Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (547)

Search Parameters:
Keywords = hyaluronan (A-)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3563 KiB  
Article
Assessment of Hydrogels for Intra-Articulate Application, Based on Sodium Hyaluronate Doped with Synthetic Polymers and Incorporated with Diclofenac Sodium
by Dorota Wójcik-Pastuszka, Maja Grabara and Witold Musiał
Int. J. Mol. Sci. 2025, 26(15), 7631; https://doi.org/10.3390/ijms26157631 (registering DOI) - 6 Aug 2025
Abstract
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control [...] Read more.
The intra-articular application of drugs has gained considerable interest with regard to formulations for advanced drug delivery systems. It has been identified as a potential route for local drug delivery. A drug agent is usually incorporated into the hydrogel to prolong and control the drug release. This study aimed to design and evaluate an intra-articular hydrogel based sodium hyaluronate, which was modified with an additional polymer to enable the sustained release of the incorporated anti-inflammatory agent, diclofenac sodium (NaDic). Viscosity studies, drug release tests and FTIR−ATR measurements, as well as DSC analysis, were carried out to evaluate the obtained formulations. The viscosity measurements were performed using a rotational viscometer. The drug release was carried out by employing the apparatus paddle over the disk. The concentration of the released drug was obtained spectrophotometrically. The results revealed that the addition of the second polymer to the matrix influenced the dynamic viscosity of the hydrogels. The highest viscosity of (25.33 ± 0.55) × 103 cP was observed when polyacrylic acid (PA) was doped in the formulation. This was due to the hydrogen bond formation between both polymers. The FTIR−ATR investigations and DSC study revealed the hydrogen bond formation between the drug and both polymers. The drug was released the slowest from hydrogel doped with PA and 17.2 ± 3.7% of NaDic was transported to the acceptor fluid within 8 h. The hydrogel based on hyaluronan sodium doped with PA and containing NaDic is a promising formulation for the prolonged and controlled intra-articulate drug delivery of anti-inflammatory agents. Full article
(This article belongs to the Special Issue New Insights into Hyaluronan in Human Medicine)
Show Figures

Figure 1

17 pages, 2085 KiB  
Article
Multifunctional Dermatological Effects of Whole-Plant Bassia scoparia Extract: Skin Repair and Protection
by Seogyun Jeong, Hye-Been Kim, Dong-Geol Lee, Eunjin Park, Seoyeon Kyung, Seunghyun Kang, Dayeon Roo, Sang Hyun Moh, Sung Joo Jang, Jihyeon Jang, HyungWoo Jo and Sanghun Lee
Curr. Issues Mol. Biol. 2025, 47(8), 617; https://doi.org/10.3390/cimb47080617 - 4 Aug 2025
Abstract
Bassia scoparia (Syn. Kochia scoparia (L.) Schrad.) is a medicinal plant whose fruit, Kochiae Fructus, has been extensively studied for its dermatological applications. This study focused on extracts from the whole plant B. scoparia (WPBS), excluding fruits, to address the research gap [...] Read more.
Bassia scoparia (Syn. Kochia scoparia (L.) Schrad.) is a medicinal plant whose fruit, Kochiae Fructus, has been extensively studied for its dermatological applications. This study focused on extracts from the whole plant B. scoparia (WPBS), excluding fruits, to address the research gap regarding the medicinal properties of non-fruit parts. The diverse skin benefits of WPBS, including its anti-photoaging, moisturizing, wound healing, anti-inflammatory, and anti-angiogenic effects, were investigated. The WPBS extract enhanced the viability of keratinocytes (HaCaT) without inducing cytotoxic effects. WPBS significantly reduced matrix metalloproteinase-1 (MMP-1) levels and increased collagen type I alpha 1 (COL1A1) levels (p < 0.01) in fibroblasts exposed to ultraviolet B (UVB) radiation, indicating strong anti-photoaging effects. WPBS upregulated skin hydration markers such as aquaporin-3 (AQP3) and hyaluronan synthase-3 (HAS3) and effectively accelerated fibroblast wound closure compared to the positive control. Furthermore, WPBS substantially downregulated the expression of inflammatory (COX-2 and IL-1β) and angiogenic markers (VEGF). Transcriptome analysis (RNA-seq) confirmed that WPBS suppressed inflammation-related and UV-induced gene expression pathways. Overall, these findings expand the therapeutic scope of B. scoparia beyond its traditional fruit use and suggest that WPBS is a promising botanical ingredient for various skin applications. Full article
Show Figures

