Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,213)

Search Parameters:
Keywords = human-centred

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 330 KiB  
Essay
Music and Arts in Early Childhood Education: Paths for Professional Development Towards Social and Human Development
by Helena Rodrigues, Ana Isabel Pereira, Paulo Maria Rodrigues, Paulo Ferreira Rodrigues and Angelita Broock
Educ. Sci. 2025, 15(8), 991; https://doi.org/10.3390/educsci15080991 (registering DOI) - 4 Aug 2025
Viewed by 23
Abstract
This article examines training itineraries for early childhood education professionals in Portugal, focusing on promoting social and human development through music and the arts for infants. The training models discussed are categorized as short-term and long-term, encompassing both theory and practice through a [...] Read more.
This article examines training itineraries for early childhood education professionals in Portugal, focusing on promoting social and human development through music and the arts for infants. The training models discussed are categorized as short-term and long-term, encompassing both theory and practice through a transdisciplinary approach. Based on initiatives promoted by the Companhia de Música Teatral (CMT) and the Education and Human Development Group of the Centre for the Study of Sociology and Musical Aesthetics (CESEM) at NOVA University Lisbon, the article highlights projects such as: (i) Opus Tutti and GermInArte, developed between 2011 and 2018; (ii) the Postgraduate Course Music in Childhood: Intervention and Research, offered at the University since 2020/21, which integrates art, health, and education, promoting collaborative work between professionals; and (iii) Mil Pássaros (Thousand Birds), developed since 2020, which exemplifies the integration of environmental education and artistic practices. The theoretical basis of these training programs combines neuroscientific and educational evidence, emphasizing the importance of the first years of life for integral development. Studies, such as those by Heckman, reinforce the impact of early investment in children’s development. Edwin Gordon’s Music Learning Theory and Malloch and Trevarthen’s concept of ‘communicative musicality’ structure the design of these courses, recognizing music as a catalyst for cognitive, emotional, and social skills. The transformative role of music and the arts in educational and social contexts is emphasized, in line with the Sustainable Development Goals of the 2030 Agenda, by proposing approaches that articulate creation, intervention, and research to promote human development from childhood onwards. Full article
22 pages, 1470 KiB  
Article
An NMPC-ECBF Framework for Dynamic Motion Planning and Execution in Vision-Based Human–Robot Collaboration
by Dianhao Zhang, Mien Van, Pantelis Sopasakis and Seán McLoone
Machines 2025, 13(8), 672; https://doi.org/10.3390/machines13080672 - 1 Aug 2025
Viewed by 281
Abstract
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes [...] Read more.
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes advantage of the prediction capabilities of nonlinear model predictive control (NMPC) to execute safe path planning based on feedback from a vision system. To satisfy the requirements of real-time path planning, an embedded solver based on a penalty method is applied. However, due to tight sampling times, NMPC solutions are approximate; therefore, the safety of the system cannot be guaranteed. To address this, we formulate a novel safety-critical paradigm that uses an exponential control barrier function (ECBF) as a safety filter. Several common human–robot assembly subtasks have been integrated into a real-life HRC assembly task to validate the performance of the proposed controller and to investigate whether integrating human pose prediction can help with safe and efficient collaboration. The robot uses OptiTrack cameras for perception and dynamically generates collision-free trajectories to the predicted target interactive position. Results for a number of different configurations confirm the efficiency of the proposed motion planning and execution framework, with a 23.2% reduction in execution time achieved for the HRC task compared to an implementation without human motion prediction. Full article
(This article belongs to the Special Issue Visual Measurement and Intelligent Robotic Manufacturing)
Show Figures

