Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (143)

Search Parameters:
Keywords = huntingtin protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7613 KB  
Article
Proteasomal Degradation of Mutant Huntingtin Exon1 Regulates Autophagy
by Austin Folger, Chuan Chen, Phasin Gonzalez, Sophia L. Owutey and Yanchang Wang
Cells 2026, 15(1), 68; https://doi.org/10.3390/cells15010068 - 30 Dec 2025
Viewed by 384
Abstract
Accumulation of misfolded proteins is implicated in neurodegenerative diseases. One of these is Huntington’s disease, which is caused by an expansion of trinucleotide (CAG) repeats in exon 1 of huntingtin gene (HTT). This expansion results in the production of mutant huntingtin [...] Read more.
Accumulation of misfolded proteins is implicated in neurodegenerative diseases. One of these is Huntington’s disease, which is caused by an expansion of trinucleotide (CAG) repeats in exon 1 of huntingtin gene (HTT). This expansion results in the production of mutant huntingtin exon1 protein (mHttEx1) containing polyglutamine tracks that is prone to cytotoxic aggregation. These mHttEx1 aggregates range from small soluble aggregates to large insoluble inclusion bodies. The mechanisms to clear mHttEx1 aggregates include ubiquitin-dependent proteasomal degradation and autophagy. For the proteasomal degradation of mHttEx1, ubiquitinated protein is first recognized by the Cdc48 complex for extraction and unfolding. For autophagy, mHttEx1 inclusion bodies are engulfed by an autophagosome, which fuses with the vacuole/lysosome and delivers cargo for vacuolar degradation. We name this autophagy IBophagy. In this study, we further show that the ubiquitination of mHttEx1 by the E3 ligase San1, its extraction and unfolding by the Cdc48 complex, and subsequent proteasomal degradation are all essential steps for mHttEx1 IBophagy in budding yeast, revealing a new layer of autophagy regulation and mHttEx1 cytotoxicity. Full article
(This article belongs to the Section Autophagy)
Show Figures

Graphical abstract

32 pages, 2329 KB  
Review
The Impact of Neurotoxin Proteins Trafficked by Primary Cilia and Extracellular Vesicles in Neurodegenerative Diseases
by Riley Danna, Soham Kondle, Orr Amar, Michayla Mabourakh, Gratiana Chen, Wala B. Fadol and Ashraf M. Mohieldin
Biology 2025, 14(12), 1787; https://doi.org/10.3390/biology14121787 - 15 Dec 2025
Viewed by 826
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and Huntington’s Disease (HD), share pathologic mechanisms including oxidative stress, mitochondrial dysfunction, and protein aggregation. However, they differ in age of onset and clinical progression. Emerging evidence highlights primary cilia (PC) as a [...] Read more.
Neurodegenerative diseases (NDDs), including Alzheimer’s Disease (AD), Parkinson’s Disease (PD), and Huntington’s Disease (HD), share pathologic mechanisms including oxidative stress, mitochondrial dysfunction, and protein aggregation. However, they differ in age of onset and clinical progression. Emerging evidence highlights primary cilia (PC) as a key regulator of neuronal aging and the progression of these diseases. Dysfunctional PC may impair key signaling pathways, such as Sonic Hedgehog (Shh) and Wnt, promote oxidative stress, mitochondrial damage, and epigenetic instability. PC may also influence intercellular communication by regulating the biogenesis of exosomes and modulating tunneling nanotube (TNT) formation, both of which propagate toxic proteins between neurons. Mechanistically, the regulation of ciliary length is disrupted in AD, which leads to ciliary dysfunction that interferes with signaling pathways and promotes the aggregation of amyloid-beta. This amyloid-beta is then propagated through TNTs and exosomes, spreading neuronal damage. In PD, the accumulation of alpha-synuclein (α-syn) also impairs cilia function, thereby compromising the cell’s response to oxidative stress. This results in the formation of abnormal TNTs and defective exosome-mediated clearance, ultimately contributing to neurodegeneration. Similarly, the mutant huntingtin protein aggregates within primary cilia in HD, morphologically disrupting them by obstructing intraflagellar transport. Damaged cilia are also associated with increased TNT formation and the exosomal release of toxic proteins, which leads to mitochondrial and epigenetic instability, ultimately promoting neuronal aging. Together, targeting ciliary function and its downstream regulation of TNTs and exosomes may provide a novel approach for slowing or halting disease progression across neurodegenerative diseases. Full article
Show Figures