Figure 1

26 pages, 1785 KiB  
Review
Targeting RHAMM in Cancer: Crosstalk with Non-Coding RNAs and Emerging Therapeutic Strategies Including Peptides, Oligomers, Antibodies, and Vaccines
by Dong Oh Moon
Int. J. Mol. Sci. 2025, 26(15), 7198; https://doi.org/10.3390/ijms26157198 - 25 Jul 2025
Viewed by 207
Abstract
Cancer remains a major cause of mortality worldwide, driven by complex molecular mechanisms that promote metastasis and resistance to therapy. Receptor for hyaluronan-mediated motility (RHAMM) has emerged as a multifunctional regulator in cancer, contributing to cell motility, invasion, proliferation, and fibrosis. In addition [...] Read more.
Cancer remains a major cause of mortality worldwide, driven by complex molecular mechanisms that promote metastasis and resistance to therapy. Receptor for hyaluronan-mediated motility (RHAMM) has emerged as a multifunctional regulator in cancer, contributing to cell motility, invasion, proliferation, and fibrosis. In addition to being regulated by non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, RHAMM serves as a promising therapeutic target. Recent developments in RHAMM-targeted strategies include function-blocking peptides (e.g., NPI-110, NPI-106, and P15-1), hyaluronan (HA) oligomers, and anti-RHAMM antibodies, all shown to modulate tumor stroma and suppress tumor invasiveness. Importantly, RHAMM-targeted peptide vaccines, such as the RHAMM-R3 epitope, have demonstrated immunogenicity and anti-leukemia efficacy in both pre-clinical and early clinical studies, suggesting their potential to elicit specific CD8+ T-cell responses and enhance graft-versus-leukemia effects. This review summarizes the intricate roles of RHAMM in cancer progression, its modulation by ncRNAs, and the translational promise of novel RHAMM-targeting approaches, providing insights into future directions for precision cancer therapy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

20 pages, 1953 KiB  
Review
Limited Proteolysis as a Regulator of Lymphatic Vessel Function and Architecture
by Takuro Miyazaki
Int. J. Mol. Sci. 2025, 26(15), 7144; https://doi.org/10.3390/ijms26157144 - 24 Jul 2025
Viewed by 170
Abstract
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional [...] Read more.
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional regulation of major interest. Emerging evidence suggests that limited proteolysis is a key regulatory mechanism for lymphatic vascular function. In dyslipidemic conditions, dysregulated calpain activity impairs lymphatic trafficking and destabilizes regulatory T cells, partly via the limited proteolysis of mitogen-activated kinase kinase kinase 1 and inhibitor of κBα. In addition, a disintegrin and metalloprotease with thrombospondin motifs-3-mediated proteolytic activation of vascular endothelial growth factor-C has been implicated in both developmental and tumor-associated lymphangiogenesis. Proteolytic shedding of lymphatic vessel endothelial hyaluronan receptor-1 by a disintegrin and metalloprotease 17 promotes lymphangiogenesis, whereas cleavage by membrane-type 1 matrix metalloproteinase inhibits it. This review is structured around two core aspects—lymphatic inflammation and lymphangiogenesis—and highlights recent findings on how limited proteolysis regulates each of these processes. It also discusses the therapeutic potential of targeting these proteolytic machineries and currently unexplored research questions, such as how intercellular junctions of lymphatic endothelial cells are controlled. Full article
Show Figures