Figure 1

36 pages, 5053 KiB  
Systematic Review
Prescriptive Maintenance: A Systematic Literature Review and Exploratory Meta-Synthesis
by Marko Orošnjak, Felix Saretzky and Slawomir Kedziora
Appl. Sci. 2025, 15(15), 8507; https://doi.org/10.3390/app15158507 (registering DOI) - 31 Jul 2025
Viewed by 201
Abstract
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented [...] Read more.
Prescriptive Maintenance (PsM) transforms industrial asset management by enabling autonomous decisions through simultaneous failure anticipation and optimal maintenance recommendations. Yet, despite increasing research interest, the conceptual clarity, technological maturity, and practical deployment of PsM remains fragmented. Here, we conduct a comprehensive and application-oriented Systematic Literature Review of studies published between 2013–2024. We identify key enablers—artificial intelligence and machine learning, horizontal and vertical integration, and deep reinforcement learning—that map the functional space of PsM across industrial sectors. The results from our multivariate meta-synthesis uncover three main thematic research clusters, ranging from decision-automation of technical (multi)component-level systems to strategic and organisational-support strategies. Notably, while predictive models are widely adopted, the translation of these capabilities to PsM remains limited. Primary reasons include semantic interoperability, real-time optimisation, and deployment scalability. As a response, a structured research agenda is proposed to emphasise hybrid architectures, context-aware prescription mechanisms, and alignment with Industry 5.0 principles of human-centricity, resilience, and sustainability. The review establishes a critical foundation for future advances in intelligent, explainable, and action-oriented maintenance systems. Full article
Show Figures

Figure 1

42 pages, 28030 KiB  
Article
Can AI and Urban Design Optimization Mitigate Cardiovascular Risks Amid Rapid Urbanization? Unveiling the Impact of Environmental Stressors on Health Resilience
by Mehdi Makvandi, Zeinab Khodabakhshi, Yige Liu, Wenjing Li and Philip F. Yuan
Sustainability 2025, 17(15), 6973; https://doi.org/10.3390/su17156973 - 31 Jul 2025
Viewed by 308
Abstract
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health [...] Read more.
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health (+76.9%, 2019–2025) and optimization and algorithmic approaches (+63.7%), the compounded and synergistic impacts of these stressors remain inadequately explored or addressed within current urban planning frameworks. This study presents a Mixed Methods Systematic Review (MMSR) to investigate the potential of AI-driven urban design optimizations in mitigating these multi-scalar environmental health risks. Specifically, it explores the complex interactions between urbanization, traffic-related pollutants, green infrastructure, and architectural intelligence, identifying critical gaps in the integration of computational optimization with nature-based solutions (NBS). To empirically substantiate these theoretical insights, this study draws on longitudinal 24 h dynamic blood pressure (BP) monitoring (3–9 months), revealing that chronic exposure to environmental noise (mean 79.84 dB) increases cardiovascular risk by approximately 1.8-fold. BP data (average 132/76 mmHg), along with observed hypertensive spikes (systolic > 172 mmHg, diastolic ≤ 101 mmHg), underscore the inadequacy of current urban design strategies in mitigating health risks. Based on these findings, this paper advocates for the integration of AI-driven approaches to optimize urban environments, offering actionable recommendations for developing adaptive, human-centric, and health-responsive urban planning frameworks that enhance resilience and public health in the face of accelerating urbanization. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

34 pages, 2737 KiB  
Systematic Review
Thermal Comfort Meets ESG Principle: A Systematic Review of Sustainable Strategies in Educational Buildings
by Yujing Xiang, Pengzhi Zhou, Li Zhu and Shihai Wu
Buildings 2025, 15(15), 2692; https://doi.org/10.3390/buildings15152692 - 30 Jul 2025
Viewed by 311
Abstract
Securing thermal comfort while minimizing energy consumption in educational buildings is vital for achieving sustainable development goals. Drawing on the Environmental, Social, and Governance (ESG) framework, this systematic review synthesizes findings from 84 peer-reviewed studies published over the past decade, with a focus [...] Read more.
Securing thermal comfort while minimizing energy consumption in educational buildings is vital for achieving sustainable development goals. Drawing on the Environmental, Social, and Governance (ESG) framework, this systematic review synthesizes findings from 84 peer-reviewed studies published over the past decade, with a focus on how thermal comfort and energy use are assessed in educational contexts. The review identifies three primary research themes: climate resilience, multidimensional human-centric design, and energy decarbonization. However, it also reveals that existing studies have placed disproportionate emphasis on the environmental dimension, with insufficient exploration of issues related to social equity and governance structures. To address this gap, this study introduces an ESG-driven theoretical framework encompassing seven dimensions: thermal environment stability, multimodal thermal comfort assessment integration, sustainable energy use, heterogeneous thermal demand equality, passive–active design synergy, participatory thermal data governance, and educational thermal well-being inclusivity. By fostering interdisciplinary convergence and emphasizing inclusive stakeholder engagement, the proposed framework provides a resilient and adaptive foundation for enhancing indoor environmental quality in educational buildings while advancing equitable climate and energy strategies. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

