Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (403)

Search Parameters:
Keywords = human-machine collaboration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2267 KiB  
Article
Mechanical Properties of Collagen Implant Used in Neurosurgery Towards Industry 4.0/5.0 Reflected in ML Model
by Marek Andryszczyk, Izabela Rojek and Dariusz Mikołajewski
Appl. Sci. 2025, 15(15), 8630; https://doi.org/10.3390/app15158630 (registering DOI) - 4 Aug 2025
Abstract
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic [...] Read more.
Collagen implants in neurosurgery are widely used due to their biocompatibility, biodegradability, and ability to support tissue regeneration, but their mechanical properties, such as low tensile strength and susceptibility to enzymatic degradation, remain challenging. Current technologies are improving these implants through cross-linking, synthetic reinforcements, and advanced manufacturing techniques such as 3D bioprinting to improve durability and predictability. Industry 4.0 is contributing to this by automating production, using data analytics and machine learning to optimize implant properties and ensure quality control. In Industry 5.0, the focus is shifting to personalization, enabling the creation of patient-specific implants through human–machine collaboration and advanced biofabrication. eHealth integrates digital monitoring systems, enabling real-time tracking of implant healing and performance to inform personalized care. Despite progress, challenges such as cost, material property variability, and scalability for mass production remain. The future lies in smart biomaterials, AI-driven design, and precision biofabrication, which could mean the possibility of creating more effective, accessible, and patient-specific collagen implants. The aim of this article is to examine the current state and determine the prospects for the development of mechanical properties of collagen implant used in neurosurgery towards Industry 4.0/5.0, including ML model. Full article
Show Figures

Figure 1

25 pages, 953 KiB  
Article
Command Redefined: Neural-Adaptive Leadership in the Age of Autonomous Intelligence
by Raul Ionuț Riti, Claudiu Ioan Abrudan, Laura Bacali and Nicolae Bâlc
AI 2025, 6(8), 176; https://doi.org/10.3390/ai6080176 - 1 Aug 2025
Viewed by 190
Abstract
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will [...] Read more.
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will collaborate with learning algorithms in the Neural Adaptive Artificial Intelligence Leadership Model, which is informed by the transformational literature on leadership and socio-technical systems, as well as the literature on algorithmic governance. We assessed the model with thirty in-depth interviews, system-level traces of behavior, and a verified survey, and we explored six hypotheses that relate to algorithmic delegation and ethical oversight, as well as human judgment versus machine insight in terms of agility and performance. We discovered that decisions are made quicker, change is more effective, and interaction is more vivid where agile practices and good digital understanding exist, and statistical tests propose that human flexibility and definite governance augment those benefits as well. It is single-industry research that contains self-reported measures, which causes research to be limited to other industries that contain more objective measures. Practitioners are provided with a practical playbook on how to make algorithmic jobs meaningful, introduce moral fail-safes, and build learning feedback to ensure people and machines are kept in line. Socially, the practice is capable of minimizing bias and establishing inclusion by visualizing accountability in the code and practice. Filling the gap between the theory of leadership and the reality of algorithms, the study provides a model of intelligent systems leading in organizations that can be reproduced. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
26 pages, 27333 KiB  
Article
Gest-SAR: A Gesture-Controlled Spatial AR System for Interactive Manual Assembly Guidance with Real-Time Operational Feedback
by Naimul Hasan and Bugra Alkan
Machines 2025, 13(8), 658; https://doi.org/10.3390/machines13080658 - 27 Jul 2025
Viewed by 269
Abstract
Manual assembly remains essential in modern manufacturing, yet the increasing complexity of customised production imposes significant cognitive burdens and error rates on workers. Existing Spatial Augmented Reality (SAR) systems often operate passively, lacking adaptive interaction, real-time feedback and a control system with gesture. [...] Read more.
Manual assembly remains essential in modern manufacturing, yet the increasing complexity of customised production imposes significant cognitive burdens and error rates on workers. Existing Spatial Augmented Reality (SAR) systems often operate passively, lacking adaptive interaction, real-time feedback and a control system with gesture. In response, we present Gest-SAR, a SAR framework that integrates a custom MediaPipe-based gesture classification model to deliver adaptive light-guided pick-to-place assembly instructions and real-time error feedback within a closed-loop interaction instance. In a within-subject study, ten participants completed standardised Duplo-based assembly tasks using Gest-SAR, paper-based manuals, and tablet-based instructions; performance was evaluated via assembly cycle time, selection and placement error rates, cognitive workload assessed by NASA-TLX, and usability test by post-experimental questionnaires. Quantitative results demonstrate that Gest-SAR significantly reduces cycle times with an average of 3.95 min compared to Paper (Mean = 7.89 min, p < 0.01) and Tablet (Mean = 6.99 min, p < 0.01). It also achieved 7 times less average error rates while lowering perceived cognitive workload (p < 0.05 for mental demand) compared to conventional modalities. In total, 90% of the users agreed to prefer SAR over paper and tablet modalities. These outcomes indicate that natural hand-gesture interaction coupled with real-time visual feedback enhances both the efficiency and accuracy of manual assembly. By embedding AI-driven gesture recognition and AR projection into a human-centric assistance system, Gest-SAR advances the collaborative interplay between humans and machines, aligning with Industry 5.0 objectives of resilient, sustainable, and intelligent manufacturing. Full article
(This article belongs to the Special Issue AI-Integrated Advanced Robotics Towards Industry 5.0)
Show Figures