Figure 1

12 pages, 732 KiB  
Article
Umbilical Cord Tensile Strength Under Varying Strain Rates
by Maria Antonietta Castaldi, Pietro Villa, Alfredo Castaldi and Salvatore Giovanni Castaldi
Bioengineering 2025, 12(8), 789; https://doi.org/10.3390/bioengineering12080789 - 22 Jul 2025
Viewed by 248
Abstract
The tensile strength of the umbilical cord (UC) is influenced by its composition—including collagen, elastin, and hyaluronan—contributing to its unique biomechanical properties. This experimental in vitro study aimed to evaluate the UC’s mechanical behavior under varying strain rates and to characterize its viscoelastic [...] Read more.
The tensile strength of the umbilical cord (UC) is influenced by its composition—including collagen, elastin, and hyaluronan—contributing to its unique biomechanical properties. This experimental in vitro study aimed to evaluate the UC’s mechanical behavior under varying strain rates and to characterize its viscoelastic response. Twenty-nine UC specimens, each 40 mm in length, were subjected to uniaxial tensile testing and randomly assigned to three traction speed groups: Group A (n = 10) at 8 mm/min, Group B (n = 7) at 12 mm/min, and Group C (n = 12) at 16 mm/min. Four different parameters were analyzed: the ultimate tensile strength and its corresponding elongation, the elastic modulus defined as the slope of the linear initial portion of the stress–strain plot, and the elongation at the end of the test (at break). While elongation and elongation at break did not differ significantly between groups (one-way ANOVA), Group C showed a significantly higher ultimate tensile strength (p = 0.047). A linear relationship was observed between test speed and stiffness (elastic modulus), with the following regression equation: y = 0.3078e4.425x. These findings confirm that the UC exhibits nonlinear viscoelastic properties and strain-rate-dependent stiffening, resembling non-Newtonian behavior. This novel insight may have clinical relevance during operative deliveries, where traction speed is often overlooked but may play a role in preserving cord integrity and improving neonatal outcomes. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

32 pages, 6617 KiB  
Article
Hyaluronan-Containing Injectable Magnesium–Calcium Phosphate Cements Demonstrated Improved Performance, Cytocompatibility, and Ability to Support Osteogenic Differentiation In Vitro
by Natalia S. Sergeeva, Polina A. Krokhicheva, Irina K. Sviridova, Margarita A. Goldberg, Dinara R. Khayrutdinova, Suraya A. Akhmedova, Valentina A. Kirsanova, Olga S. Antonova, Alexander S. Fomin, Ivan V. Mikheev, Aleksander V. Leonov, Pavel A. Karalkin, Sergey A. Rodionov, Sergey M. Barinov, Vladimir S. Komlev and Andrey D. Kaprin
Int. J. Mol. Sci. 2025, 26(14), 6624; https://doi.org/10.3390/ijms26146624 - 10 Jul 2025
Viewed by 454
Abstract
Due to their biocompatibility, biodegradability, injectability, and self-setting properties, calcium–magnesium phosphate cements (MCPCs) have proven to be effective biomaterials for bone defect filling. Two types of MCPC powders based on the magnesium whitlockite or stanfieldite phases with MgO with different magnesium contents (20 [...] Read more.
Due to their biocompatibility, biodegradability, injectability, and self-setting properties, calcium–magnesium phosphate cements (MCPCs) have proven to be effective biomaterials for bone defect filling. Two types of MCPC powders based on the magnesium whitlockite or stanfieldite phases with MgO with different magnesium contents (20 and 60%) were synthesised. The effects of magnesium ions (Mg2+) on functional properties such as setting time, temperature, mechanical strength, injectability, cohesion, and in vitro degradation kinetics, as well as cytocompatibility in the MG-63 cell line and the osteogenic differentiation of BM hMSCs in vitro, were analysed. The introduction of NaHA into the cement liquid results in an increase in injectability of up to 83%, provides a compressive strength of up to 22 MPa, and shows a reasonable setting time of about 20 min without an exothermic reaction. These cements had the ability to support MG-63 cell adhesion, proliferation, and spread and the osteogenic differentiation of BM hMSCs in vitro, stimulating ALPL, SP7, and RUNX2 gene expression and ALPL production. The combination of the studied physicochemical and biological properties of the developed cement compositions characterises them as bioactive, cytocompatible, and promising biomaterials for bone defect reconstruction. Full article
Show Figures