28 pages, 3144 KiB  
Review
Artificial Intelligence-Driven and Bio-Inspired Control Strategies for Industrial Robotics: A Systematic Review of Trends, Challenges, and Sustainable Innovations Toward Industry 5.0
by Claudio Urrea
Machines 2025, 13(8), 666; https://doi.org/10.3390/machines13080666 - 29 Jul 2025
Viewed by 651
Abstract
Industrial robots are undergoing a transformative shift as Artificial Intelligence (AI)-driven and bio-inspired control strategies unlock new levels of precision, adaptability, and multi-dimensional sustainability aligned with Industry 5.0 (energy efficiency, material circularity, and life-cycle emissions). This systematic review analyzes 160 peer-reviewed industrial robotics [...] Read more.
Industrial robots are undergoing a transformative shift as Artificial Intelligence (AI)-driven and bio-inspired control strategies unlock new levels of precision, adaptability, and multi-dimensional sustainability aligned with Industry 5.0 (energy efficiency, material circularity, and life-cycle emissions). This systematic review analyzes 160 peer-reviewed industrial robotics control studies (2023–2025), including an expanded bio-inspired/human-centric subset, to evaluate: (1) the dominant and emerging control methodologies; (2) the transformative role of digital twins and 5G-enabled connectivity; and (3) the persistent technical, ethical, and environmental challenges. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, the study employs a rigorous methodology, focusing on adaptive control, deep reinforcement learning (DRL), human–robot collaboration (HRC), and quantum-inspired algorithms. The key findings highlight up to 30% latency reductions in real-time optimization, up to 22% efficiency gains through digital twins, and up to 25% energy savings from bio-inspired designs (all percentage ranges are reported relative to the comparator baselines specified in the cited sources). However, critical barriers remain, including scalability limitations (with up to 40% higher computational demands) and cybersecurity vulnerabilities (with up to 20% exposure rates). The convergence of AI, bio-inspired systems, and quantum computing is poised to enable sustainable, autonomous, and human-centric robotics, yet requires standardized safety frameworks and hybrid architectures to fully support the transition from Industry 4.0 to Industry 5.0. This review offers a strategic roadmap for future research and industrial adoption, emphasizing human-centric design, ethical frameworks, and circular-economy principles to address global manufacturing challenges. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

33 pages, 906 KiB  
Article
Scratching the Surface of Responsible AI in Financial Services: A Qualitative Study on Non-Technical Challenges and the Role of Corporate Digital Responsibility
by Antonis Skouloudis and Archana Venkatraman
AI 2025, 6(8), 169; https://doi.org/10.3390/ai6080169 - 28 Jul 2025
Viewed by 502
Abstract
Artificial Intelligence (AI) and Generative AI are transformative yet double-edged technologies with evolving risks. While research emphasises trustworthy, fair, and responsible AI by focusing on its “what” and “why,” it overlooks practical “how.” To bridge this gap in financial services, an industry at [...] Read more.
Artificial Intelligence (AI) and Generative AI are transformative yet double-edged technologies with evolving risks. While research emphasises trustworthy, fair, and responsible AI by focusing on its “what” and “why,” it overlooks practical “how.” To bridge this gap in financial services, an industry at the forefront of AI adoption, this study employs a qualitative approach grounded in existing Responsible AI and Corporate Digital Responsibility (CDR) frameworks. Through thematic analysis of 15 semi-structured interviews conducted with professionals working in finance, we illuminate nine non-technical barriers that practitioners face, such as sustainability challenges, trade-off balancing, stakeholder management, and human interaction, noting that GenAI concerns now eclipse general AI issues. CDR practitioners adopt a more human-centric stance, emphasising consensus-building and “no margin for error.” Our findings offer actionable guidance for more responsible AI strategies and enrich academic debates on Responsible AI and AI-CDR symbiosis. Full article
Show Figures

