Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (181)

Search Parameters:
Keywords = hybrid analysis-forecast system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 2506 KiB  
Article
Enhancing Ship Propulsion Efficiency Predictions with Integrated Physics and Machine Learning
by Hamid Reza Soltani Motlagh, Seyed Behbood Issa-Zadeh, Md Redzuan Zoolfakar and Claudia Lizette Garay-Rondero
J. Mar. Sci. Eng. 2025, 13(8), 1487; https://doi.org/10.3390/jmse13081487 - 31 Jul 2025
Abstract
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte [...] Read more.
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte Carlo simulations provides a solid foundation for training machine learning models, particularly in cases where dataset restrictions are present. The XGBoost model demonstrated superior performance compared to Support Vector Regression, Gaussian Process Regression, Random Forest, and Shallow Neural Network models, achieving near-zero prediction errors that closely matched physics-based calculations. The physics-based analysis demonstrated that the Combined scenario, which combines hull coatings with bulbous bow modifications, produced the largest fuel consumption reduction (5.37% at 15 knots), followed by the Advanced Propeller scenario. The results demonstrate that user inputs (e.g., engine power: 870 kW, speed: 12.7 knots) match the Advanced Propeller scenario, followed by Paint, which indicates that advanced propellers or hull coatings would optimize efficiency. The obtained insights help ship operators modify their operational parameters and designers select essential modifications for sustainable operations. The model maintains its strength at low speeds, where fuel consumption is minimal, making it applicable to other oil tankers. The hybrid approach provides a new tool for maritime efficiency analysis, yielding interpretable results that support International Maritime Organization objectives, despite starting with a limited dataset. The model requires additional research to enhance its predictive accuracy using larger datasets and real-time data collection, which will aid in achieving global environmental stewardship. Full article
(This article belongs to the Special Issue Machine Learning for Prediction of Ship Motion)
27 pages, 881 KiB  
Article
Review of Methods and Models for Forecasting Electricity Consumption
by Kamil Misiurek, Tadeusz Olkuski and Janusz Zyśk
Energies 2025, 18(15), 4032; https://doi.org/10.3390/en18154032 - 29 Jul 2025
Viewed by 102
Abstract
This article presents a comprehensive review of methods used for forecasting electricity consumption. The studies analyzed by the authors encompass both classical statistical models and modern approaches based on artificial intelligence, including machine-learning and deep-learning techniques. Electricity load forecasting is categorized into four [...] Read more.
This article presents a comprehensive review of methods used for forecasting electricity consumption. The studies analyzed by the authors encompass both classical statistical models and modern approaches based on artificial intelligence, including machine-learning and deep-learning techniques. Electricity load forecasting is categorized into four time horizons: very short term, short term, medium term, and long term. The authors conducted a comparative analysis of various models, such as autoregressive models, neural networks, fuzzy logic systems, hybrid models, and evolutionary algorithms. Particular attention was paid to the effectiveness of these methods in the context of variable input data, such as weather conditions, seasonal fluctuations, and changes in energy consumption patterns. The article emphasizes the growing importance of accurate forecasts in the context of the energy transition, integration of renewable energy sources, and the management of the evolving electricity system, shaped by decentralization, renewable integration, and data-intensive forecasting demands. In conclusion, the authors highlight the lack of a universal forecasting approach and the need for further research on hybrid models that combine interpretability with high predictive accuracy. This review can serve as a valuable resource for decision-makers, grid operators, and researchers involved in energy system planning. Full article
(This article belongs to the Special Issue Electricity Market Modeling Trends in Power Systems: 2nd Edition)
Show Figures