Graphical abstract

15 pages, 4734 KiB  
Article
Hyaluronic Acid Dipeptide Gels Studied by Raman Spectroscopy
by Vlasta Mohaček-Grošev and Jože Grdadolnik
Crystals 2025, 15(6), 559; https://doi.org/10.3390/cryst15060559 - 13 Jun 2025
Viewed by 526
Abstract
This study presents a detailed Raman spectroscopic investigation of hydrogels composed of sodium hyaluronate and two N-terminally blocked dipeptides: N-acetyl-L-alanine-methyl-amide (NAcAlaNHMA) and N-acetyl-L-tyrosine-methyl-amide (NAcTyrNHMA). Vibrational spectra of the dipeptides in both crystalline and aqueous forms were analyzed and supported by density functional theory [...] Read more.
This study presents a detailed Raman spectroscopic investigation of hydrogels composed of sodium hyaluronate and two N-terminally blocked dipeptides: N-acetyl-L-alanine-methyl-amide (NAcAlaNHMA) and N-acetyl-L-tyrosine-methyl-amide (NAcTyrNHMA). Vibrational spectra of the dipeptides in both crystalline and aqueous forms were analyzed and supported by density functional theory (DFT) calculations. Spectral features of the hyaluronan component were elucidated by simulating the vibrational modes of its two principal disaccharide building blocks. Gels were prepared with varying dipeptide-to-hyaluronan ratios, and their structural characteristics were examined using Raman spectroscopy and atomic force microscopy. The results showed that while NAcAlaNHMA exhibited no significant interaction with the HA matrix, NAcTyrNHMA demonstrated specific binding behavior, as evidenced by notable shifts in its N–H and C–O–H vibrational bands. These findings indicate that NAcTyrNHMA binds to hyaluronic acid via hydrogen bonding, likely involving carboxyl and hydroxyl functional groups. This study highlights the potential for selective tuning of HA-based hydrogels using dipeptides, with implications for biomedical applications such as drug delivery, antimicrobial gels and biomaterial design. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Graphical abstract

27 pages, 3222 KiB  
Review
Mechanisms on How Matricellular Microenvironments Sustain Idiopathic Pulmonary Fibrosis
by Nicole Jones, Babita Rahar, Ksenija Bernau, Jefree J. Schulte, Paul J. Campagnola and Allan R. Brasier
Int. J. Mol. Sci. 2025, 26(11), 5393; https://doi.org/10.3390/ijms26115393 - 4 Jun 2025
Cited by 1 | Viewed by 1112
Abstract
In a susceptible individual, persistent, low-level injury to the airway epithelium initiates an exaggerated wound repair response, ultimately leading to idiopathic pulmonary fibrosis (IPF). The mechanisms driving this fibroproliferative response are not fully understood. Here, we review recent spatially resolved transcriptomics and proteomics [...] Read more.
In a susceptible individual, persistent, low-level injury to the airway epithelium initiates an exaggerated wound repair response, ultimately leading to idiopathic pulmonary fibrosis (IPF). The mechanisms driving this fibroproliferative response are not fully understood. Here, we review recent spatially resolved transcriptomics and proteomics studies that provide insight into two distinct matricellular microenvironments important in this pathological fibroproliferation. First, in response to alveolar epithelial injury, alveolar differentiation intermediate (ADI) basal cells arising from Secretoglobin (Scgb1a1) progenitors re-populate the injured alveolus remodeling the extracellular matrix (ECM). ADI cells exhibit an interconnected cellular stress response involving the unfolded protein response (UPR), epithelial–mesenchymal transition (EMT) and senescence pathways. These pathways reprogram cellular metabolism to support fibrillogenic ECM remodeling. In turn, the remodeled ECM tonically stimulates EMT in the ADI population, perpetuating the transitional cell state. Second, fibroblastic foci (FF) are a distinct microenvironment composed of activated aberrant “basaloid” cells supporting transition of adjacent mesenchyme into hyaluronan synthase (HAShi)-expressing fibroblasts and myofibroblasts. Once formed, FF are the major matrix-producing factories that invade and disrupt the alveolar airspace, forming a mature scar. In both microenvironments, the composition and characteristics of the ECM drive persistence of atypical epithelium sustaining matrix production. New approaches to monitor cellular trans-differentiation and matrix characteristics using positron emission tomography (PET)–magnetic resonance imaging (MRI) and optical imaging are described, which hold the potential to monitor the effects of therapeutic interventions to modify the ECM. Greater understanding of the bidirectional interrelationships between matrix and cellular phenotypes will identify new therapeutics and diagnostics to affect the outcomes of this lethal disease. Full article
Show Figures