Graphical abstract

15 pages, 319 KiB  
Article
It Depends on What the Meaning of the Word ‘Person’ Is: Using a Human Rights-Based Approach to Training Aged-Care Workers in Person-Centred Care
by Kieran J. Flanagan, Heidi M. Olsen, Erin Conway, Patrick Keyzer and Laurie Buys
J. Ageing Longev. 2025, 5(3), 24; https://doi.org/10.3390/jal5030024 - 28 Jul 2025
Viewed by 227
Abstract
Aged-care services are in crisis through a combination of rising demand and increasing costs. Quality of care is often reported to be insufficient. Medical science has increased lifespans but the overmedicalisation of aged care may affect the financial sustainability and quality of care. [...] Read more.
Aged-care services are in crisis through a combination of rising demand and increasing costs. Quality of care is often reported to be insufficient. Medical science has increased lifespans but the overmedicalisation of aged care may affect the financial sustainability and quality of care. Person-centred care was developed as a solution and is generally interpreted as being concerned with consumer choice. This study presents a human rights-based approach to a code of conduct for aged-care consumers and workers to ensure autonomy and participation in aged-care communities, which are fundamental to person-centred care. A test–retest cohort study was used to investigate the impact of a training module about a human rights-based code of conduct on the perspectives of new aged-care workers (n = 11) on a case scenario involving conflicting care priorities. Qualitative content analysis was used to categorise and count the participants’ responses. The analysis found that prior to training the majority of participants were focused on a medical and risk reduction model of care. After the training participants had a more expansive understanding of care needs and recognised the importance of client empowerment to enable clients to participate in decisions affecting their care. The results support the implementation of a human rights-based approach to worker training and client care; such an approach is consistent with person-centred care. Full article
Show Figures

Figure 1

25 pages, 1101 KiB  
Article
Transforming Learning Environments: Asset Management, Social Innovation and Design Thinking for Educational Facilities 5.0
by Giacomo Barbieri, Freddy Zapata and Juan David Roa De La Torre
Educ. Sci. 2025, 15(8), 967; https://doi.org/10.3390/educsci15080967 - 28 Jul 2025
Viewed by 277
Abstract
Educational institutions are facing a crisis characterized by the need to address diverse learning styles and vocational aspirations, exacerbated by ongoing financial pressures. To navigate these challenges effectively, there is an urgent need to innovate educational practices and learning environments, ensuring they are [...] Read more.
Educational institutions are facing a crisis characterized by the need to address diverse learning styles and vocational aspirations, exacerbated by ongoing financial pressures. To navigate these challenges effectively, there is an urgent need to innovate educational practices and learning environments, ensuring they are adaptable and responsive to the evolving needs of students and the workforce. The adoption of the Industry 5.0 framework offers a promising solution, providing a holistic approach that emphasizes the integration of human creativity and advanced technologies to transform educational institutions into resilient, human-centric, and sustainable learning environments. In this context, this article presents a transdisciplinary methodology that integrates Asset Management (AM) with Social Innovation (SI) through Design Thinking (DT) to co-design Educational Facilities 5.0 with stakeholders. The application of the proposed approach in an AgroLab case study—a food and agricultural laboratory—demonstrates how the methodology enables the definition of an Educational Facility 5.0 and generates AM Design Knowledge to support informed decision-making in the subsequent design, implementation, and operation phases. Following DT principles—where knowledge emerges through iterative experimentation and insights from practical applications—this article also discusses the role of SI and DT in AM, the role of Large Language Models in convergent processes, and a vision for Educational Facilities 5.0. Full article
Show Figures