Figure 1

26 pages, 1033 KB  
Review
Post-Translational Modifications of Huntingtin: Mechanistic Insights and Therapeutic Opportunities in Huntington’s Disease
by Xiaoxia Zhang, Shengping Zhang and Chuangui Wang
Int. J. Mol. Sci. 2025, 26(22), 10907; https://doi.org/10.3390/ijms262210907 - 11 Nov 2025
Viewed by 1160
Abstract
Huntingtin (HTT) is a large, ubiquitously expressed scaffold protein that participates in multiple cellular processes, including vesicular transport, transcriptional regulation, and energy metabolism. The mutant form of HTT (mHTT), characterized by an abnormal polyglutamine (polyQ) expansion in its N-terminal region, is the causative [...] Read more.
Huntingtin (HTT) is a large, ubiquitously expressed scaffold protein that participates in multiple cellular processes, including vesicular transport, transcriptional regulation, and energy metabolism. The mutant form of HTT (mHTT), characterized by an abnormal polyglutamine (polyQ) expansion in its N-terminal region, is the causative agent of Huntington’s disease (HD), a progressive neurodegenerative disorder. Current therapeutic efforts for HD have primarily focused on lowering HTT levels through gene silencing or promoting mHTT degradation. However, accumulating evidence suggests that post-translational modifications (PTMs) of HTT—such as phosphorylation, ubiquitination, acetylation, and SUMOylation—play pivotal roles in modulating HTT’s conformation, aggregation propensity, subcellular localization, and degradation pathways. These modifications regulate the balance between HTT’s physiological functions and pathological toxicity. Importantly, dysregulation of PTMs has been linked to mHTT accumulation and selective neuronal vulnerability, highlighting their relevance as potential therapeutic targets. A deeper understanding of how individual PTMs and their crosstalk regulate HTT homeostasis may not only provide mechanistic insights into HD pathogenesis but also uncover novel, more specific strategies for intervention. In this review, we summarize recent understanding on HTT PTMs, discuss their implications for disease modification, and outline critical knowledge gaps that remain to be addressed. Full article
(This article belongs to the Special Issue Molecular Insights on Drug Discovery, Design, and Treatment)
Show Figures

Figure 1

21 pages, 4677 KB  
Article
Methylene Blue Attenuates 3-Nitropropionic Acid-Induced Oxidative Stress and Mitochondrial Dysfunction in Striatal Cells: Therapeutic Implications in Huntington’s Disease Neuropathology
by Hannah K. Hale, Kayla M. Elias, Shawn Ho and Gunnar F. Kwakye
Int. J. Mol. Sci. 2025, 26(21), 10672; https://doi.org/10.3390/ijms262110672 - 1 Nov 2025
Cited by 1 | Viewed by 1366
Abstract
There are no disease-modifying treatments available for Huntington’s disease (HD), a neurodegenerative disease caused by a genetic mutation in the Huntingtin gene. Previous research suggests that disruptions in the bioenergetics of the mitochondria and increased oxidative stress are potential inducers of HD. Therapies [...] Read more.
There are no disease-modifying treatments available for Huntington’s disease (HD), a neurodegenerative disease caused by a genetic mutation in the Huntingtin gene. Previous research suggests that disruptions in the bioenergetics of the mitochondria and increased oxidative stress are potential inducers of HD. Therapies that enhance antioxidant pathways intend to target and attenuate the overproduction of reactive oxygen species associated with mitochondrial dysfunction. We have investigated the effect of Methylene Blue (MB) as a potential therapy for HD. MB is a small molecule demonstrated to exhibit neuroprotective effects in other neurodegenerative disease models, including Parkinson’s and Alzheimer’s, by attenuating the oxidative stress pathways implicated in their pathophysiology. We used an established striatal cell model of HD expressing wild-type (STHdhQ7/Q7) or mutant (STHdhQ111/Q111) HTT and a chemical inducer of HD, 3-Nitropropionic acid (3-NPA), to determine the HD-specific mechanisms regulated by 3 h of MB pre-treatment. Upon 24 h of exposure to 3-NPA, mutant HD cells exhibited a significant concentration-dependent decrease in cell survival and a concomitant increase in cell death compared to wild-type, confirming that 3-NPA exacerbates mutant HTT neurotoxicity. Examination of mitochondrial membrane potential and mitochondrial function in the striatal cells by JC-1 and ATP assays, respectively, revealed MB mediated neuroprotection against 3-NPA-induced reduction in mitochondrial activity. Immunoblotting analysis revealed that MB restores baseline expression of oxidative-stress-related proteins, including HO1 and p62, in both wild-type and mutant cells exposed to 3-NPA. Our findings establish a novel neuroprotective role of MB in both genetic and pharmacological models of HD, suggesting that MB might be a promising therapeutic candidate for altering the underlying pathophysiology of HD by improving mitochondrial function. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