Figure 1

15 pages, 2944 KiB  
Article
Agarose Gel Electrophoresis Reveals the Molecular Weight Distribution of Hyaluronan Produced by Orbital Fibroblasts
by Erika Galgoczi, Monika Katko, Sara Borbely, Istvan Orsos, Zsanett Molnar, Bernadett Ujhelyi, Zita Steiber and Endre V. Nagy
Gels 2025, 11(6), 406; https://doi.org/10.3390/gels11060406 - 29 May 2025
Viewed by 640
Abstract
Thyroid eye disease (TED) is characterized by autoimmune inflammation and structural remodelling of orbital tissues, which is a consequence of the activation of orbital fibroblasts (OFs). As a result of this activation, the production of hyaluronan (HA) and the proliferation and adipocyte differentiation [...] Read more.
Thyroid eye disease (TED) is characterized by autoimmune inflammation and structural remodelling of orbital tissues, which is a consequence of the activation of orbital fibroblasts (OFs). As a result of this activation, the production of hyaluronan (HA) and the proliferation and adipocyte differentiation of OFs are enhanced. Adipogenesis leads to additional accumulation of HA. The aim of this study was to elucidate the molecular weight distribution of HA produced by OFs under basic conditions and after adipogenic stimuli. The concentration and the molecular weight distribution of HA were examined using ELISA and agarose gel electrophoresis, respectively, in TED (n = 3) and non-TED (n = 3) OF cultures. Under adipogenic stimuli, HA production is increased in OFs. In TED OF cultures, which, unlike non-TED OFs, can differentiate into adipocytes, the enhanced proportion of high-molecular-weight (HMW) HA of more than 2000 kDa is responsible for the increased HA concentration in the culture media. In non-TED OF cultures, which contain a negligible number of differentiating cells after adipogenic stimulation, the medium-molecular-weight (MMW) HA fragments from 50 to 1000 kDa also contribute to the enhanced HA content. Increased production of HMW-HA during adipocyte differentiation of TED OFs is responsible for the elevated HA content in the culture media, which may be an important contributor to both connective tissue matrix expansion and edema in the pathogenesis of TED. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

10 pages, 1427 KiB  
Communication
Genetic Deficiency of Hyaluronan Synthase 2 in the Developing Limb Mesenchyme Impairs Postnatal Synovial Joint Formation
by Yingcui Li, Alexander Tress, Peter Maye, Kemar Edwards, Asiona Findletar, Nathaniel A. Dyment, Yu Yamaguchi, David W. Rowe, Gengyun Le-Chan, Sunny S. K. Chan and Kevin W.-H. Lo
Biomedicines 2025, 13(6), 1324; https://doi.org/10.3390/biomedicines13061324 - 28 May 2025
Viewed by 662
Abstract
Hyaluronan, a key component of the extracellular matrix, plays a crucial role in joint development and maintenance. In order to determine the role of hyaluronan function in joint development and homeostasis, conditional loss-of-function experiments of Hyaluronan Synthase 2 (Has2) were carried [...] Read more.
Hyaluronan, a key component of the extracellular matrix, plays a crucial role in joint development and maintenance. In order to determine the role of hyaluronan function in joint development and homeostasis, conditional loss-of-function experiments of Hyaluronan Synthase 2 (Has2) were carried out in mice. Has2 depletion in limb mesenchymal cells led to severely shortened limbs with appendicular joints that are deformed, decreased proteoglycan content as characterized by Safranin-O staining, and severely pitted epiphyseal ends of long bones and deformed joints as viewed by micro-CT reconstructions. The embryonic deletion of Has2 in mesoderm mesenchyme of limbs by Prx1-Cre confirmed its involvement in joint development, while in situ hybridization and hyaluronan staining confirmed Has2 expression and abundant accumulation of hyaluronan in the onset of joint formation, the joint interzone. These findings position Has2 as the main hyaluronan-making enzyme in articular cartilage and highlight its essential function in joint formation and retention of proteoglycans of the extracellular matrix of the cartilage. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