Figure 1

31 pages, 8111 KiB  
Article
Design and Experiment of a Greenhouse Autonomous Following Robot Based on LQR–Pure Pursuit
by Yibin Hu, Jieyu Xian, Maohua Xiao, Qianzhe Cheng, Tai Chen, Yejun Zhu and Guosheng Geng
Agriculture 2025, 15(15), 1615; https://doi.org/10.3390/agriculture15151615 - 25 Jul 2025
Viewed by 202
Abstract
Accurate path tracking is crucial for greenhouse robots operating in complex environments. However, traditional curve tracking algorithms suffer from low tracking accuracy and large tracking errors. This study aim to develop a high precision greenhouse autonomous following robot, use ANSYS Workbench 19.2 to [...] Read more.
Accurate path tracking is crucial for greenhouse robots operating in complex environments. However, traditional curve tracking algorithms suffer from low tracking accuracy and large tracking errors. This study aim to develop a high precision greenhouse autonomous following robot, use ANSYS Workbench 19.2 to perform stress and deformation analysis on the robot, then propose a path tracking method based on Linear Quadratic Regulator (LQR) to optimize the pure tracking to ensure high precision curved path tracking for curved tracking, finally perform a comparative simulation analysis in MATLAB R2024a. The structural analysis shows that the maximum equivalent stress is 196 MPa and the maximum deformation is 1.73 mm under a load of 600 kg, which are within the yield limit of 45 steel. Simulation results demonstrate that at a speed of 2 m/s, the conventional Pure Pursuit algorithm incurs a maximum lateral error of 0.3418 m and a heading error of 0.2669 rad under high curvature conditions. By contrast, the LQR–Pure Pursuit algorithm reduces the peak lateral error to 0.0904 m and confines the heading error to approximately 0.0217 rad. Experimental validation yielded an RMSE of 0.018 m for lateral error and 0.016 m for heading error. These findings confirm that the designed robot can sustain its payload under most operating scenarios and that the proposed tracking strategy effectively suppresses deviations and improves path-following accuracy. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 3632 KiB  
Article
A Semantic Web and IFC-Based Framework for Automated BIM Compliance Checking
by Lu Jia, Maokang Chen, Chen Chen and Yanfeng Jin
Buildings 2025, 15(15), 2633; https://doi.org/10.3390/buildings15152633 - 25 Jul 2025
Viewed by 295
Abstract
In the architectural design phase, the inspection of design deliverables is critical, yet traditional manual checking methods are time-consuming, labor-intensive, and inefficient, with numerous drawbacks. With the development of BIM technology, automated rule compliance checking has become a trend. This paper presents a [...] Read more.
In the architectural design phase, the inspection of design deliverables is critical, yet traditional manual checking methods are time-consuming, labor-intensive, and inefficient, with numerous drawbacks. With the development of BIM technology, automated rule compliance checking has become a trend. This paper presents a method combining semantic web technology and IFC data to enhance human–machine collaborative inspection capabilities. First, a five-step process integrated with domain specifications is designed to construct a building object ontology, covering most architectural objects in the AEC domain. Second, a set of mapping rules is developed based on the expression mechanisms of IFC entities to establish a semantic bridge between IfcOWL and the building object ontology. Then, by analyzing regulatory codes, query rule templates for major constraint types are developed using semantic web SPARQL. Finally, the feasibility of the method is validated through a case study based on the Jena framework. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