Figure 1

28 pages, 2918 KiB  
Article
Machine Learning-Powered KPI Framework for Real-Time, Sustainable Ship Performance Management
by Christos Spandonidis, Vasileios Iliopoulos and Iason Athanasopoulos
J. Mar. Sci. Eng. 2025, 13(8), 1440; https://doi.org/10.3390/jmse13081440 - 28 Jul 2025
Viewed by 218
Abstract
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics [...] Read more.
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics is at an emerging state. This paper proposes a machine learning-driven framework for real-time ship performance management. The framework starts with data collected from onboard sensors and culminates in a decision support system that is easily interpretable, even by non-experts. It also provides a method to forecast vessel performance by extrapolating Key Performance Indicator (KPI) values. Furthermore, it offers a flexible methodology for defining KPIs for every crucial component or aspect of vessel performance, illustrated through a use case focusing on fuel oil consumption. Leveraging Artificial Neural Networks (ANNs), hybrid multivariate data fusion, and high-frequency sensor streams, the system facilitates continuous diagnostics, early fault detection, and data-driven decision-making. Unlike conventional static performance models, the framework employs dynamic KPIs that evolve with the vessel’s operational state, enabling advanced trend analysis, predictive maintenance scheduling, and compliance assurance. Experimental comparison against classical KPI models highlights superior predictive fidelity, robustness, and temporal consistency. Furthermore, the paper delineates AI and ML applications across core maritime operations and introduces a scalable, modular system architecture applicable to both commercial and naval platforms. This approach bridges advanced simulation ecosystems with in situ operational data, laying a robust foundation for digital transformation and sustainability in maritime domains. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 1247 KiB  
Review
A Review of Water Quality Forecasting and Classification Using Machine Learning Models and Statistical Analysis
by Amar Lokman, Wan Zakiah Wan Ismail and Nor Azlina Ab Aziz
Water 2025, 17(15), 2243; https://doi.org/10.3390/w17152243 - 28 Jul 2025
Viewed by 278
Abstract
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models [...] Read more.
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models and statistical methods applied in forecasting and classification of water quality. A particular focus is given to hybrid models that integrate multiple approaches to improve predictive accuracy and robustness. This study also reviews water quality standards and highlights the environmental context that necessitates advanced predictive tools. Statistical techniques such as residual analysis, principal component analysis (PCA), and feature importance assessment are also explored to enhance model interpretability and reliability. Comparative tables of model performance, strengths, and limitations are presented alongside real-world applications. Despite recent advancements, challenges remain in data quality, model interpretability, and integration of spatio-temporal and fuzzy logic techniques. This review identifies key research gaps and proposes future directions for developing transparent, adaptive, and accurate models. The findings can also guide researchers and policymakers towards the development of smart water quality management systems that enhance decision-making and ecological sustainability. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

54 pages, 5068 KiB  
Review
Application of Machine Learning Models in Optimizing Wastewater Treatment Processes: A Review
by Florin-Stefan Zamfir, Madalina Carbureanu and Sanda Florentina Mihalache
Appl. Sci. 2025, 15(15), 8360; https://doi.org/10.3390/app15158360 - 27 Jul 2025
Viewed by 485
Abstract
The treatment processes from a wastewater treatment plant (WWTP) are known for their complexity and highly nonlinear behavior, which makes them challenging to analyze, model, and especially, to control. This research studies how machine learning (ML) with a focus on deep learning (DL) [...] Read more.
The treatment processes from a wastewater treatment plant (WWTP) are known for their complexity and highly nonlinear behavior, which makes them challenging to analyze, model, and especially, to control. This research studies how machine learning (ML) with a focus on deep learning (DL) techniques can be applied to optimize the treatment processes of WWTPs, highlighting those case studies that propose ML and DL methods that directly address this issue. This research aims to study the ML and DL systematic applications in optimizing the wastewater treatment processes from an industrial plant, such as the modeling of complex physical–chemical processes, real-time monitoring and prediction of critical wastewater quality indicators, chemical reactants consumption reduction, minimization of plant energy consumption, plant effluent quality prediction, development of data-driven type models as support in the decision-making process, etc. To perform a detailed analysis, 87 articles were included from an initial set of 324, using criteria such as wastewater combined with ML, DL, and artificial intelligence (AI), for articles from 2010 or newer. From the initial set of 324 scientific articles, 300 were identified using Litmaps, obtained from five important scientific databases, all focusing on addressing the specific problem proposed for investigation. Thus, this paper identifies gaps in the current research, discusses ML and DL algorithms in the context of optimizing wastewater treatment processes, and identifies future directions for optimizing these processes through data-driven methods. As opposed to traditional models, IA models (ML, DL, hybrid and ensemble models, digital twin, IoT, etc.) demonstrated significant advantages in wastewater quality indicator prediction and forecasting, in energy consumption forecasting, in temporal pattern recognition, and in optimal interpretability for normative compliance. Integrating advanced ML and DL technologies into the various processes involved in wastewater treatment improves the plant systems’ predictive capabilities and ensures a higher level of compliance with environmental standards. Full article
Show Figures