37 pages, 2305 KiB  
Review
Hyaluronan: An Architect and Integrator for Cancer and Neural Diseases
by Che-Yu Hsu, Hieu-Huy Nguyen-Tran, Yu-An Chen, Kuan-Ting Lee, Tzong-Yuan Juang, Ming-Fu Chiang, Shin-Yi Liu and Nan-Shan Chang
Int. J. Mol. Sci. 2025, 26(11), 5132; https://doi.org/10.3390/ijms26115132 - 27 May 2025
Viewed by 1351
Abstract
Hyaluronan (HA) is essentially secreted by every cell and plays a critical role in maintaining normal cell physiology. While the structure and function of HA have been extensively investigated, questions regarding the sizes and conformation of HA under physiological and inflamed conditions, in [...] Read more.
Hyaluronan (HA) is essentially secreted by every cell and plays a critical role in maintaining normal cell physiology. While the structure and function of HA have been extensively investigated, questions regarding the sizes and conformation of HA under physiological and inflamed conditions, in relevance to its functions, remain elusive. In this article, we update our knowledge of the HA functional properties, including binding proteins and their signaling networks, as well as matrix formation, which can potentially induce phase separation and affect the mobility and behavior of small molecules, proteins, and cells. We detail the striking differences regarding the biological outcomes of signaling pathways for HA and membrane receptors versus HA and GPI-linked hyaluronidase Hyal-2. We describe: (1) the native, large-sized HA is not proapoptotic but signals with an overexpressed HYAL-2/WWOX/SMAD4 complex to induce apoptosis, which is likely to occur in an inflamed microenvironment; (2) HA-binding proteins are connected via signal pathway networks. The competitive binding of HA and TGF-β to the membrane HYAL-2 and the downstream HYAL-2/WWOX/SMAD4 signaling is addressed; (3) the phase-separated proteins or small molecules in the HA matrices may contribute to the aberrant interactions, leading to inflammation and disease progression; (4) the role of HA and complement C1q in Alzheimer’s disease via connection with a risk factor for Alzheimer’s disease WWOX is also discussed; (5) a hidden function is the inducible HA conformational changes that confer cancer suppression and, probably, retardation of neurodegeneration. Full article
(This article belongs to the Special Issue Neurodegeneration: From Genetics to Molecules—2nd Edition)
Show Figures