24 pages, 909 KB  
Review
Revolutionizing Huntington’s Disease Treatment: Breakthroughs in AAV-Mediated Gene Therapy
by Pedram Moeini Gavgani and Mario García-Domínguez
Cells 2025, 14(19), 1514; https://doi.org/10.3390/cells14191514 - 28 Sep 2025
Viewed by 7863
Abstract
Huntington’s Disease (HD) is an inherited neurodegenerative condition caused by an expansion of CAG repeats in the Huntingtin (HTT) gene, leading to a toxic form of the HTT protein. Despite advances in understanding the disease and developing symptomatic treatments, effective therapies for modifying [...] Read more.
Huntington’s Disease (HD) is an inherited neurodegenerative condition caused by an expansion of CAG repeats in the Huntingtin (HTT) gene, leading to a toxic form of the HTT protein. Despite advances in understanding the disease and developing symptomatic treatments, effective therapies for modifying its progression remain limited. Among emerging and novel treatments for central nervous system (CNS) disorders, gene therapy (GT), particularly using adeno-associated virus (AAV)-mediated gene delivery, holds great promise. Numerous preclinical and clinical trials are exploring the benefits of AAVs for treating neurodegenerative and genetic diseases. However, while widely used and investigated in rare and genetic disease treatment, AAVs’ potential for HD treatment remains underexplored. The absence of a comprehensive collection of previous reports, advancements, and methodologies regarding exclusively AAV-mediated GT for HD is notable and prompted us to address this gap. The current review compiles the available and emerging information regarding the application of AAVs in HD therapy, outlines the promise of this approach, and highlights the necessity of conducting further studies to achieve efficient HD treatment. The authors hope that the current review will guide further research to unlock the full potential of AAVs in treating HD. Full article
Show Figures

Figure 1

42 pages, 1304 KB  
Review
Exploring Protein Misfolding and Aggregate Pathology in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Interventions
by Joel Theophilus Johnson, Fila Winifred Awosiminiala and Christian Kosisochukwu Anumudu
Appl. Sci. 2025, 15(18), 10285; https://doi.org/10.3390/app151810285 - 22 Sep 2025
Cited by 4 | Viewed by 4656
Abstract
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease are characterized by progressive neuronal loss, driven mainly by the misfolding, aggregation, and accumulation of each disease’s specific proteins. These pathogenic aggregates, including tau, α-synuclein, TDP-43, and huntingtin, disrupt cellular proteostasis and [...] Read more.
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease are characterized by progressive neuronal loss, driven mainly by the misfolding, aggregation, and accumulation of each disease’s specific proteins. These pathogenic aggregates, including tau, α-synuclein, TDP-43, and huntingtin, disrupt cellular proteostasis and initiate cascades of neuroinflammation, oxidative stress, mitochondrial dysfunction, and synaptic failure. While protein aggregation has been a long-recognized hallmark of these disorders, growing evidence points towards a more complex interplay of initial molecular pathways with defects in RNA processing, stress granule pathology, and cell-type-specific vulnerability. Notably, such events may manifest differentially with respect to sex and are further modulated by age-related loss of the protein quality control processes like the ubiquitin–proteasome pathway, autophagy–lysosome pathway, and molecular chaperones. This review synthesizes current insights into the structural and functional dynamics of protein aggregation and its significance for neuronal well-being. It highlights the role of post-translational modifications, prion-like transmission, and aggregation kinetics in the regulation of toxicity. The review further discusses promising therapeutic strategies centered on restoring proteostasis, including small molecules that inhibit aggregation, protein clearance pathway enhancers, immunotherapy, antioxidant therapy, and diagnostic prospects such as the identification of reliable molecular signatures in bodily fluids that can reflect pathological changes even before clinical symptoms emerge. Advancements in single-cell transcriptomics and multi-omics platforms, which are changing our understanding of disease onset and progression and opening avenues for precision medicine and personalized treatments, were also discussed. Ultimately, deciphering the molecular logic that distinguishes physiological from pathological protein assemblies and understanding how cellular systems fail to adapt under stress will be key to the development of effective, disease-modifying therapies for these debilitating disorders. Full article
Show Figures