Figure 1

22 pages, 3507 KiB  
Article
An Ensemble Model of Attention-Enhanced N-BEATS and XGBoost for District Heating Load Forecasting
by Shaohua Yu, Xiaole Yang, Hengrui Ye, Daogui Tang, Hamidreza Arasteh and Josep M. Guerrero
Energies 2025, 18(15), 3984; https://doi.org/10.3390/en18153984 - 25 Jul 2025
Viewed by 176
Abstract
Accurate heat load forecasting is essential for the efficiency of District Heating Systems (DHS). Still, it is challenged by the need to model long-term temporal dependencies and nonlinear relationships with weather and other factors. This study proposes a hybrid deep learning framework combining [...] Read more.
Accurate heat load forecasting is essential for the efficiency of District Heating Systems (DHS). Still, it is challenged by the need to model long-term temporal dependencies and nonlinear relationships with weather and other factors. This study proposes a hybrid deep learning framework combining an attention-enhanced Neural Basis Expansion Analysis for Time Series (N-BEATS) model and eXtreme Gradient Boosting (XGBoost). The N-BEATS component, with a multi-head self-attention mechanism, captures temporal dynamics, while XGBoost models non-linear impacts of external variables. Predictions are integrated using an optimized weighted averaging strategy. Evaluated on a dataset from 103 heating units, the model outperformed 13 baselines, achieving an MSE of 0.4131, MAE of 0.3732, RMSE of 0.6427, and R2 of 0.9664. This corresponds to a reduction of 32.6% in MSE, 32.0% in MAE, and 17.9% in RMSE, and an improvement of 5.1% in R2 over the best baseline. Ablation studies and statistical tests confirmed the effectiveness of the attention mechanism and ensemble strategy. This model provides an efficient solution for DHS load forecasting, facilitating optimized energy dispatch and enhancing system performance. Full article
Show Figures

Figure 1

30 pages, 459 KiB  
Review
Recent Advances in Long-Term Wind-Speed and -Power Forecasting: A Review
by Jacqueline Muthoni Mbugua and Yusuke Hiraga
Climate 2025, 13(8), 155; https://doi.org/10.3390/cli13080155 - 23 Jul 2025
Viewed by 367
Abstract
This review examines advancements and methodologies in long-term wind-speed and -power forecasting. It emphasizes the importance of these techniques in integrating wind energy into power systems. Covering a range of forecasting timeframes from monthly to multiyear projections, this paper highlights the diversity of [...] Read more.
This review examines advancements and methodologies in long-term wind-speed and -power forecasting. It emphasizes the importance of these techniques in integrating wind energy into power systems. Covering a range of forecasting timeframes from monthly to multiyear projections, this paper highlights the diversity of applications and approaches. These applications and approaches are essential for managing the inherent variability and unpredictability of wind energy. Various forecasting methods, including statistical models, machine-learning techniques, and hybrid models, are discussed in detail. The review demonstrates how these methods improve forecast accuracy and reliability across different temporal and geographical scales. It also identifies significant challenges such as model complexity, data limitations, and the need to accommodate regional variations. Future improvements in wind forecasting include enhancing model integration, employing higher resolution data, and fostering collaborative research to further refine forecasting methodologies. This comprehensive analysis aims to advance knowledge on wind forecasting, facilitate the efficient integration of wind power into global energy systems, and contribute to sustainable energy development goals. Full article
(This article belongs to the Special Issue Wind‑Speed Variability from Tropopause to Surface)
Show Figures

Figure 1

24 pages, 3950 KiB  
Article
Dynamic Model Selection in a Hybrid Ensemble Framework for Robust Photovoltaic Power Forecasting
by Nakhun Song, Roberto Chang-Silva, Kyungil Lee and Seonyoung Park
Sensors 2025, 25(14), 4489; https://doi.org/10.3390/s25144489 - 19 Jul 2025
Viewed by 353
Abstract
As global electricity demand increases and concerns over fossil fuel usage intensify, renewable energy sources have gained significant attention. Solar energy stands out due to its low installation costs and suitability for deployment. However, solar power generation remains difficult to predict because of [...] Read more.
As global electricity demand increases and concerns over fossil fuel usage intensify, renewable energy sources have gained significant attention. Solar energy stands out due to its low installation costs and suitability for deployment. However, solar power generation remains difficult to predict because of its dependence on weather conditions and decentralized infrastructure. To address this challenge, this study proposes a flexible hybrid ensemble (FHE) framework that dynamically selects the most appropriate base model based on prediction error patterns. Unlike traditional ensemble methods that aggregate all base model outputs, the FHE employs a meta-model to leverage the strengths of individual models while mitigating their weaknesses. The FHE is evaluated using data from four solar power plants and is benchmarked against several state-of-the-art models and conventional hybrid ensemble techniques. Experimental results demonstrate that the FHE framework achieves superior predictive performance, improving the Mean Absolute Percentage Error by 30% compared to the SVR model. Moreover, the FHE model maintains high accuracy across diverse weather conditions and eliminates the need for preliminary validation of base and ensemble models, streamlining the deployment process. These findings highlight the FHE framework’s potential as a robust and scalable solution for forecasting in small-scale distributed solar power systems. Full article
(This article belongs to the Special Issue Energy Harvesting and Self-Powered Sensors)
Show Figures