Figure 1

21 pages, 23163 KiB  
Article
Hyaluronan-Binding Protein Promotes Fibroblast Transformation and Heart Failure by Modulating the STAT5A–MMP13 Pathway
by Hui Yan, Bing Huang, Bofang Zhang, Yunyao Li, Qiping Zhou, Ayipali Abudoureyimu, Guiqiu Cao and Hong Jiang
Biomedicines 2025, 13(6), 1302; https://doi.org/10.3390/biomedicines13061302 - 26 May 2025
Viewed by 464
Abstract
Background: Adverse cardiac remodeling drives heart failure progression, but the role of hyaluronan-binding protein (HYBID) in this process remains unclear. This study investigated the role of HYBID as a key profibrotic factor in the progression of adverse cardiac remodeling with a focus on [...] Read more.
Background: Adverse cardiac remodeling drives heart failure progression, but the role of hyaluronan-binding protein (HYBID) in this process remains unclear. This study investigated the role of HYBID as a key profibrotic factor in the progression of adverse cardiac remodeling with a focus on its functional impact on cardiac fibroblasts and underlying molecular mechanisms. Methods: RNA sequencing analysis was employed to identify differentially expressed genes in mouse ventricular tissue post-myocardial infarction (MI). Fibroblast-specific genetically modified mouse models (knockdown and overexpression) were generated using FSP1 promoter-driven adeno-associated viruses. Comprehensive histological and biochemical assessments were conducted both in vivo and in vitro to evaluate the effects of HYBID modulation on cardiac remodeling. Molecular docking and immunoprecipitation assays were utilized to elucidate the mechanistic interactions between HYBID and its downstream targets. Results: RNA sequencing revealed HYBID as a fibroblast-enriched protein significantly upregulated in myocardial tissue of MI mice. Fibroblast-specific knockdown of HYBID attenuated MI-induced fibroblast activation, improved cardiac function, and mitigated adverse cardiac remodeling. Conversely, HYBID overexpression exacerbated fibroblast activation and promoted cardiac remodeling. Mechanistically, HYBID was found to competitively bind to STAT5A, thereby inhibiting the anti-fibrotic effects of MMP13 and driving fibroblast activation and adverse remodeling post-MI. Conclusions: Our findings establish HYBID as a novel fibroblast-enriched regulator that exacerbates fibrosis and adverse cardiac remodeling following MI. By uncovering the HYBID–STAT5A–MMP13 axis as a critical signaling pathway, this study provides new insights into the molecular mechanisms underlying heart failure progression. Full article
Show Figures

Figure 1

24 pages, 1431 KiB  
Review
Biomedical Application of Nanogels: From Cancer to Wound Healing
by Mohammad Zafaryab and Komal Vig
Molecules 2025, 30(10), 2144; https://doi.org/10.3390/molecules30102144 - 13 May 2025
Cited by 1 | Viewed by 1071
Abstract
Nanogels are polymer-based, crosslinked hydrogel particles on the nanometer scale. Nanogels developed from synthetic and natural polymers have gathered a great deal of attention in industry and scientific society due to having an increased surface area, softness, flexibility, absorption, and drug loading ability, [...] Read more.
Nanogels are polymer-based, crosslinked hydrogel particles on the nanometer scale. Nanogels developed from synthetic and natural polymers have gathered a great deal of attention in industry and scientific society due to having an increased surface area, softness, flexibility, absorption, and drug loading ability, as well as their mimicking the environment of a tissue. Nanogels having biocompatibility, nontoxic and biodegradable properties with exceptional design, fabrication, and coating facilities may be used for a variety of different biomedical applications, such as drug delivery and therapy, tissue engineering, and bioimaging. Nanogels fabricated by chemical crosslinking and physical self-assembly displayed the ability to encapsulate therapeutics, including hydrophobic, hydrophilic, and small molecules, proteins, peptides, RNA and DNA sequences, and even ultrasmall nanoparticles within their three-dimensional polymer networks. One of the many drug delivery methods being investigated as a practical option for targeted delivery of drugs for cancer treatment is nanogels. The delivery of DNA and anticancer drugs like doxorubicin, epirubicin, and paclitaxel has been eased by polymeric nanogels. Stimuli-responsive PEGylated nanogels have been reported as smart nanomedicines for cancer diagnostics and therapy. Another promising biomedical application of nanogels is wound healing. Wounds are injuries to living tissue caused by a cut, blow, or other impact. There are numerous nanogels having different polymer compositions that have been reported to enhance the wound healing process, such as hyaluronan, poly-L-lysine, and berberine. When antimicrobial resistance is present, wound healing becomes a complicated process. Researchers are looking for novel alternative approaches, as foreign microorganisms in wounds are becoming resistant to antibiotics. Silver nanogels have been reported as a popular antimicrobial choice, as silver has been used as an antimicrobial throughout a prolonged period. Lignin-incorporated nanogels and lidocaine nanogels have also been reported as an antioxidant wound-dressing material that can aid in wound healing. In this review, we will summarize recent progress in biomedical applications for various nanogels, with a prime focus on cancer and wound healing. Full article
Show Figures