Figure 1

18 pages, 2471 KB  
Article
Coiled-Coil Structures Mediate the Intercellular Propagation of Huntingtin
by Marco Bosica, Chiara Grasselli, Andrea Panfili, Franca Orsini and Luana Fioriti
Int. J. Mol. Sci. 2025, 26(17), 8162; https://doi.org/10.3390/ijms26178162 - 22 Aug 2025
Viewed by 927
Abstract
Huntington’s Disease (HD) originates from the expansion of a polyglutamine (PolyQ) tract in the huntingtin protein (Htt), which can assume a coiled-coil fold (Cc). We previously found that Cc structures mediate the aggregation and toxicity of polyQ Htt. Since polyQ Htt aggregates were [...] Read more.
Huntington’s Disease (HD) originates from the expansion of a polyglutamine (PolyQ) tract in the huntingtin protein (Htt), which can assume a coiled-coil fold (Cc). We previously found that Cc structures mediate the aggregation and toxicity of polyQ Htt. Since polyQ Htt aggregates were previously found to be internalized by cells, here we hypothesize that Cc structures might be implicated in the intercellular propagation of Htt aggregates. To test this hypothesis, we performed experiments using human cell lines expressing Htt proteins with different probabilities to acquire a Cc fold. We found that Htt with reduced Cc structures were released significantly less compared to Htt with intact Cc structures. We also found that Cc structures mediate the internalization of Htt proteins in recipient cells. Together, these results underline the importance of the Cc structure in the process of intercellular propagation of Htt polyQ aggregates and suggest that interfering with Cc formation might be a therapeutic strategy for HD. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

29 pages, 3210 KB  
Review
AI-Enhanced Transcriptomic Discovery of Druggable Targets and Repurposed Therapies for Huntington’s Disease
by Rodrigo Pinheiro Araldi, João Rafael Dias Pinto and Irina Kerkis
Brain Sci. 2025, 15(8), 865; https://doi.org/10.3390/brainsci15080865 - 14 Aug 2025
Cited by 1 | Viewed by 2206
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by progressive motor dysfunction, psychiatric disturbances, and cognitive decline. The pathophysiology of HD centers on a polyglutamine expansion in the huntingtin protein, which triggers widespread transcriptional dysregulation, impaired proteostasis, mitochondrial dysfunction, and excitotoxic [...] Read more.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by progressive motor dysfunction, psychiatric disturbances, and cognitive decline. The pathophysiology of HD centers on a polyglutamine expansion in the huntingtin protein, which triggers widespread transcriptional dysregulation, impaired proteostasis, mitochondrial dysfunction, and excitotoxic neuronal loss—most prominently within the striatum and cortex. Despite decades of research, disease-modifying therapies remain elusive. This review synthesizes how the emerging integration of translational bioinformatics, spotlighting artificial intelligence-driven transcriptomic analyses, has identified transcriptional signatures correlating with disease progression and therapeutic response. These integrative approaches hold promise for accelerating the bench-to-bedside translation of HD therapeutics, positioning AI-powered discovery as a frontier for overcoming the complexity of neurodegeneration. Full article
Show Figures