Figure 1

26 pages, 2055 KiB  
Article
Comparative Analysis of Time-Series Forecasting Models for eLoran Systems: Exploring the Effectiveness of Dynamic Weighting
by Jianchen Di, Miao Wu, Jun Fu, Wenkui Li, Xianzhou Jin and Jinyu Liu
Sensors 2025, 25(14), 4462; https://doi.org/10.3390/s25144462 - 17 Jul 2025
Viewed by 295
Abstract
This paper presents an advanced time-series forecasting methodology that integrates multiple machine learning models to improve data prediction in enhanced long-range navigation (eLoran) systems. The analysis evaluates five forecasting approaches: multivariate linear regression, long short-term memory (LSTM) networks, random forest (RF), a fusion [...] Read more.
This paper presents an advanced time-series forecasting methodology that integrates multiple machine learning models to improve data prediction in enhanced long-range navigation (eLoran) systems. The analysis evaluates five forecasting approaches: multivariate linear regression, long short-term memory (LSTM) networks, random forest (RF), a fusion model combining LSTM and RF, and a dynamic weighting (DW) model. The results demonstrate that the DW model achieves the highest prediction accuracy while maintaining strong computational efficiency, making it particularly suitable for real-time applications with stringent performance requirements. Although the LSTM model effectively captures temporal dependencies, it demands considerable computational resources. The hybrid model utilises the strengths of LSTM and RF to enhance the accuracy but involves extended training times. By contrast, the DW model dynamically adjusts the relative contributions of LSTM and RF on the basis of the data characteristics, thereby enhancing the accuracy while significantly reducing the computational demands. Demonstrating exceptional performance on the ASF2 dataset, the DW model provides a well-balanced solution that combines precision with operational efficiency. This research offers valuable insights into optimising additional secondary phase factor (ASF) prediction in eLoran systems and highlights the broader applicability of real-time forecasting models. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

27 pages, 2333 KiB  
Article
SWOT-AHP Analysis of the Importance and Adoption of Pumped-Storage Hydropower
by Mladen Bošnjaković, Nataša Veljić, Jelena Topić Božič and Simon Muhič
Technologies 2025, 13(7), 305; https://doi.org/10.3390/technologies13070305 - 16 Jul 2025
Viewed by 259
Abstract
Energy storage technologies are becoming increasingly important when it comes to maintaining the balance between electricity generation and consumption, especially with the increasing share of variable renewable energy sources (VRES). Pumped storage hydropower plants (PSHs) are currently the largest form of energy storage [...] Read more.
Energy storage technologies are becoming increasingly important when it comes to maintaining the balance between electricity generation and consumption, especially with the increasing share of variable renewable energy sources (VRES). Pumped storage hydropower plants (PSHs) are currently the largest form of energy storage at the grid level. The aim of this study is to investigate the importance and prospects of using PSHs as part of the energy transition to decarbonize energy sources. A comparison was made between PSHs and battery energy storage systems (BESSs) in terms of technical, economic, and ecological aspects. To identify the key factors influencing the wider adoption of PSHs, a combined approach using SWOT analysis (which assesses strengths, weaknesses, opportunities, and threats) and the Analytical Hierarchy Process (AHP) as a decision support tool was applied. Regulatory and market uncertainties (13.54%) and financial inequality (12.77%) rank first and belong to the “Threats” group, with energy storage capacity (10.11%) as the most important factor from the “Strengths” group and increased demand for energy storage (9.01%) as the most important factor from the “Opportunities” group. Forecasts up to 2050 show that the capacity of PSHs must be doubled to enable the integration of 80% of VRES into the grids. The study concludes that PSHs play a key role in the energy transition, especially for long-term energy storage and grid stabilization, while BESSs offer complementary benefits for short-term storage and fast frequency regulation. Recommendations to policymakers include the development of clear, accelerated project approval procedures, financial incentives, and support for hybrid PSH systems to accelerate the energy transition and meet decarbonization targets. Full article
(This article belongs to the Special Issue Innovative Power System Technologies)
Show Figures