Figure 1

26 pages, 27333 KiB  
Article
Gest-SAR: A Gesture-Controlled Spatial AR System for Interactive Manual Assembly Guidance with Real-Time Operational Feedback
by Naimul Hasan and Bugra Alkan
Machines 2025, 13(8), 658; https://doi.org/10.3390/machines13080658 - 27 Jul 2025
Viewed by 269
Abstract
Manual assembly remains essential in modern manufacturing, yet the increasing complexity of customised production imposes significant cognitive burdens and error rates on workers. Existing Spatial Augmented Reality (SAR) systems often operate passively, lacking adaptive interaction, real-time feedback and a control system with gesture. [...] Read more.
Manual assembly remains essential in modern manufacturing, yet the increasing complexity of customised production imposes significant cognitive burdens and error rates on workers. Existing Spatial Augmented Reality (SAR) systems often operate passively, lacking adaptive interaction, real-time feedback and a control system with gesture. In response, we present Gest-SAR, a SAR framework that integrates a custom MediaPipe-based gesture classification model to deliver adaptive light-guided pick-to-place assembly instructions and real-time error feedback within a closed-loop interaction instance. In a within-subject study, ten participants completed standardised Duplo-based assembly tasks using Gest-SAR, paper-based manuals, and tablet-based instructions; performance was evaluated via assembly cycle time, selection and placement error rates, cognitive workload assessed by NASA-TLX, and usability test by post-experimental questionnaires. Quantitative results demonstrate that Gest-SAR significantly reduces cycle times with an average of 3.95 min compared to Paper (Mean = 7.89 min, p < 0.01) and Tablet (Mean = 6.99 min, p < 0.01). It also achieved 7 times less average error rates while lowering perceived cognitive workload (p < 0.05 for mental demand) compared to conventional modalities. In total, 90% of the users agreed to prefer SAR over paper and tablet modalities. These outcomes indicate that natural hand-gesture interaction coupled with real-time visual feedback enhances both the efficiency and accuracy of manual assembly. By embedding AI-driven gesture recognition and AR projection into a human-centric assistance system, Gest-SAR advances the collaborative interplay between humans and machines, aligning with Industry 5.0 objectives of resilient, sustainable, and intelligent manufacturing. Full article
(This article belongs to the Special Issue AI-Integrated Advanced Robotics Towards Industry 5.0)
Show Figures

Figure 1

16 pages, 1817 KiB  
Article
Is Brazilian Jiu-Jitsu a Traumatic Sport? Survey on Italian Athletes’ Rehabilitation and Return to Sport
by Fabio Santacaterina, Christian Tamantini, Giuseppe Camarro, Sandra Miccinilli, Federica Bressi, Loredana Zollo, Silvia Sterzi and Marco Bravi
J. Funct. Morphol. Kinesiol. 2025, 10(3), 286; https://doi.org/10.3390/jfmk10030286 - 25 Jul 2025
Viewed by 384
Abstract
Background: Brazilian Jiu-Jitsu (BJJ) is a physically demanding sport associated with a notable risk of musculoskeletal injuries. Understanding injury patterns, rehabilitation approaches, and psychological readiness to return to sport (RTS) is essential for prevention and management strategies. This study aimed to investigate injury [...] Read more.
Background: Brazilian Jiu-Jitsu (BJJ) is a physically demanding sport associated with a notable risk of musculoskeletal injuries. Understanding injury patterns, rehabilitation approaches, and psychological readiness to return to sport (RTS) is essential for prevention and management strategies. This study aimed to investigate injury characteristics among Italian BJJ athletes, assess their rehabilitation processes and psychological recovery, and identify key risk factors such as belt level, body mass index (BMI), and training load. Methods: A cross-sectional survey was conducted among members of the Italian BJJ community, including amateur and competitive athletes. A total of 360 participants completed a 36-item online questionnaire. Data collected included injury history, rehabilitation strategies, RTS timelines, and responses to the Injury-Psychological Readiness to Return to Sport (I-PRRS) scale. A Random Forest machine learning algorithm was used to identify and rank potential injury risk factors. Results: Of the 360 respondents, 331 (92%) reported at least one injury, predominantly occurring during training sessions. The knee was the most frequently injured joint, and the action “attempting to pass guard” was the most reported mechanism. Most athletes (65%) returned to training within one month. BMI and age emerged as the most significant predictors of injury risk. Psychological readiness scores indicated moderate confidence, with the lowest levels associated with playing without pain. Conclusions: Injuries in BJJ are common, particularly affecting the knee. Psychological readiness, especially confidence in training without pain, plays a critical role in RTS outcomes. Machine learning models may aid in identifying individual risk factors and guiding injury prevention strategies. Full article
(This article belongs to the Special Issue Understanding Sports-Related Health Issues, 2nd Edition)
Show Figures