Figure 1

20 pages, 4809 KB  
Article
In Vitro Efficacy of PEI-Derived Lipopolymers in Silencing of Toxic Proteins in a Neuronal Model of Huntington’s Disease
by Luis C. Morales, Luv Modi, Saba Abbasi Dezfouli, Amarnath Praphakar Rajendran, Remant Kc, Vaibhavi Kadam, Simonetta Sipione and Hasan Uludağ
Pharmaceutics 2025, 17(6), 726; https://doi.org/10.3390/pharmaceutics17060726 - 30 May 2025
Viewed by 1495
Abstract
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated [...] Read more.
Background: Huntington’s Disease (HD) is a neurodegenerative disorder caused by an abnormal extension of a CAG repeat stretch located in the exon 1 of the HTT (IT15) gene, leading to production of a mutated and misfolded Huntingtin protein (muHTT) with an abnormally elongated polyglutamine (polyQ) region. This mutation causes muHTT to oligomerize and aggregate in the brain, particularly in the striatum and cortex, causing alterations in intracellular trafficking, caspase activation, and ganglioside metabolism, ultimately leading to neuronal damage and death and causing signs and symptoms such as chorea and cognitive dysfunction. Currently, there is no available cure for HD patients; hence, there is a strong need to look for effective therapies. Methods: This study aims to investigate the efficacy of siRNA-containing nano-engineered lipopolymers in selectively silencing the HTT expression in a neuronal model expressing a chimeric protein formed by the human mutated exon 1 of the HTT gene, tagged with GFP. Toxicity of lipopolymers was assessed using MTT assay, while efficacy of silencing was monitored using qRT-PCR, as well as Western blotting/flow cytometry. Changes in muHTT-GFP aggregation were observed using fluorescence microscopy and image analyses. Results: Here, we show that engineered lipopolymers can be used as delivery vehicles for specific siRNAs, decreasing the transcription of the mutated gene, as well as the muHTT protein production and aggregation, with Leu-Fect C being the most effective candidate amongst the assessed lipopolymers. Conclusions: Our findings have profound implications for genetic disorder therapies, highlighting the potential of nano-engineered materials for silencing mutant genes and facilitating molecular transfection across cellular barriers. This successful in vitro study paves the way for future in vivo investigations with preclinical models, offering hope for previously considered incurable diseases such as HD. Full article
Show Figures

Figure 1

22 pages, 5584 KB  
Article
Recovery of Lysosomal Acidification and Autophagy Flux by Attapulgite Nanorods: Therapeutic Potential for Lysosomal Disorders
by Yuanjing Hao, Xinru Fan, Xiaodan Huang, Zhaoying Li, Zhiyuan Jing, Guilong Zhang, Yuxue Xu, Na Zhang and Pengfei Wei
Biomolecules 2025, 15(5), 728; https://doi.org/10.3390/biom15050728 - 16 May 2025
Cited by 3 | Viewed by 2143
Abstract
Dysfunction of the lysosome and autophagy–lysosome pathway is closely associated with various diseases, such as neurodegenerative diseases, non-alcoholic fatty liver disease (NAFLD), etc. Additionally, chloroquine is a clinically widely used drug for treating malaria and autoimmune diseases, but long-term or high-dose administration may [...] Read more.
Dysfunction of the lysosome and autophagy–lysosome pathway is closely associated with various diseases, such as neurodegenerative diseases, non-alcoholic fatty liver disease (NAFLD), etc. Additionally, chloroquine is a clinically widely used drug for treating malaria and autoimmune diseases, but long-term or high-dose administration may lead to significant toxic side effects. Attapulgite (ATT), a natural nanomaterial with excellent adsorption capacity and biocompatibility, herein demonstrated a novel biological function in regulating the lysosomal and autophagy–lysosome pathway. ATT could be effectively internalized into lysosome-related acidic compartments. Further study revealed that ATT could restore lysosomal pH, activate cathepsin D, alleviate autophagy blockage in chloroquine-treated cells, and reduce chloroquine-elicited cell death. In a cell model related to Huntington’s disease, treatment with ATT reinforced the degradation of the mutant huntingtin proteins by increasing cathepsin D maturation and autophagy flux. ATT could also promote lipid droplet clearance in hepatocytes with palmitic acid-induced steatosis, reduce hepatic lipid accumulation, and improve fasting blood glucose in high-fat-diet-induced NAFLD mice. These findings establish ATT as a lysosomal modulator, providing a foundation for its therapeutic potential in mitigating the adverse effects associated with long-term chloroquine use, especially improving neurodegenerative and metabolic disorders. Full article
(This article belongs to the Special Issue Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

