The Influence of Australian Bushfire on the Upper Tropospheric CO and Hydrocarbon Distribution in the South Pacific
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. ACE-FTS Data
2.3. MODIS Data
2.4. Methods
3. Results
4. Discussion
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE-FTS | Atmospheric Chemistry Experiment—Fourier Transform Spectrometer |
ANY | Australian New Year |
AOD | Aerosol Optical Depth |
ASCII | American Standard Code for Information Interchange |
BA | Burned Area |
C2H2 | Acetylene |
C2H6 | Ethane |
C6 | Collection 6 |
CH3OH | Methanol |
CO | Carbon Monoxide |
DJF | December–January–February (austral summer) |
FC | Fire Count |
FTIR | Fourier-Transform infrared spectroscopy |
GEMS | Geostationary Environment Monitoring Spectrometer |
HCabs | Absolute Difference volumetric mixing ratio |
HCcli | Climatological mean volumetric mixing |
HCHO | Formaldehyde |
HCN | Hydrogen Cyanide |
HCOOH | Formic Acid |
HCsea | Seasonal average volumetric mixing ratio |
IBRA v7.1 | Interim Biogeographic Regionalisation for Australia, version 7.1 |
IGBP | International Geosphere-Biosphere Programme |
JJA | June–July–August |
LS | The Lower Stratosphere |
MAM | March–April–May |
MODIS | Moderate Resolution Imaging Spectroradiometer |
N_Aus | Northern Australia |
NetCDF | Network Common Data Form |
NMHCs | Non-methane Hydrocarbons |
PyroCb | Pyrocumulonimbus |
SCISAT | Scientific Satellite Atmospheric Chemistry Experiment |
SE_Aus | Southeastern Australia |
SON | September–October–November (austral spring) |
TEMPO | Tropospheric emissions: Monitoring of pollution |
TFRP | Total Fire Radiative Power |
UT | The Upper Troposphere |
UTLS | The Upper Troposphere and Lower Stratosphere |
VMR | Volumetric Mixing ratio |
References
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Andreae, M.O. Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef]
- van der Velde, I.R.; van der Werf, G.R.; Houweling, S.; Maasakkers, J.D.; Borsdorff, T.; Landgraf, J.; Tol, P.; van Kempen, T.A.; van Hees, R.; Hoogeveen, R.; et al. Vast CO2 release from Australian fires in 2019–2020 constrained by satellite. Nature 2021, 597, 366–369. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Desservettaz, M.; Paton-Walsh, C.; Griffith, D.W.T.; Kettlewell, G.; Keywood, M.D.; Vanderschoot, M.V.; Ward, J.; Mallet, M.D.; Milic, A.; Miljevic, B.; et al. Emission factors of trace gases and particles from tropical savanna fires in Australia. J. Geophys. Res. Atmos. 2017, 122, 6059–6074. [Google Scholar] [CrossRef]
- Prosperi, P.; Bloise, M.; Tubiello, F.N.; Conchedda, G.; Rossi, S.; Boschetti, L.; Salvatore, M.; Bernoux, M.; Prosperi, P.; Bloise, M.; et al. New estimates of greenhouse gas emissions from biomass burning and peat fires using MODIS Collection 6 burned areas. Clim. Chang. 2020, 161, 415–432. [Google Scholar] [CrossRef]