27 pages, 4093 KiB  
Article
Antimicrobial Resistance in Commensal Bacteria from Large-Scale Chicken Flocks in the Dél-Alföld Region of Hungary
by Ádám Kerek, Ábel Szabó, Franciska Barnácz, Bence Csirmaz, László Kovács and Ákos Jerzsele
Vet. Sci. 2025, 12(8), 691; https://doi.org/10.3390/vetsci12080691 - 24 Jul 2025
Viewed by 538
Abstract
Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs [...] Read more.
Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs and vectors of resistance genes. Objectives: This study aimed to assess the AMR profiles of bacterial strains isolated from industrial chicken farms in the Dél-Alföld region of Hungary, providing region-specific insights into resistance dynamics. Methods: A total of 145 isolates, including Staphylococcus spp., Enterococcus spp., and E. coli isolates, were subjected to minimum inhibitory concentration (MIC) testing against 15 antimicrobial agents, following Clinical and Laboratory Standards Institute (CLSI) guidelines. Advanced multivariate statistics, machine learning algorithms, and network-based approaches were employed to analyze resistance patterns and co-resistance associations. Results Multidrug resistance (MDR) was identified in 43.9% of Staphylococcus spp. isolates, 28.8% of Enterococcus spp. isolates, and 75.6% of E. coli isolates. High levels of resistance to florfenicol, enrofloxacin, and potentiated sulfonamides were observed, whereas susceptibility to critical antimicrobials such as imipenem and vancomycin remained largely preserved. Discussion: Our findings underscore the necessity of implementing region-specific AMR monitoring programs and strengthening multidisciplinary collaboration within the “One Health” framework with proper animal hygiene and biosecurity measures to limit the spread of antimicrobial resistance and protect both animal and human health. Full article
Show Figures

Graphical abstract

19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 297
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

37 pages, 1823 KiB  
Review
Mind, Machine, and Meaning: Cognitive Ergonomics and Adaptive Interfaces in the Age of Industry 5.0
by Andreea-Ruxandra Ioniță, Daniel-Constantin Anghel and Toufik Boudouh
Appl. Sci. 2025, 15(14), 7703; https://doi.org/10.3390/app15147703 - 9 Jul 2025
Viewed by 825
Abstract
In the context of rapidly evolving industrial ecosystems, the human–machine interaction (HMI) has shifted from basic interface control toward complex, adaptive, and human-centered systems. This review explores the multidisciplinary foundations and technological advancements driving this transformation within Industry 4.0 and the emerging paradigm [...] Read more.
In the context of rapidly evolving industrial ecosystems, the human–machine interaction (HMI) has shifted from basic interface control toward complex, adaptive, and human-centered systems. This review explores the multidisciplinary foundations and technological advancements driving this transformation within Industry 4.0 and the emerging paradigm of Industry 5.0. Through a comprehensive synthesis of the recent literature, we examine the cognitive, physiological, psychological, and organizational factors that shape operator performance, safety, and satisfaction. A particular emphasis is placed on ergonomic interface design, real-time physiological sensing (e.g., EEG, EMG, and eye-tracking), and the integration of collaborative robots, exoskeletons, and extended reality (XR) systems. We further analyze methodological frameworks such as RULA, OWAS, and Human Reliability Analysis (HRA), highlighting their digital extensions and applicability in industrial contexts. This review also discusses challenges related to cognitive overload, trust in automation, and the ethical implications of adaptive systems. Our findings suggest that an effective HMI must go beyond usability and embrace a human-centric philosophy that aligns technological innovation with sustainability, personalization, and resilience. This study provides a roadmap for researchers, designers, and practitioners seeking to enhance interaction quality in smart manufacturing through cognitive ergonomics and intelligent system integration. Full article
Show Figures