25 pages, 6758 KB  
Article
Dopamine Receptor D3 Induces Transient, mTORC1-Dependent Autophagy That Becomes Persistent, AMPK-Mediated, and Neuroprotective in Experimental Models of Huntington’s Disease
by Diego Luis-Ravelo, Felipe Fumagallo-Reading, Alejandro Febles-Casquero, Jonathan Lopez-Fernandez, Daniel J. Marcellino and Tomas Gonzalez-Hernandez
Cells 2025, 14(9), 652; https://doi.org/10.3390/cells14090652 - 29 Apr 2025
Cited by 1 | Viewed by 1758
Abstract
Huntington disease’s (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine region (PolyQ) within the huntingtin protein (HTT). Mutated huntingtin (mHTT) is cytotoxic, particularly for striatal medium spiny neurons (MSNs), whose degeneration is the hallmark of HD. Autophagy inducers currently [...] Read more.
Huntington disease’s (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine region (PolyQ) within the huntingtin protein (HTT). Mutated huntingtin (mHTT) is cytotoxic, particularly for striatal medium spiny neurons (MSNs), whose degeneration is the hallmark of HD. Autophagy inducers currently available promote the clearance of toxic proteins. However, due to their low selectivity and the possibility that prolonged autophagy hampers essential processes in unaffected cells, researchers have questioned their benefits in neurodegenerative diseases. Since MSNs express dopamine receptors D2 (DRD2) and D3 (DRD3) and DRD2/DRD3 agonists may activate autophagy, here, we explored how healthy and mHTT-challenged cells respond to prolonged DRD2/DRD3 agonist treatment. Autophagy activation and its effects on mHTT/polyQ clearance were studied in R6/1 mice (a genetic model of HD), their wild-type littermates, and DRD2- and DRD3-HEK cells expressing a pathogenic (Q74) and a non-pathogenic (Q23) polyQ fragment of mHTT treated with the DRD2/DRD3 agonist pramipexole. Two forms of DRD3-mediated autophagy were found: a transient mTORC1-dependent in WT mice and Q23-DRD3-HEK cells and a persistent AMPK-ULK1-activated in R6/1 mice and Q74-DRD3-HEK cells. This also promoted a robust clearance of soluble mHTT/polyQ and neuroprotection in striatal neurons and DRD3-HEK cells. The findings indicate that DRD3-induced autophagy may be a safe, disease-modifying intervention in HD patients. Full article
(This article belongs to the Special Issue Molecular Therapeutic Advances for Neurodegenerative Diseases)
Show Figures