- Desservettaz, M.J.; Fisher, J.A.; Luhar, A.K.; Woodhouse, M.T.; Bukosa, B.; Buchholz, R.R.; Wiedinmyer, C.; Griffith, D.W.T.; Krummel, P.B.; Jones, N.B.; et al. Australian Fire Emissions of Carbon Monoxide Estimated by Global Biomass Burning Inventories: Variability and Observational Constraints. J. Geophys. Res. Atmos. 2022, 127, e2021JD035925. [Google Scholar] [CrossRef]
- Ahn, D.H.; Choi, T.; Kim, J.; Park, S.S.; Lee, Y.G.; Kim, S.-J.; Koo, J.-H.; Ahn, D.H.; Choi, T.; Kim, J.; et al. Southern Hemisphere mid- and high-latitudinal AOD, CO, NO2, and HCHO: Spatiotemporal patterns revealed by satellite observations. Prog. Earth Planet. Sci. 2019, 6, 34. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Jones, N.B.; Wilson, S.R.; Haverd, V.; Meier, A.; Griffith, D.W.T.; Rinsland, C.P. Measurements of trace gas emissions from Australian forest fires and correlations with coincident measurements of aerosol optical depth. J. Geophys. Res. Atmos. 2005, 110, D24305. [Google Scholar] [CrossRef]
- Radhi, M.; Box, M.A.; Box, G.P.; Mitchell, R.M. Biomass-burning aerosol over northern Australia. Aust. Meteorol. Oceanogr. J. 2012, 62, 25. [Google Scholar] [CrossRef]
- Boer, M.M.; de Dios, V.R.; Bradstock, R.A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Chang. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Wu, D.; Yuan, T.; Zhang, J.; Zhang, Z.; Zhang, D.; Zhang, B.; Liu, J.; Pu, W.; Wang, X. Contrasting Responses of Smoke Dispersion and Fire Emissions to Aerosol-Radiation Interaction during the Largest Australian Wildfires in 2019–2020. Environ. Sci. Technol. 2025, 59, 1724–1736. [Google Scholar] [CrossRef]
- Yu, P.; Davis, S.M.; Toon, O.B.; Portmann, R.W.; Bardeen, C.G.; Barnes, J.E.; Telg, H.; Maloney, C.; Rosenlof, K.H. Persistent Stratospheric Warming Due to 2019–2020 Australian Wildfire Smoke. Geophys. Res. Lett. 2021, 48, e2021GL092609. [Google Scholar] [CrossRef]
- Rieger, L.A.; Randel, W.J.; Bourassa, A.E.; Solomon, S. Stratospheric Temperature and Ozone Anomalies Associated With the 2020 Australian New Year Fires. Geophys. Res. Lett. 2021, 48, e2021GL095898. [Google Scholar] [CrossRef]
- Kablick, G.P.; Allen, D.R.; Fromm, M.D.; Nedoluha, G.E. Australian PyroCb Smoke Generates Synoptic-Scale Stratospheric Anticyclones. Geophys. Res. Lett. 2020, 47, e2020GL088101. [Google Scholar] [CrossRef]
- Peterson, D.A.; Fromm, M.D.; McRae, R.H.D.; Campbell, J.R.; Hyer, E.J.; Taha, G.; Camacho, C.P.; Kablick, G.P.; Schmidt, C.C.; DeLand, M.T.; et al. Australia’s Black Summer pyrocumulonimbus super outbreak reveals potential for increasingly extreme stratospheric smoke events. npj Clim. Atmos. Sci. 2021, 4, 38. [Google Scholar] [CrossRef]
- Ansmann, A.; Ohneiser, K.; Chudnovsky, A.; Knopf, D.A.; Eloranta, E.W.; Villanueva, D.; Seifert, P.; Radenz, M.; Barja, B.; Zamorano, F.; et al. Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke. Atmos. Chem. Phys. 2022, 22, 11701–11726. [Google Scholar] [CrossRef]