Figure 1

21 pages, 2243 KiB  
Article
An Adaptive Weight Collaborative Driving Strategy Based on Stackelberg Game Theory
by Zhongjin Zhou, Jingbo Zhao, Jianfeng Zheng and Haimei Liu
World Electr. Veh. J. 2025, 16(7), 386; https://doi.org/10.3390/wevj16070386 - 9 Jul 2025
Viewed by 197
Abstract
In response to the problem of cooperative steering control between drivers and intelligent driving systems, a master–slave Game-Based human–machine cooperative steering control framework with adaptive weight fuzzy decision-making is constructed. Firstly, within this framework, a dynamic weight approach is established. This approach takes [...] Read more.
In response to the problem of cooperative steering control between drivers and intelligent driving systems, a master–slave Game-Based human–machine cooperative steering control framework with adaptive weight fuzzy decision-making is constructed. Firstly, within this framework, a dynamic weight approach is established. This approach takes into account the driver’s state, traffic environment risks, and the vehicle’s global control deviation to adjust the driving weights between humans and machines. Secondly, the human–machine cooperative relationship with unconscious competition is characterized as a master–slave game interaction. The cooperative steering control under the master–slave game scenario is then transformed into an optimization problem of model predictive control. Through theoretical derivation, the optimal control strategies for both parties at equilibrium in the human–machine master–slave game are obtained. Coordination of the manipulation actions of the driver and the intelligent driving system is achieved by balancing the master–slave game. Finally, different types of drivers are simulated by varying the parameters of the driver models. The effectiveness of the proposed driving weight allocation scheme was validated on the constructed simulation test platform. The results indicate that the human–machine collaborative control strategy can effectively mitigate conflicts between humans and machines. By giving due consideration to the driver’s operational intentions, this strategy reduces the driver’s workload. Under high-risk scenarios, while ensuring driving safety and providing the driver with a satisfactory experience, this strategy significantly enhances the stability of vehicle motion. Full article
Show Figures

Figure 1

26 pages, 5672 KiB  
Review
Development Status and Trend of Mine Intelligent Mining Technology
by Zhuo Wang, Lin Bi, Jinbo Li, Zhaohao Wu and Ziyu Zhao
Mathematics 2025, 13(13), 2217; https://doi.org/10.3390/math13132217 - 7 Jul 2025
Viewed by 831
Abstract
Intelligent mining technology, as the core driving force for the digital transformation of the mining industry, integrates cyber-physical systems, artificial intelligence, and industrial internet technologies to establish a “cloud–edge–end” collaborative system. In this paper, the development trajectory of intelligent mining technology has been [...] Read more.
Intelligent mining technology, as the core driving force for the digital transformation of the mining industry, integrates cyber-physical systems, artificial intelligence, and industrial internet technologies to establish a “cloud–edge–end” collaborative system. In this paper, the development trajectory of intelligent mining technology has been systematically reviewed, which has gone through four stages: stand-alone automation, integrated automation and informatization, digital and intelligent initial, and comprehensive intelligence. And the current development status of “cloud–edge–end” technologies has been reviewed: (i) The end layer achieves environmental state monitoring and precise control through a multi-source sensing network and intelligent equipment. (ii) The edge layer leverages 5G and edge computing to accomplish real-time data processing, 3D dynamic modeling, and safety early warning. (iii) The cloud layer realizes digital planning and intelligent decision-making, based on the industrial Internet platform. The three-layer collaboration forms a “perception–analysis–decision–execution” closed loop. Currently, there are still many challenges in the development of the technology, including the lack of a standardization system, the bottleneck of multi-source heterogeneous data fusion, the lack of a cross-process coordination of the equipment, and the shortage of interdisciplinary talents. Accordingly, this paper focuses on future development trends from four aspects, providing systematic solutions for a safe, efficient, and sustainable mining operation. Technological evolution will accelerate the formation of an intelligent ecosystem characterized by “standard-driven, data-empowered, equipment-autonomous, and human–machine collaboration”. Full article
(This article belongs to the Special Issue Mathematical Modeling and Analysis in Mining Engineering)
Show Figures