Figure 1

20 pages, 4167 KB  
Article
Examination of Anti-Inflammatory Effects After Propionate Supplementation in the R6/2 Mouse Model of Huntington’s Disease
by Jennifer König, Alina Blusch, Oluwaseun Fatoba, Ralf Gold, Carsten Saft and Gisa Ellrichmann-Wilms
Int. J. Mol. Sci. 2025, 26(7), 3318; https://doi.org/10.3390/ijms26073318 - 2 Apr 2025
Cited by 3 | Viewed by 2002
Abstract
Huntington’s disease is a progressive, untreatable neurodegenerative disorder caused by a mutation in the Huntingtin gene. Next to neurodegeneration, altered immune activation is involved in disease progression. Since central nervous system inflammation and dysfunction of immune cells are recognized as driving characteristics, immunomodulation [...] Read more.
Huntington’s disease is a progressive, untreatable neurodegenerative disorder caused by a mutation in the Huntingtin gene. Next to neurodegeneration, altered immune activation is involved in disease progression. Since central nervous system inflammation and dysfunction of immune cells are recognized as driving characteristics, immunomodulation might represent an additional therapeutic strategy. Short-chain fatty acids were known to have immunomodulatory effects in neuroinflammatory diseases, such as multiple sclerosis. In this study, R6/2 mice were treated daily with 150 mM propionate. Survival range, body weight, and motor abilities were monitored. In striatal and cortical samples, neuronal survival was analyzed by immunofluorescence staining of NeuN-positive cells and expression levels of BDNF mRNA by real-time polymerase chain reaction. As inflammatory marker TNFα mRNA and IL-6 mRNA were quantified by rtPCR, iNOS-expressing cells were counted in immunologically stained brain slides. Microglial activation was evaluated by immunofluorescent staining of IBA1-positive cells and total IBA1 protein by Western Blot, in addition, SPI1 mRNA expression was quantified by rtPCR. Except for clasping behavior, propionate treatment did neither improve the clinical course nor mediated neuronal protection in R6/2 mice. Yet there was a mild anti-inflammatory effect in the CNS, with (i) reduction in SPI1-mRNA levels, (ii) reduced iNOS positive cells in the motor cortex, and (iii) normalized TNFα-mRNA in the motor cortex of propionate-treated R6/2 mice. Thus, Short-chain fatty acids, as an environmental factor in the diet, may slightly alleviate symptoms by down-regulating inflammatory factors in the central nervous system. However, they cannot prevent clinical disease progression or neuronal loss. Full article
Show Figures

Figure 1

22 pages, 2757 KB  
Review
Antioxidant and Anti-Inflammatory Defenses in Huntington’s Disease: Roles of NRF2 and PGC-1α, and Therapeutic Strategies
by Francesco D’Egidio, Elvira Qosja, Fabrizio Ammannito, Skender Topi, Michele d’Angelo, Annamaria Cimini and Vanessa Castelli
Life 2025, 15(4), 577; https://doi.org/10.3390/life15040577 - 1 Apr 2025
Cited by 7 | Viewed by 3287
Abstract
Huntington’s disease (HD) is a detrimental neurodegenerative disease caused by the expansion of a CAG triplet in the HTT gene. This mutation leads to the production of mutant Huntingtin (Htt) protein with toxic gain-of-function. The mHtt is responsible in several ways for the [...] Read more.
Huntington’s disease (HD) is a detrimental neurodegenerative disease caused by the expansion of a CAG triplet in the HTT gene. This mutation leads to the production of mutant Huntingtin (Htt) protein with toxic gain-of-function. The mHtt is responsible in several ways for the establishment of an intricate pathogenetic scenario in affected cells, particularly in HD neurons. Among the features of HD, oxidative stress plays a relevant role in the progression of the disease at the cellular level. Mitochondrial dysfunction, bioenergetic deficits, Reactive Oxygen Species (ROS) production, neuroinflammation, and general reduction of antioxidant levels are all involved in the promotion of a toxic oxidative environment, eventually causing cell death. Nonetheless, neuronal cells exert antioxidant molecules to build up defense mechanisms. Key components of these defensive mechanisms are the nuclear factor erythroid 2-related factor 2 (NRF2) and peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC-1α). Thus, this review aims to describe the involvement of oxidative stress in HD by exploring the roles of NRF2 and PGC-1α, crucial actors in this play. Finally, antioxidant therapeutic strategies targeting such markers are discussed. Full article
(This article belongs to the Special Issue Neuroinflammation in Huntington’s Disease: Detrimental Crosstalk)
Show Figures