- Schwartz, M.J.; Santee, M.L.; Pumphrey, H.C.; Manney, G.L.; Lambert, A.; Livesey, N.J.; Millán, L.; Neu, J.L.; Read, W.G.; Werner, F. Australian New Year’s PyroCb Impact on Stratospheric Composition. Geophys. Res. Lett. 2020, 47, e2020GL090831. [Google Scholar] [CrossRef]
- Kloss, C.; Sellitto, P.; von Hobe, M.; Berthet, G.; Smale, D.; Krysztofiak, G.; Xue, C.; Qiu, C.; Jégou, F.; Ouerghemmi, I.; et al. Australian Fires 2019–2020: Tropospheric and Stratospheric Pollution Throughout the Whole Fire Season. Front. Environ. Sci. 2021, 9, 652024. [Google Scholar] [CrossRef]
- Sellitto, P.; Belhadji, R.; Kloss, C.; Legras, B. Radiative impacts of the Australian bushfires 2019–2020—Part 1: Large-scale radiative forcing. Atmos. Chem. Phys. 2022, 22, 9299–9311. [Google Scholar] [CrossRef]
- Khaykin, S.; Legras, B.; Bucci, S.; Sellitto, P.; Isaksen, L.; Tencé, F.; Bekki, S.; Bourassa, A.; Rieger, L.; Zawada, D.; et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 2020, 1, 22. [Google Scholar] [CrossRef]
- Damany-Pearce, L.; Johnson, B.; Wells, A.; Osborne, M.; Allan, J.; Belcher, C.; Jones, A.; Haywood, J.; Damany-Pearce, L.; Johnson, B.; et al. Australian wildfires cause the largest stratospheric warming since Pinatubo and extends the lifetime of the Antarctic ozone hole. Sci. Rep. 2022, 12, 12665. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Dube, K.; Stone, K.; Yu, P.; Kinnison, D.; Toon, O.B.; Strahan, S.E.; Rosenlof, K.H.; Portmann, R.; Davis, S.; et al. On the stratospheric chemistry of midlatitude wildfire smoke. Proc. Natl. Acad. Sci. USA 2022, 119, e2117325119. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Stone, K.; Yu, P.; Murphy, D.M.; Kinnison, D.; Ravishankara, A.R.; Wang, P.; Solomon, S.; Stone, K.; Yu, P.; et al. Chlorine activation and enhanced ozone depletion induced by wildfire aerosol. Nature 2023, 615, 259–264. [Google Scholar] [CrossRef]
- Salawitch, R.J.; McBride, L.A. Australian wildfires depleted the ozone layer. Science 2022, 378, 829–830. [Google Scholar] [CrossRef]
- Jegasothy, E.; Hanigan, I.C.; Buskirk, J.V.; Morgan, G.G.; Jalaludin, B.; Johnston, F.H.; Guo, Y.; Broome, R.A. Acute health effects of bushfire smoke on mortality in Sydney, Australia. Environ. Int. 2023, 171, 107684. [Google Scholar] [CrossRef]
- Nyadanu, S.D.; Foo, D.; Pereira, G.; Mickley, L.J.; Feng, X.; Bell, M.L. Short-term effects of wildfire-specific fine particulate matter and its carbonaceous components on perinatal outcomes: A multicentre cohort study in New South Wales, Australia. Environ. Int. 2024, 191, 109007. [Google Scholar] [CrossRef]
- Park, M.; Randel, W.J.; Kinnison, D.E.; Emmons, L.K.; Bernath, P.F.; Walker, K.A.; Boone, C.D.; Livesey, N.J. Hydrocarbons in the upper troposphere and lower stratosphere observed from ACE-FTS and comparisons with WACCM. J. Geophys. Res. Atmos. 2013, 118, 1964–1980. [Google Scholar] [CrossRef]