Figure 1

21 pages, 2028 KiB  
Article
Formation of Human-Machine Trust in Smart Construction: Influencing Factors and Mechanisms
by Yongliang Deng, Kewei Li, Wenhui Hu, Lei Zhang and Yutong Gao
Buildings 2025, 15(13), 2332; https://doi.org/10.3390/buildings15132332 - 3 Jul 2025
Viewed by 324
Abstract
With the rapid advancement of digital technologies, smart construction has emerged as a transformative approach within the construction industry. Central to the success of human-machine collaboration is human-machine trust, which plays a critical role in safety, performance, and the adoption of intelligent systems. [...] Read more.
With the rapid advancement of digital technologies, smart construction has emerged as a transformative approach within the construction industry. Central to the success of human-machine collaboration is human-machine trust, which plays a critical role in safety, performance, and the adoption of intelligent systems. This study develops and empirically tests a comprehensive structural equation model to explore the formation mechanism of human-machine trust in smart construction. Drawing on the three-domain framework, five primary constructs—role cognition; controllability; technology attachment; equipment reliability; and autonomy—are identified across individual and system dimensions. The model also incorporates trust propensity and task complexity as contextual moderators. A questionnaire survey of 288 construction professionals in China was conducted, and partial least squares structural equation modelling (PLS-SEM) was employed to analyze the data. The results confirm that all five constructs significantly and positively influence human-machine trust, with role cognition and autonomy having the strongest effects. Furthermore, trust propensity positively moderates the impact of individual traits, while task complexity negatively moderates the effect of equipment characteristics on trust formation. These findings provide valuable theoretical insights and practical guidance for the design of trustworthy intelligent systems, which can foster safer and more effective human-machine collaboration in smart construction. Full article
(This article belongs to the Special Issue Automation and Intelligence in the Construction Industry)
Show Figures

Figure 1

32 pages, 2945 KiB  
Article
SelfLoc: Robust Self-Supervised Indoor Localization with IEEE 802.11az Wi-Fi for Smart Environments
by Hamada Rizk and Ahmed Elmogy
Electronics 2025, 14(13), 2675; https://doi.org/10.3390/electronics14132675 - 2 Jul 2025
Viewed by 529
Abstract
Accurate and scalable indoor localization is a key enabler of intelligent automation in smart environments and industrial systems. In this paper, we present SelfLoc, a self-supervised indoor localization system that combines IEEE 802.11az Round Trip Time (RTT) and Received Signal Strength Indicator [...] Read more.
Accurate and scalable indoor localization is a key enabler of intelligent automation in smart environments and industrial systems. In this paper, we present SelfLoc, a self-supervised indoor localization system that combines IEEE 802.11az Round Trip Time (RTT) and Received Signal Strength Indicator (RSSI) data to achieve fine-grained positioning using commodity Wi-Fi infrastructure. Unlike conventional methods that depend heavily on labeled data, SelfLoc adopts a contrastive learning framework to extract spatially discriminative and temporally consistent representations from unlabeled wireless measurements. The system integrates a dual-contrastive strategy: temporal contrasting captures sequential signal dynamics essential for tracking mobile agents, while contextual contrasting promotes spatial separability by ensuring that signal representations from distinct locations remain well-differentiated, even under similar signal conditions or environmental symmetry. To this end, we design signal-specific augmentation techniques for the physical properties of RTT and RSSI, enabling the model to generalize across environments. SelfLoc also adapts effectively to new deployment scenarios with minimal labeled data, making it suitable for dynamic and collaborative industrial applications. We validate the effectiveness of SelfLoc through experiments conducted in two realistic indoor testbeds using commercial Android devices and seven Wi-Fi access points. The results demonstrate that SelfLoc achieves high localization precision, with a median error of only 0.55 m, and surpasses state-of-the-art baselines by at least 63.3% with limited supervision. These findings affirm the potential of SelfLoc to support spatial intelligence and collaborative automation, aligning with the goals of Industry 4.0 and Society 5.0, where seamless human–machine interactions and intelligent infrastructure are key enablers of next-generation smart environments. Full article
(This article belongs to the Special Issue Collaborative Intelligent Automation System for Smart Industry)
Show Figures

Figure 1

17 pages, 910 KiB  
Review
A Framework for Integrating Robotic Process Automation with Artificial Intelligence Applied to Industry 5.0
by Leonel Patrício, Leonilde Varela, Zilda Silveira, Carlos Felgueiras and Filipe Pereira
Appl. Sci. 2025, 15(13), 7402; https://doi.org/10.3390/app15137402 - 1 Jul 2025
Viewed by 619
Abstract
The transition to Industry 5.0 highlights the growing integration of Robotic Process Automation (RPA) and Artificial Intelligence (AI) in industrial ecosystems. However, adoption remains fragmented, lacking standardized frameworks to align intelligent automation with human-centric principles. While RPA improves operational efficiency and AI enhances [...] Read more.
The transition to Industry 5.0 highlights the growing integration of Robotic Process Automation (RPA) and Artificial Intelligence (AI) in industrial ecosystems. However, adoption remains fragmented, lacking standardized frameworks to align intelligent automation with human-centric principles. While RPA improves operational efficiency and AI enhances cognitive decision-making, challenges such as organizational resistance, interoperability, and ethical governance hinder scalable and sustainable implementation. The envisioned scenario involves seamless RPA-AI integration, fostering human–machine collaboration, operational resilience, and sustainability. Expected outcomes include (1) hyperautomation for efficiency gains, (2) agile, data-driven decision-making, (3) sustainable resource optimization, and (4) an upskilled workforce focusing on innovation. This study proposes a structured five-stage framework for RPA-AI deployment in Industry 5.0, combining automation, cognitive enhancement, and human–machine symbiosis. A systematic literature review (PICO method) identifies gaps and supports the framework’s design, validated through operational, human-impact, and sustainability metrics. Incorporating ethical governance and continuous upskilling, the model ensures technological advancement aligns with societal and environmental values. Results demonstrate its potential as a roadmap for responsible digital transformation, balancing efficiency with human-centricity. Future research should focus on empirical validation and sector-specific adaptations. Full article
Show Figures