Figure 1

51 pages, 5654 KiB  
Review
Exploring the Role of Digital Twin and Industrial Metaverse Technologies in Enhancing Occupational Health and Safety in Manufacturing
by Arslan Zahid, Aniello Ferraro, Antonella Petrillo and Fabio De Felice
Appl. Sci. 2025, 15(15), 8268; https://doi.org/10.3390/app15158268 - 25 Jul 2025
Viewed by 422
Abstract
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and [...] Read more.
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and Safety (OHS). However, a comprehensive understanding of how these technologies integrate to support OHS in manufacturing remains limited. This study systematically explores the transformative role of DT and IM in creating immersive, intelligent, and human-centric safety ecosystems. Following the PRISMA guidelines, a Systematic Literature Review (SLR) of 75 peer-reviewed studies from the SCOPUS and Web of Science databases was conducted. The review identifies key enabling technologies such as Virtual Reality (VR), Augmented Reality (AR), Extended Reality (XR), Internet of Things (IoT), Artificial Intelligence (AI), Cyber-Physical Systems (CPS), and Collaborative Robots (COBOTS), and highlights their applications in real-time monitoring, immersive safety training, and predictive hazard mitigation. A conceptual framework is proposed, illustrating a synergistic digital ecosystem that integrates predictive analytics, real-time monitoring, and immersive training to enhance the OHS. The findings highlight both the transformative benefits and the key adoption challenges of these technologies, including technical complexities, data security, privacy, ethical concerns, and organizational resistance. This study provides a foundational framework for future research and practical implementation in Industry 5.0. Full article
Show Figures

Figure 1

17 pages, 379 KiB  
Article
The Dual Character of Animal-Centred Care: Relational Approaches in Veterinary and Animal Sanctuary Work
by Anna K. E. Schneider and Marc J. Bubeck
Vet. Sci. 2025, 12(8), 696; https://doi.org/10.3390/vetsci12080696 - 25 Jul 2025
Viewed by 262
Abstract
Caring for the lives and welfare of animals is central to veterinary and animal sanctuary work, yet the meaning remains a subject of complex debates. Different stakeholders negotiate what constitutes appropriate care, leading to conflicting demands and expectations from internal and external sources. [...] Read more.
Caring for the lives and welfare of animals is central to veterinary and animal sanctuary work, yet the meaning remains a subject of complex debates. Different stakeholders negotiate what constitutes appropriate care, leading to conflicting demands and expectations from internal and external sources. This article is based on two qualitative studies: Study I explores the multifaceted aspects of death work in farm animal medicine, emphasising the practical, emotional and ethical challenges involved. Study II examines human–animal interaction in sanctuaries, which reveal tensions between instrumental and relational care in animal-centred work. Relational care represents a subjectifying approach with individual attention to animals, while instrumental care is a more objectifying perspective based on species representation. These demands can often be contradictory, complicating day-to-day decision making under pressure. To analyse these complexities, this study employs Clarke’s situational analysis (social worlds/arenas mapping), providing a means of comparing care work across different fields. This approach highlights how actor constellations, institutional settings, and structural constraints influence the negotiation of care. Addressing these issues provides a more nuanced understanding of the professional challenges of animal-centred care and the necessary skills to navigate its inherent contradictions. Full article
(This article belongs to the Special Issue Advanced Therapy in Companion Animals—2nd Edition)
Show Figures