- Randel, W.J.; Park, M.; Emmons, L.; Kinnison, D.; Bernath, P.; Walker, K.A.; Boone, C.; Pumphrey, H. Asian Monsoon Transport of Pollution to the Stratosphere. Science 2010, 328, 611–613. [Google Scholar] [CrossRef]
- Xiao, Y.; Logan, J.A.; Jacob, D.J.; Hudman, R.C.; Yantosca, R.; Blake, D.R. Global budget of ethane and regional constraints on U.S. sources. J. Geophys. Res. Atmos. 2008, 113, D21306. [Google Scholar] [CrossRef]
- Tereszchuk, K.A.; González Abad, G.; Clerbaux, C.; Hurtmans, D.; Coheur, P.-F.; Bernath, P.F. ACE-FTS measurements of trace species in the characterization of biomass burning plumes. Atmos. Chem. Phys. 2011, 11, 12169–12179. [Google Scholar] [CrossRef]
- Tereszchuk, K.A.; González Abad, G.; Clerbaux, C.; Hadji-Lazaro, J.; Hurtmans, D.; Coheur, P.-F.; Bernath, P.F. ACE-FTS observations of pyrogenic trace species in boreal biomass burning plumes during BORTAS. Atmos. Chem. Phys. 2013, 13, 4529–4541. [Google Scholar] [CrossRef]
- González Abad, G.; Bernath, P.F.; Boone, C.D.; McLeod, S.D.; Manney, G.L.; Toon, G.C. Global distribution of upper tropospheric formic acid from the ACE-FTS. Atmos. Chem. Phys. 2009, 9, 8039–8047. [Google Scholar] [CrossRef]
- Mok, J.; Park, S.S.; Lim, H.; Kim, J.; Edwards, D.P.; Lee, J.; Yoon, J.; Lee, Y.G.; Koo, J.-H. Correlation analysis between regional carbon monoxide and black carbon from satellite measurements. Atmos. Res. 2017, 196, 29–39. [Google Scholar] [CrossRef]
- Dufour, G.; Szopa, S.; Barkley, M.P.; Boone, C.D.; Perrin, A.; Palmer, P.I.; Bernath, P.F. Global upper-tropospheric formaldehyde: Seasonal cycles observed by the ACE-FTS satellite instrument. Atmos. Chem. Phys. 2009, 9, 3893–3910. [Google Scholar] [CrossRef]
- Jones, A.; Walker, K.A.; Jin, J.J.; Taylor, J.R.; Boone, C.D.; Bernath, P.F.; Brohede, S.; Manney, G.L.; McLeod, S.; Hughes, R.; et al. Technical Note: A trace gas climatology derived from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) data set. Atmos. Chem. Phys. 2012, 12, 5207–5220. [Google Scholar] [CrossRef]
- Koo, J.-H.; Walker, K.A.; Jones, A.; Sheese, P.E.; Boone, C.D.; Bernath, P.F.; Manney, G.L. Global climatology based on the ACE-FTS version 3.5 dataset: Addition of mesospheric levels and carbon-containing species in the UTLS. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 52–62. [Google Scholar] [CrossRef]
- Attiya, A.A.; Jones, B.G.; Attiya, A.A.; Jones, B.G. Impact of Smoke Plumes Transport on Air Quality in Sydney during Extensive Bushfires (2019) in New South Wales, Australia Using Remote Sensing and Ground Data. Remote Sens. 2022, 14, 5552. [Google Scholar] [CrossRef]
- Wu, D.; Niu, X.; Chen, Z.; Chen, Y.; Xing, Y.; Cao, X.; Liu, J.; Wang, X.; Pu, W. Causes and Effects of the Long-Range Dispersion of Carbonaceous Aerosols From the 2019–2020 Australian Wildfires. Geophys. Res. Lett. 2022, 49, e2022GL099840. [Google Scholar] [CrossRef]