Figure 1

12 pages, 1234 KiB  
Article
Diffusion of Sodium Hyaluronate in Artificial Saliva to Optimize Its Topical Application
by Francisco J. R. Carmo, Esmeraldo P. Z. Salote, Artur J. M. Valente, Ana C. F. Ribeiro, Pedro M. G. Nicolau and Sónia I. G. Fangaia
Molecules 2025, 30(10), 2140; https://doi.org/10.3390/molecules30102140 - 13 May 2025
Viewed by 566
Abstract
Hyaluronic acid (or hyaluronan) is a polysaccharide with therapeutic applications in dentistry due to its lubricating, anti-inflammatory, and antibacterial properties. This study evaluates the diffusion, conductivity, and viscosity of the sodium salt of HyH (that is, NaHy) with different molecular weights (124 kDa, [...] Read more.
Hyaluronic acid (or hyaluronan) is a polysaccharide with therapeutic applications in dentistry due to its lubricating, anti-inflammatory, and antibacterial properties. This study evaluates the diffusion, conductivity, and viscosity of the sodium salt of HyH (that is, NaHy) with different molecular weights (124 kDa, 245 kDa, and 1800 kDa) in artificial saliva at pH 2.3, 4, 5, 6.8, and 8. Using the Taylor dispersion technique at 298.15 K, diffusion coefficients were determined and analyzed based on Fick’s second law equation. Results showed that NaHy diffusion was higher at acidic pH, particularly at pH 2.3, and decreased at pH 8, likely due to structural compaction in acidic conditions and expansion in alkaline media. The higher molecular weight of this polysaccharide exhibited greater diffusion and conductivity, suggesting an extended conformation that enhances mobility. These findings indicate that both pH and molecular weight significantly influence NaHy transport properties. Optimizing these parameters may enhance HA’s bioavailability and effectiveness in topical oral applications, improving its therapeutic potential in treating periodontal and oral conditions. Full article
Show Figures

Figure 1

14 pages, 3759 KiB  
Perspective
The Competitive Interaction of Alveolar Wall Distention with Elastin Crosslinking: A Mechanistic Approach to Emergent Phenomena in Pulmonary Emphysema
by Jerome Cantor
Cells 2025, 14(10), 702; https://doi.org/10.3390/cells14100702 - 12 May 2025
Viewed by 402
Abstract
Emergent phenomena arise from the interaction of competing forces at multiple scale levels, resulting in complex outcomes that are not readily apparent from analyzing the individual components. Regarding biological systems, when a critical threshold is reached, a phase transition occurs, producing a spontaneous [...] Read more.
Emergent phenomena arise from the interaction of competing forces at multiple scale levels, resulting in complex outcomes that are not readily apparent from analyzing the individual components. Regarding biological systems, when a critical threshold is reached, a phase transition occurs, producing a spontaneous system reorganization characterized by recognizable molecular, microscopic, and macroscopic changes. The current paper explores the emergent phenomena underlying the pathogenesis of pulmonary emphysema, a disease characterized by progressive airspace enlargement. The competitive relationship between mechanical strain imposed on alveolar walls and a countervailing increase in elastin crosslinking to prevent alveolar wall rupture leads to airspace enlargement as the balance between these two processes shifts toward increasing lung injury. This phase transition is also accompanied by an accelerated release of peptide-free elastin-specific desmosine crosslinks as the mean alveolar wall diameter begins to increase, suggesting their potential use as a biomarker for the molecular changes that precede the development of pulmonary emphysema. Early detection of the disease would allow more timely therapeutic intervention involving multiple agents that address the complexities of emergent phenomena at different scale levels. Full article
Show Figures

Figure 1

Back to TopTop