Figure 1

16 pages, 1494 KB  
Article
Huntingtin-Interacting Protein 1-Related (HIP1R) Regulates Rheumatoid Arthritis Synovial Fibroblast Invasiveness
by Teresina Laragione, Carolyn Harris and Percio S. Gulko
Cells 2025, 14(7), 483; https://doi.org/10.3390/cells14070483 - 23 Mar 2025
Cited by 1 | Viewed by 1785
Abstract
Huntingtin-interacting protein 1-related (HIP1R) shares some function similarities with HIP1, and HIP1 regulates arthritis and RA fibroblast-like synoviocytes (FLS) invasiveness. Therefore, we hypothesized that HIP1R might be involved in the regulation of FLS phenotypes and molecular processes relevant to RA. siRNA was used [...] Read more.
Huntingtin-interacting protein 1-related (HIP1R) shares some function similarities with HIP1, and HIP1 regulates arthritis and RA fibroblast-like synoviocytes (FLS) invasiveness. Therefore, we hypothesized that HIP1R might be involved in the regulation of FLS phenotypes and molecular processes relevant to RA. siRNA was used to knockdown HIP1R, HIP1 or control in RA FLS, followed by cell studies for invasion in Matrigel, migration, proliferation, and adhesion. RNA was sequenced and analyzed. HIP1R knockdown significantly reduced RA FLS invasiveness and migration (p < 0.05). The DEGs in siRNA HIP1R had an enrichment for GO processes “astrocyte and glial cell projection”, “small GTPase signaling”, and “PDGFR signaling”. The most significantly DEGs had decreased expression in siRNA HIP1R and included AKT1S1, GABBR2, GPR56, and TXNDC12. siRNA HIP1 RA FLS had an enrichment for the “Rap1 signaling pathway” and “Growth factor receptor binding”. The most significantly DEGs in HIP1 siRNA included FGF2, PGF, and SLC39A8. HIP1R and HIP1 DEG lists had a greater than expected number of similar genes (p = 0.0015), suggesting that, despite the major differences detected, both have partially overlapping functions in RA FLS. The most significantly DEGs in both HIP1R and HIP1 analyses are involved in cancer cell behaviors and outcomes. HIP1R is a new gene implicated in RA FLS invasiveness and migration, and regulates unique pathways and cell processes relevant to both RA as well as cancer biology. Our study provides new insight into processes implicated in FLS invasiveness, which is relevant for joint damage in RA, and identify new potential gene targets for FLS-specific treatments. Full article
(This article belongs to the Section Cell Motility and Adhesion)
Show Figures

Figure 1

19 pages, 15587 KB  
Article
Long-Term Engraftment of Cryopreserved Human Neurons for In Vivo Disease Modeling in Neurodegenerative Disease
by David J. Marmion, Peter Deng, Benjamin M. Hiller, Rachel L. Lewis, Lisa J. Harms, David L. Cameron, Jan A. Nolta, Jeffrey H. Kordower, Kyle D. Fink and Dustin R. Wakeman
Biology 2025, 14(2), 217; https://doi.org/10.3390/biology14020217 - 19 Feb 2025
Viewed by 2054
Abstract
The transplantation of human neurons into the central nervous system (CNS) offers transformative opportunities for modeling neurodegenerative diseases in vivo. This study evaluated the survival, integration, and functional properties of cryopreserved forebrain GABAergic neurons (iGABAs) derived from human induced pluripotent stem cells (iPSCs) [...] Read more.
The transplantation of human neurons into the central nervous system (CNS) offers transformative opportunities for modeling neurodegenerative diseases in vivo. This study evaluated the survival, integration, and functional properties of cryopreserved forebrain GABAergic neurons (iGABAs) derived from human induced pluripotent stem cells (iPSCs) across three species used in translational research. iGABAs were stereotactically injected into the striatum of Sprague–Dawley rats, immunodeficient RNU rats, R6/2 Huntington’s disease (HD) mice, wild-type controls, and Cynomolgus monkeys. Post-transplantation, long-term assessments revealed robust neuronal survival, extensive neurite outgrowth, and integration with host CNS environments. In immunodeficient rats, iGABAs innervated the neuraxis, extending from the prefrontal cortex to the midbrain, while maintaining mature neuronal phenotypes without uncontrolled proliferation. Similarly, grafts in nonhuman primates showed localized survival and stable phenotype at one month. In the neurodegenerative milieu of HD mice, iGABAs survived up to six months, projecting into the host striatum and white matter, with evidence of mutant huntingtin aggregates localized within the graft, indicating pathological protein transfer. These findings underscore the utility of cryopreserved iGABAs as a reproducible, scalable model for disease-specific CNS investigations and mechanistic studies of proteinopathic propagation. This work establishes a critical platform for studying neurodegenerative diseases and developing therapeutic interventions. Full article
(This article belongs to the Special Issue Stem Cells in Neurological Disorders: Challenges and Opportunities)
Show Figures

Figure 1

Back to TopTop