- Hirsch, E.; Koren, I. Record-breaking aerosol levels explained by smoke injection into the stratosphere. Science 2021, 371, 1269–1274. [Google Scholar] [CrossRef]
- Bernath, P.F.; McElroy, C.T.; Abrams, M.C.; Boone, C.D.; Butler, M.; Camy-Peyret, C.; Carleer, M.; Clerbaux, C.; Coheur, P.-F.; Colin, R.; et al. Atmospheric Chemistry Experiment (ACE): Mission overview. Geophys. Res. Lett. 2005, 32, L15S01. [Google Scholar] [CrossRef]
- Bernath, P.F. The Atmospheric Chemistry Experiment (ACE). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 3–16. [Google Scholar] [CrossRef]
- Boone, C.D.; Bernath, P.F.; Cok, D.; Jones, S.C.; Steffen, J. Version 4 retrievals for the atmospheric chemistry experiment Fourier transform spectrometer (ACE-FTS) and imagers. J. Quant. Spectrosc. Radiat. Transf. 2020, 247, 106939. [Google Scholar] [CrossRef]
- Boone, C.D.; Bernath, P.F.; Lecours, M. Version 5 retrievals for ACE-FTS and ACE-imagers. J. Quant. Spectrosc. Radiat. Transf. 2023, 310, 108749. [Google Scholar] [CrossRef]
- Sheese, P.E.; Boone, C.D.; Walker, K.A. Detecting physically unrealistic outliers in ACE-FTS atmospheric measurements. Atmos. Meas. Tech. 2015, 8, 741–750. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Kondragunta, S.; Li, F.; Zhang, X.; Kondragunta, S. Biomass Burning in Africa: An Investigation of Fire Radiative Power Missed by MODIS Using the 375 m VIIRS Active Fire Product. Remote Sens. 2020, 12, 1561. [Google Scholar] [CrossRef]
- Yin, L.; Du, P.; Zhang, M.; Liu, M.; Xu, T.; Song, Y. Estimation of emissions from biomass burning in China (2003–2017) based on MODIS fire radiative energy data. Biogeosciences 2019, 16, 1629–1640. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Hall, J.V.; Argueta, F.; Zubkova, M.; Chen, Y.; Randerson, J.T.; Giglio, L. GloCAB: Global cropland burned area from mid-2002 to 2020. Earth Syst. Sci. Data 2024, 16, 867–885. [Google Scholar] [CrossRef]
- Hua, W.; Lou, S.; Huang, X.; Xue, L.; Ding, K.; Wang, Z.; Ding, A. Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants. Atmos. Chem. Phys. 2024, 24, 6787–6807. [Google Scholar] [CrossRef]
- Li, S.; Xiao, X.; Neuhaus, C.; Wunderle, S.; Li, S.; Xiao, X.; Neuhaus, C.; Wunderle, S. Retrieval and Evaluation of Global Surface Albedo Based on AVHRR GAC Data of the Last 40 Years. Remote Sens. 2025, 17, 117. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Jing, Q.; He, J.; Li, Y.; Yang, X.; Peng, Y.; Wang, H.; Yu, F.; Wu, J.; Gong, S.; Che, H.; et al. Analysis of the spatiotemporal changes in global land cover from 2001 to 2020. Sci. Total Environ. 2024, 908, 168354. [Google Scholar] [CrossRef]
- Feng, M.; Bai, Y. A global land cover map produced through integrating multi-source datasets. Big Earth Data 2019, 3, 191–219. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Hall, J.V.; Justice, C.O. MODIS Collection 6 and Collection 6.1 Active Fire Product User’s Guide; National Aeronautical and Space Administration—NASA: Washington, DC, USA, 2021; Volume 64.
