustainability, renewable insulating materials like natural esters are gaining attention due to their environmental and fire safety benefits. These biodegradable liquids are poised to replace hydrocarbon-based oils in transformers, aligning with Sustainable Development Goals 7 and 13 by promoting clean energy and climate action. Despite their advantages, natural esters face challenges in high-voltage applications, particularly due to oxidation stability issues linked to their fatty acid composition. Various antioxidants have been explored to address this, with synthetic antioxidants proving more effective than natural ones, especially under high-temperature conditions. Their superior thermal stability ensures that natural esters retain their cooling and dielectric properties, essential for transformer performance. Furthermore, integrating machine learning and artificial intelligence in antioxidant development and monitoring presents a transformative opportunity. This review provides insights into the role of antioxidants in natural ester-filled power equipment, supporting their broader adoption and contributing to a more sustainable energy future. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

15 pages, 695 KiB  
Article
Exposures of Western Australian Wildland Firefighters: Insights from Real-Time Monitoring
by Kiam Padamsey, Adelle Liebenberg, Ruth Wallace and Jacques Oosthuizen
Fire 2025, 8(3), 98; https://doi.org/10.3390/fire8030098 - 27 Feb 2025
Viewed by 614
Abstract
Background: Inhalation of bushfire smoke is a risk to the health of firefighters, particularly across Australia where bushfires are becoming more frequent and intense. This study aimed to use real-time monitoring devices to assess the particle and chemical exposures of Western Australian [...] Read more.
Background: Inhalation of bushfire smoke is a risk to the health of firefighters, particularly across Australia where bushfires are becoming more frequent and intense. This study aimed to use real-time monitoring devices to assess the particle and chemical exposures of Western Australian firefighters during prescribed burns and bushfires. Methods: Participants included volunteer bushfire firefighters and forestry firefighters. Real-time gas and particulate monitors were used across nine unique fire events to evaluate the occupational exposures of firefighters. Findings: Firefighters (n = 40) were exposed to high concentrations of particulate matter (PM), particularly PM10, with concentrations varying widely between individuals and events. Exposures to carbon monoxide (CO) and volatile organic compounds (VOCs) were observed at elevated levels. No significant elevation in internal polycyclic aromatic hydrocarbons (PAHs) was observed. Conclusions: This study highlights the importance of respiratory protective equipment (RPE) and the need for health monitoring programmes for firefighters. Prescribed burns appear reflective of exposures at bushfires and could serve as valuable experimental settings for refining firefighting strategies and protective practises. Full article
Show Figures

Figure 1

12 pages, 489 KiB  
Article
Evaluation of Passive Silicone Samplers Compared to Active Sampling Methods for Polycyclic Aromatic Hydrocarbons During Fire Training
by Paro Sen, Miriam Calkins, Keith Stakes, Danielle L. Neumann, I-Chen Chen and Gavin P. Horn
Toxics 2025, 13(2), 132; https://doi.org/10.3390/toxics13020132 - 12 Feb 2025
Viewed by 1027
Abstract
Firefighters are occupationally exposed to many chemicals, including polycyclic aromatic hydrocarbons (PAHs), which are formed by the incomplete combustion of organic matter during fire response and training activities. However, due to the harsh environments in which firefighters work, as well as consideration for [...] Read more.
Firefighters are occupationally exposed to many chemicals, including polycyclic aromatic hydrocarbons (PAHs), which are formed by the incomplete combustion of organic matter during fire response and training activities. However, due to the harsh environments in which firefighters work, as well as consideration for time and physical safety while wearing bulky equipment, traditional active sampling methods may not be feasible to measure PAH exposures. Silicone passive samplers offer an alternative approach to assess exposure during fire responses and live fire training due to their heat resistance and ease of deployment in remote or time-limited environments. In this study, the primary objective was to investigate and determine the statistical strength of the relationship between active air sampling methods and passive silicone samplers for PAHs. In this study, silicone wristbands were paired with active sampling devices in a series of burn experiments to compare PAH measurements. Silicone-based measurements correlated strongly with active air samples for the dominant PAHs found, naphthalene and phenanthrene; however, detection was limited in the wristbands when air concentrations were low in active samples. In situations where PAH levels are expected to be high and the potential for contaminant loss via off-gassing is low, silicone samplers may be a useful tool for industrial hygienists to measure PAHs in fire and other emergency responses in extreme environments. Full article
(This article belongs to the Special Issue Firefighters’ Occupational Exposures and Health Risks)
Show Figures

Figure 1

23 pages, 5764 KiB  
Article
Fuel Resistance of Firefighting Surfactant Foam Formulations
by Ayşenur Ateş, Rui Qiao and Brian Y. Lattimer
Fire 2025, 8(2), 44; https://doi.org/10.3390/fire8020044 - 25 Jan 2025
Cited by 1 | Viewed by 1097
Abstract
Aqueous film-forming foam (AFFF) is widely recognized for its excellent fire-extinguishing capabilities, yet the specific roles of its components remain insufficiently understood. AFFF typically consists of fluorocarbon and hydrocarbon surfactants, as well as organic solvents such as diethylene glycol butyl ether (DGBE), which [...] Read more.
Aqueous film-forming foam (AFFF) is widely recognized for its excellent fire-extinguishing capabilities, yet the specific roles of its components remain insufficiently understood. AFFF typically consists of fluorocarbon and hydrocarbon surfactants, as well as organic solvents such as diethylene glycol butyl ether (DGBE), which can significantly influence foam performance. This study investigates the effects of surfactant mixtures and the DGBE additive on foam stability and fuel resistance at room temperature and ambient humidity. Static foam ignition experiments were conducted to assess fuel transport through foams using various hydrocarbon fuels, including n-octane, iso-octane, n-heptane, methylcyclohexane, methylcyclopentane, and a mixture of 25% trimethylbenzene with 75% n-heptane. Methylcyclopentane, with its higher vapor pressure and solubility, led to the shortest ignition times, indicating faster fuel transport. The addition of DGBE increased ignition times by a factor of 1.2 to 3.7 for individual surfactants, while the Capstone+Glucopon mixture improved ignition times by a factor of 2.4 to 5.5 compared to the individual surfactants. Further enhancement was observed with Capstone+Glucopon+DGBE, increasing ignition times by a factor of 3 to 7.3 compared to the individual surfactants. Additionally, combining DGBE with surfactant mixtures reduced fuel concentration in the bulk solution by over 60% compared to individual surfactants, significantly enhancing fuel resistance. Interface experiments showed that fuel presence, particularly methylcyclopentane and n-octane, altered the foam structure and accelerated drainage at the foam/fuel interface, impacting foam stability and fuel transport. These findings demonstrate that surfactant mixtures and DGBE-enhanced formulations substantially improve foam stability and fuel resistance. Full article
Show Figures

Graphical abstract

Back to TopTop