Figure 1

32 pages, 3625 KiB  
Article
Artificial Intelligence for Smart Cities: A Comprehensive Review Across Six Pillars and Global Case Studies
by Joel John, Rayappa David Amar Raj, Maryam Karimi, Rouzbeh Nazari, Rama Muni Reddy Yanamala and Archana Pallakonda
Urban Sci. 2025, 9(7), 249; https://doi.org/10.3390/urbansci9070249 - 1 Jul 2025
Viewed by 1358
Abstract
Rapid urbanization in the twenty-first century has significantly accelerated the adoption of artificial intelligence (AI) technologies to address growing challenges in governance, mobility, energy, and urban security. This paper explores how AI is transforming smart city infrastructure, analyzing more than 92 academic publications [...] Read more.
Rapid urbanization in the twenty-first century has significantly accelerated the adoption of artificial intelligence (AI) technologies to address growing challenges in governance, mobility, energy, and urban security. This paper explores how AI is transforming smart city infrastructure, analyzing more than 92 academic publications published between 2012 and 2024. Key AI applications ranging from predictive analytics in e-governance to machine learning models in renewable energy management and autonomous mobility systems are synthesized domain-wise throughout this study. This paper highlights the benefits of AI-enabled decision making, finds current implementation barriers, and discusses the associated ethical implications. Furthermore, it presents a research agenda that stresses data interoperability, transparency, and human–AI collaboration to steer upcoming advancements in smart urban ecosystems. Full article
Show Figures

Figure 1

25 pages, 33747 KiB  
Article
System Design and Experimental Study of a Four-Roll Bending Machine
by Dongxu Guo, Qun Sun, Ying Zhao, Shangsheng Jiang and Yigang Jing
Appl. Sci. 2025, 15(13), 7383; https://doi.org/10.3390/app15137383 - 30 Jun 2025
Viewed by 285
Abstract
This study addresses the urgent demand for high-precision manufacturing of curved components by developing a fully servo-driven multi-axis controlled four-roll bending machine. By integrating a modular symmetric roller system design with a distributed hierarchical motion control architecture, we achieved substantial enhancements in scalability, [...] Read more.
This study addresses the urgent demand for high-precision manufacturing of curved components by developing a fully servo-driven multi-axis controlled four-roll bending machine. By integrating a modular symmetric roller system design with a distributed hierarchical motion control architecture, we achieved substantial enhancements in scalability, forming stability, and machining accuracy. The mechanical system underwent static simulation optimization using SolidWorks Simulation, ensuring maximum stress in the guiding mechanism was controlled below 7.118×103 N/m². ABAQUS-based roll-bending dynamic simulations validated the geometric adaptability and process feasibility of the proposed mechanical configuration. A master-slave dual-core control architecture was implemented in the control system, enabling synchronized error ≤ 0.05 mm, dynamic response time ≤ 10 ms, and positioning accuracy of ±0.01 mm through collaborative control of the master controller and servo drives. Experimental validation demonstrated that the machine achieves bending errors within 1%, with an average forming error of 0.798% across various radii profiles. The arc integrity significantly outperforms conventional equipment, while residual straight edge length was reduced by 86.67%. By adopting fully servo-electric cylinder actuation and integrating a C#-developed human–machine interface with real-time feedback control, this research effectively enhances roll-bending precision, minimizes residual straight edges, and exhibits broad industrial applicability. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

Back to TopTop