- Humber, M.L.; Boschetti, L.; Giglio, L.; Justice, C.O. Spatial and temporal intercomparison of four global burned area products. Int. J. Digit. Earth 2019, 12, 460–484. [Google Scholar] [CrossRef]
- Boone, C.D.; Bernath, P.F.; Fromm, M.D. Pyrocumulonimbus Stratospheric Plume Injections Measured by the ACE-FTS. Geophys. Res. Lett. 2020, 47, e2020GL088442. [Google Scholar] [CrossRef]
- Pumphrey, H.C.; Santee, M.L.; Livesey, N.J.; Schwartz, M.J.; Read, W.G. Microwave Limb Sounder observations of biomass-burning products from the Australian bush fires of February 2009. Atmos. Chem. Phys. 2011, 11, 6285–6296. [Google Scholar] [CrossRef]
- Lutsch, E.; Strong, K.; Jones, D.B.A.; Blumenstock, T.; Conway, S.; Fisher, J.A.; Hannigan, J.W.; Hase, F.; Kasai, Y.; Mahieu, E.; et al. Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-transform infrared spectrometers and GEOS-Chem. Atmos. Chem. Phys. 2020, 20, 12813–12851. [Google Scholar] [CrossRef]
- Simpson, I.J.; Akagi, S.K.; Barletta, B.; Blake, N.J.; Choi, Y.; Diskin, G.S.; Fried, A.; Fuelberg, H.E.; Meinardi, S.; Rowland, F.S.; et al. Boreal forest fire emissions in fresh Canadian smoke plumes: C1-C10 volatile organic compounds (VOCs), CO2, CO, NO2, NO, HCN and CH3CN. Atmos. Chem. Phys. 2011, 11, 6445–6463. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Csiszar, I.; Ellicott, E.; Giglio, L.; Badarinath, K.V.S.; Vermote, E.; Justice, C. Hotspot Analysis of Vegetation Fires and Intensity in the Indian Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 224–238. [Google Scholar] [CrossRef]
- Kganyago, M.; Shikwambana, L.; Kganyago, M.; Shikwambana, L. Assessment of the Characteristics of Recent Major Wildfires in the USA, Australia and Brazil in 2018–2019 Using Multi-Source Satellite Products. Remote Sens. 2020, 12, 1803. [Google Scholar] [CrossRef]
- Dufour, G.; Boone, C.D.; Rinsland, C.P.; Bernath, P.F. First space-borne measurements of methanol inside aged southern tropical to mid-latitude biomass burning plumes using the ACE-FTS instrument. Atmos. Chem. Phys. 2006, 6, 3463–3470. [Google Scholar] [CrossRef]
- Viatte, C.; Strong, K.; Walker, K.A.; Drummond, J.R. Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH and H2CO total columns measured in the Canadian high Arctic. Atmos. Meas. Tech. 2014, 7, 1547–1570. [Google Scholar] [CrossRef]
- Zeng, G.; Williams, J.E.; Fisher, J.A.; Emmons, L.K.; Jones, N.B.; Morgenstern, O.; Robinson, J.; Smale, D.; Paton-Walsh, C.; Griffith, D.W.T. Multi-model simulation of CO and HCHO in the Southern Hemisphere: Comparison with observations and impact of biogenic emissions. Atmos. Chem. Phys. 2015, 15, 7217–7245. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Zhao, W.; Yao, Q.; Wang, H.; Wang, B. Open biomass burning emissions and their contribution to ambient formaldehyde in Guangdong province, China. Sci. Total Environ. 2022, 838, 155904. [Google Scholar] [CrossRef]
- Bernath, P.; Boone, C.; Crouse, J. Wildfire smoke destroys stratospheric ozone. Science 2022, 375, 1292–1295. [Google Scholar] [CrossRef]
- Lee, G.T.; Park, R.J.; Kwon, H.-A.; Ha, E.S.; Lee, S.D.; Shin, S.; Ahn, M.-H.; Kang, M.; Choi, Y.-S.; Kim, G.; et al. First evaluation of the GEMS formaldehyde product against TROPOMI and ground-based column measurements during the in-orbit test period. Atmos. Chem. Phys. 2024, 24, 4733–4749. [Google Scholar] [CrossRef]
- Kwon, H.-A.; Park, R.J.; González Abad, G.; Chance, K.; Kurosu, T.P.; Kim, J.; De Smedt, I.; Van Roozendael, M.; Peters, E.; Burrows, J. Description of a formaldehyde retrieval algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS). Atmos. Meas. Tech. 2019, 12, 3551–3571. [Google Scholar] [CrossRef]