Figure 1

22 pages, 63949 KiB  
Article
Functionalised Mesoporous Silica Thin Films as ROS-Generating Antimicrobial Coatings
by Magdalena Laskowska, Paweł Kowalczyk, Agnieszka Karczmarska, Katarzyna Pogoda, Maciej Zubko and Łukasz Laskowski
Int. J. Mol. Sci. 2025, 26(15), 7154; https://doi.org/10.3390/ijms26157154 - 24 Jul 2025
Viewed by 323
Abstract
The recent COVID-19 pandemic has made the public aware of the importance of combating pathogenic microorganisms before they enter the human body. This growing threat from microorganisms prompted us to conduct research into a new type of coating that would be an alternative [...] Read more.
The recent COVID-19 pandemic has made the public aware of the importance of combating pathogenic microorganisms before they enter the human body. This growing threat from microorganisms prompted us to conduct research into a new type of coating that would be an alternative to the continuous disinfection of touch surfaces. Our goal was to design, synthesise and thoroughly characterise such a coating. In this work, we present a nanocomposite material composed of a thin-layer mesoporous SBA-15 silica matrix containing copper phosphonate groups, which act as catalytic centres responsible for the generation of reactive oxygen species (ROS). In order to verify the structure of the material, including its molecular structure, microscopic observations and Raman spectroscopy were performed. The generation of ROS was confirmed by fluorescence microscopy analysis using a fluorogenic probe. The antimicrobial activity was tested against a wide spectrum of Gram-positive and Gram-negative bacteria, while cytotoxicity was tested on BALB/c3T3 mouse fibroblast cells and HeLa cells. The studies fully confirmed the expected structure of the obtained material, its antimicrobial activity, and the absence of cytotoxicity towards fibroblast cells. The results obtained confirmed the high application potential of the tested nanocomposite coating. Full article
(This article belongs to the Special Issue Nanomaterials for Biomedical and Environmental Applications)
Show Figures

Figure 1

22 pages, 594 KiB  
Article
Information-Theoretic Cost–Benefit Analysis of Hybrid Decision Workflows in Finance
by Philip Beaucamp, Harvey Maylor and Min Chen
Entropy 2025, 27(8), 780; https://doi.org/10.3390/e27080780 - 23 Jul 2025
Viewed by 243
Abstract
Analyzing and leveraging data effectively has been an advantageous strategy in the management workflows of many contemporary organizations. In business and finance, data-informed decision workflows are nowadays essential for enabling development and growth. However, there is yet a theoretical or quantitative approach for [...] Read more.
Analyzing and leveraging data effectively has been an advantageous strategy in the management workflows of many contemporary organizations. In business and finance, data-informed decision workflows are nowadays essential for enabling development and growth. However, there is yet a theoretical or quantitative approach for analyzing the cost–benefit of the processes in such workflows, e.g., in determining the trade-offs between machine- and human-centric processes and quantifying biases. The aim of this work is to translate an information-theoretic concept and measure for cost–benefit analysis to a methodology that is relevant to the analysis of hybrid decision workflows in business and finance. We propose to combine an information-theoretic approach (i.e., information-theoretic cost–benefit analysis) and an engineering approach (e.g., workflow decomposition), which enables us to utilize information-theoretic measures to estimate the cost–benefit of individual processes quantitatively. We provide three case studies to demonstrate the feasibility of the proposed methodology, including (i) the use of a statistical and computational algorithm, (ii) incomplete information and humans’ soft knowledge, and (iii) cognitive biases in a committee meeting. While this is an early application of information-theoretic cost–benefit analysis to business and financial workflows, it is a significant step towards the development of a systematic, quantitative, and computer-assisted approach for optimizing data-informed decision workflows. Full article
Show Figures

Figure 1

Back to TopTop