Figure 1

18 pages, 1685 KiB  
Article
Forecasting Residential EV Charging Pile Capacity in Urban Power Systems: A Cointegration–BiLSTM Hybrid Approach
by Siqiong Dai, Liang Yuan, Jiayi Zhong, Xubin Liu and Zhangjie Liu
Sustainability 2025, 17(14), 6356; https://doi.org/10.3390/su17146356 - 11 Jul 2025
Cited by 1 | Viewed by 230
Abstract
The rapid proliferation of electric vehicles necessitates accurate forecasting of charging pile capacity for urban power system planning, yet existing methods for medium- to long-term prediction lack effective mechanisms to capture complex multi-factor relationships. To address this gap, a hybrid cointegration–BiLSTM framework is [...] Read more.
The rapid proliferation of electric vehicles necessitates accurate forecasting of charging pile capacity for urban power system planning, yet existing methods for medium- to long-term prediction lack effective mechanisms to capture complex multi-factor relationships. To address this gap, a hybrid cointegration–BiLSTM framework is proposed for medium- to long-term load forecasting. Cointegration theory is leveraged to identify long-term equilibrium relationships between EV charging capacity and socioeconomic factors, effectively mitigating spurious regression risks. The extracted cointegration features and error correction terms are integrated into a bidirectional LSTM network to capture complex temporal dependencies. Validation using data from 14 cities in Hunan Province demonstrated that cointegration analysis surpassed linear correlation methods in feature preprocessing effectiveness, while the proposed model achieved enhanced forecasting accuracy relative to conventional temporal convolutional networks, support vector machines, and gated recurrent units. Furthermore, a 49% reduction in MAE and RMSE was observed when ECT-enhanced features were adopted instead of unenhanced groups, confirming the critical role of comprehensive feature engineering. Compared with the GRU baseline, the BiLSTM model yielded a 26% decrease in MAE and a 24% decrease in RMSE. The robustness of the model was confirmed through five-fold cross-validation, with ECT-enhanced features yielding optimal results. This approach provides a scientifically grounded framework for EV charging infrastructure planning, with potential extensions to photovoltaic capacity forecasting. Full article
Show Figures

Figure 1

33 pages, 1609 KiB  
Article
Estimation and Forecasting of the Average Unit Cost of Energy Supply in a Distribution System Using Multiple Linear Regression and ARIMAX Modeling in Ecuador
by Pablo Alejandro Mendez-Santos, Nathalia Alexandra Chacón-Reino, Luis Fernando Guerrero-Vásquez, Jorge Osmani Ordoñez-Ordoñez and Paul Andrés Chasi-Pesantez
Energies 2025, 18(14), 3659; https://doi.org/10.3390/en18143659 - 10 Jul 2025
Viewed by 384
Abstract
The accurate estimation of electricity supply costs has become increasingly relevant due to growing demand, variable generation sources, and regulatory changes in emerging power systems. This study models the average unit cost of electricity supply (USD/kWh) in Ecuador using multiple linear regression techniques [...] Read more.
The accurate estimation of electricity supply costs has become increasingly relevant due to growing demand, variable generation sources, and regulatory changes in emerging power systems. This study models the average unit cost of electricity supply (USD/kWh) in Ecuador using multiple linear regression techniques and ARIMAX forecasting, based on monthly data from 2018 to 2024. The regression models incorporate variables such as energy demand, generation mix, transmission costs, and regulatory indices. To enhance model robustness, we apply three variable selection strategies: correlation analysis, PCA, and expert-driven selection. Results show that all models explain over 70% of price variability, with the highest-performing regression model achieving R2=0.9887. ARIMAX models were subsequently implemented using regression-based forecasts as exogenous inputs. The ARIMAX model based on highly correlated variables achieved a MAPE below 5%, showing high predictive accuracy. These findings support the use of hybrid statistical models for informed policy-making, tariff planning, and operational cost forecasting in structurally constrained energy markets. Full article
Show Figures