- Zhao, T.; Mao, J.; Simpson, W.R.; De Smedt, I.; Zhu, L.; Hanisco, T.F.; Wolfe, G.M.; St. Clair, J.M.; González Abad, G.; Nowlan, C.R.; et al. Source and variability of formaldehyde (HCHO) at northern high latitudes: An integrated satellite, aircraft, and model study. Atmos. Chem. Phys. 2022, 22, 7163–7178. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Min, Q.; Bo, H.; Fu, Y.; Wang, Y.; Gao, Z. The Controlling Factors of Atmospheric Formaldehyde (HCHO) in Amazon as Seen from Satellite. Earth Space Sci. 2019, 6, 959–971. [Google Scholar] [CrossRef]
- Chong, H.; Lee, S.; Cho, Y.; Kim, J.; Koo, J.-H.; Kim, Y.P.; Kim, Y.; Woo, J.-H.; Ahn, D.H. Assessment of air quality in North Korea from satellite observations. Environ. Int. 2023, 171, 107708. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jeong, U.; Ahn, M.-H.; Kim, J.H.; Park, R.J.; Lee, H.; Song, C.H.; Choi, Y.-S.; Lee, K.-H.; Yoo, J.-M.; et al. New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS). Bull. Am. Meteorol. Soc. 2020, 101, E1–E22. [Google Scholar] [CrossRef]
- Zoogman, P.; Liu, X.; Suleiman, R.M.; Pennington, W.F.; Flittner, D.E.; Al-Saadi, J.A.; Hilton, B.B.; Nicks, D.K.; Newchurch, M.J.; Carr, J.L.; et al. Tropospheric emissions: Monitoring of pollution (TEMPO). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 17–39. [Google Scholar] [CrossRef]
- Nussbaumer, C.M.; Fischer, H.; Lelieveld, J.; Pozzer, A. What controls ozone sensitivity in the upper tropical troposphere? Atmos. Chem. Phys. 2023, 23, 12651–12669. [Google Scholar] [CrossRef]
- Koo, J.-H.; Choi, T.; Lee, H.; Kim, J.; Ahn, D.H.; Kim, J.; Kim, Y.-H.; Yoo, C.; Hong, H.; Moon, K.-J.; et al. Total ozone characteristics associated with regional meteorology in West Antarctica. Atmos. Environ. 2018, 195, 78–88. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
IGBP Land Cover Scheme | This Study |
---|---|
Evergreen Needleleaf Forest | Forest |
Evergreen Broadleaf Forest | |
Deciduous Needleleaf Forest | |
Deciduous Broadleaf Forest | |
Mixed Forest | |
Woody Savannas | |
Savannas | Savannas |
Grassland | Grassland |
Cropland | Cropland |
Cropland/Natural Vegetation Mosaic | |
Closed Shrublands | Shrubland |
Open Shrubland | |
Permanent wetlands | Others |
Water | |
Urban | |
Barren or Sparsely Vegetated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Kim, J.-S.; Walker, K.; Sheese, P.; Park, S.S.; Choi, T.; Park, M.; Song, H.-J.; Koo, J.-H. The Influence of Australian Bushfire on the Upper Tropospheric CO and Hydrocarbon Distribution in the South Pacific. Remote Sens. 2025, 17, 2092. https://doi.org/10.3390/rs17122092
Lee D, Kim J-S, Walker K, Sheese P, Park SS, Choi T, Park M, Song H-J, Koo J-H. The Influence of Australian Bushfire on the Upper Tropospheric CO and Hydrocarbon Distribution in the South Pacific. Remote Sensing. 2025; 17(12):2092. https://doi.org/10.3390/rs17122092
Chicago/Turabian StyleLee, Donghee, Jin-Soo Kim, Kaley Walker, Patrick Sheese, Sang Seo Park, Taejin Choi, Minju Park, Hwan-Jin Song, and Ja-Ho Koo. 2025. "The Influence of Australian Bushfire on the Upper Tropospheric CO and Hydrocarbon Distribution in the South Pacific" Remote Sensing 17, no. 12: 2092. https://doi.org/10.3390/rs17122092
APA StyleLee, D., Kim, J.-S., Walker, K., Sheese, P., Park, S. S., Choi, T., Park, M., Song, H.-J., & Koo, J.-H. (2025). The Influence of Australian Bushfire on the Upper Tropospheric CO and Hydrocarbon Distribution in the South Pacific. Remote Sensing, 17(12), 2092. https://doi.org/10.3390/rs17122092