Figure 1

20 pages, 1840 KiB  
Article
A Hybrid Long Short-Term Memory with a Sentiment Analysis System for Stock Market Forecasting
by Konstantinos Liagkouras and Konstantinos Metaxiotis
Electronics 2025, 14(14), 2753; https://doi.org/10.3390/electronics14142753 - 8 Jul 2025
Viewed by 455
Abstract
Addressing the stock market forecasting as a classification problem, where the model predicts the direction of stock price movement, is crucial for both traders and investors, as it can help them to allocate limited resources to the most promising investment opportunities. In this [...] Read more.
Addressing the stock market forecasting as a classification problem, where the model predicts the direction of stock price movement, is crucial for both traders and investors, as it can help them to allocate limited resources to the most promising investment opportunities. In this study, we propose a hybrid system that uses a Long Short-Term Memory (LSTM) network and sentiment analysis for predicting the direction of the movement of the stock price. The proposed hybrid system is fed with historical stock data and regulatory news announcements for producing more reliable responses. LSTM networks are well suited to handling time series data with long-term dependencies, while the sentiment analyser provides insights into how news impacts stock price movements by classifying business news into classes. By integrating both the LSTM network and the sentiment classifier, the proposed hybrid system delivers more accurate forecasts. Our experiments demonstrate that the proposed hybrid system outperforms other competing configurations. Full article
Show Figures

Figure 1

5 pages, 1345 KiB  
Proceeding Paper
Improving Predictive Maintenance Performance Using Machine Learning and Vibration Analysis Algorithms
by Ibtissam Elharnaf, Khadija Achtaich and Samir Tetouani
Eng. Proc. 2025, 97(1), 45; https://doi.org/10.3390/engproc2025097045 - 2 Jul 2025
Viewed by 424
Abstract
This research examines advanced machine learning techniques utilized for the predictive maintenance of industrial machinery. A hybrid model combining long-term memory networks (LSTM) and gated recurrent unit (GRU) networks alongside a random forest classifier has been created utilizing vibration data collected from sensors [...] Read more.
This research examines advanced machine learning techniques utilized for the predictive maintenance of industrial machinery. A hybrid model combining long-term memory networks (LSTM) and gated recurrent unit (GRU) networks alongside a random forest classifier has been created utilizing vibration data collected from sensors for fault classification purposes. The method includes feature extraction, time series analysis, and classification, utilizing the benefits of these models to efficiently manage sequential data. The results show significant improvements in forecasting accuracy, reduced downtime, and better-aligned maintenance schedules. These advancements demonstrate the capabilitie of integrating AI-driven solutions into industrial systems, consistent with Industry 4.0 principles, to improve operational capabilities. Full article
Show Figures

Figure 1

16 pages, 2499 KiB  
Article
Neural Network-Based Control Optimization for NH3 Leakage and NOx Emissions in SCR Systems
by Weiqi Li, Jie Wu, Dongwei Yao, Feng Wu, Lei Wang, Hua Lou and Haibin He
Processes 2025, 13(7), 2029; https://doi.org/10.3390/pr13072029 - 26 Jun 2025
Viewed by 463
Abstract
This study proposes a data-driven optimization framework to enhance emission control performance in diesel engine selective catalytic reduction (SCR) systems under transient operating conditions. A one-dimensional SCR model was constructed in GT-Power, and simulation datasets were generated using experimentally measured inputs from the [...] Read more.
This study proposes a data-driven optimization framework to enhance emission control performance in diesel engine selective catalytic reduction (SCR) systems under transient operating conditions. A one-dimensional SCR model was constructed in GT-Power, and simulation datasets were generated using experimentally measured inputs from the World Harmonized Transient Cycle (WHTC), with representative emission responses obtained by varying fixed ammonia-to-NOx (A/N) ratios. Building on these datasets, a hybrid prediction model combining Long Short-Term Memory (LSTM) networks and multi-head attention mechanisms was developed to accurately forecast SCR outlet NH3 leakage and NOx emissions. The model exhibited high predictive accuracy, achieving R2 values exceeding 0.977 and low RMSE across training, validation, and test sets. Based on the model predictions, a constrained dynamic multi-objective optimization strategy was implemented to adaptively adjust ammonia dosing, aiming to simultaneously minimize NH3 leakage and NOx emissions. The optimized NH3 injection profiles were validated through reapplication in the GT-Power simulation environment. Compared to the baseline fixed-ratio control strategy, the proposed approach reduced NH3 leakage and NOx emissions by 34.40% and 11.15%, respectively, as determined for the transient segment of the WHTC cycle. These results demonstrate the effectiveness of integrating physics-based simulation, deep learning prediction, and dynamic optimization for improving aftertreatment adaptability and emission compliance in real-world diesel engine applications. All reported values are based on a single simulated WHTC cycle without statistical uncertainty analysis. Full article
(This article belongs to the Special Issue Clean Combustion and Emission in Vehicle Power System, 2nd Edition)
Show Figures

Figure 1

Back to TopTop