Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = human pulmonary alveolar epithelial cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5335 KiB  
Article
An Italian Study of PM0.5 Toxicity: In Vitro Investigation of Cytotoxicity, Oxidative Stress, Intercellular Communication, and Extracellular Matrix Metalloproteases
by Nathalie Steimberg, Giovanna Mazzoleni, Jennifer Boniotti, Milena Villarini, Massimo Moretti, Annalaura Carducci, Marco Verani, Tiziana Grassi, Francesca Serio, Sara Bonetta, Elisabetta Carraro, Alberto Bonetti, Silvia Bonizzoni, Umberto Gelatti and the MAPEC_LIFE Study Group
Int. J. Mol. Sci. 2025, 26(14), 6769; https://doi.org/10.3390/ijms26146769 - 15 Jul 2025
Viewed by 214
Abstract
Particulate matter (PM), mainly PM0.5, represents a significant concern for human health, particularly relating to lung homeostasis, and more research is required to ascertain its tissue tropism and the molecular pathways involved. In this study, we first focus on classical in [...] Read more.
Particulate matter (PM), mainly PM0.5, represents a significant concern for human health, particularly relating to lung homeostasis, and more research is required to ascertain its tissue tropism and the molecular pathways involved. In this study, we first focus on classical in vitro toxicological endpoints (cytotoxicity and cell growth) in human bronchial and alveolar epithelial cell lines mimicking the two pulmonary target tissues. Air samples were collected in five Italian cities (Brescia, Lecce, Perugia, Pisa, Turin) during winter and spring. To better decipher the PM0.5 effects on pulmonary cells, a further winter sampling was performed in Brescia, and studies were extended to assess tumour promotion, oxidative stress, and the activity of Matrix metalloproteases (MMP). The results confirmed that the effect of air pollution is linked to the seasons (winter is usually more cytotoxic than spring) and is correlated with the peculiar characteristics of the cities studied (meteoclimatic conditions, economic/anthropogenic activities). Alveolar cells were often less sensitive than bronchial cells. All PM samples from Brescia inhibited intercellular communication mediated by gap junctions (GJIC), increased the total content in glutathione, and decreased the reduced form of glutathione, whereas the Reactive Oxygen Species (ROS) content was almost constant. Long-term treatments at higher doses of PM decreased MMP2 and MMP9 activity. Taken together, the results confirmed that PM is cytotoxic and can potentially act as tumour promoters, but the mechanisms involved in oxidative stress and lung homeostasis are dose- and time-dependent and quite complex. Full article
(This article belongs to the Special Issue The Influence of Environmental Factors on Disease and Health Outcomes)
Show Figures

Figure 1

16 pages, 6694 KiB  
Article
LL-37 Attenuates Sepsis-Induced Lung Injury by Alleviating Inflammatory Response and Epithelial Cell Oxidative Injury via ZBP1-Mediated Autophagy
by Hu Gao, Fajuan Tang, Bin Chen and Xihong Li
Toxins 2025, 17(6), 306; https://doi.org/10.3390/toxins17060306 - 17 Jun 2025
Viewed by 690
Abstract
Background: Sepsis-induced acute lung injury (ALI) is a serious disease constituting a heavy burden on society due to high mortality and morbidity. Inflammation and oxidative stress constitute key pathological mechanisms in ALI caused by sepsis. LL-37 can improve the survival of septic mice. [...] Read more.
Background: Sepsis-induced acute lung injury (ALI) is a serious disease constituting a heavy burden on society due to high mortality and morbidity. Inflammation and oxidative stress constitute key pathological mechanisms in ALI caused by sepsis. LL-37 can improve the survival of septic mice. Nevertheless, its function and underlying mechanism in sepsis-evoked ALI is elusive. Methods: The human A549 alveolar epithelial cell line was treated with LL-37 or ZBP1 recombinant vector under LPS exposure. Then, the effects on cell oxidative stress injury, inflammatory response, and autophagy were analyzed. RNA-seq analysis was performed to detect the differentially expressed genes (DEGs) between the LPS and LPS/LL-37 groups. Furthermore, the effects of LL-37 on cecal ligation and the puncture (CLP)-constructed ALI model were explored. Results: LL-37 attenuated LPS-evoked oxidative injury in human alveolar epithelial cells by increasing cell viability and suppressing ROS, malondialdehyde, and lactate dehydrogenase levels and apoptosis. Moreover, LPS-induced releases of pro-inflammatory IL-18, TNF-α, and IL-1β were suppressed by LL-37. Furthermore, LPS’s impairment of autophagy was reversed by LL-37. RNA-seq analysis substantiated 1350 differentially expressed genes between the LPS and LPS/LL-37 groups. Among them was ZBP1, a significantly down-regulated gene with the largest fold change. Moreover, LL-37 suppressed LPS-increased ZBP1 expression. Importantly, ZBP1 elevation restrained LL-37-induced autophagy in LPS-treated cells and abrogated LL-37-mediated protection against LPS-evoked oxidative injury and inflammation. LL-37 ameliorated abnormal histopathological changes, tissue edema, the lung injury score, oxygenation index (PaO2/FiO2), and glycemia contents in the CLP-constructed ALI model, which were offset through ZBP1 elevation via its activator CBL0137. Additionally, LL-37 suppressed inflammation and oxidative stress in lung tissues, concomitant with autophagy elevation and ZBP1 down-regulation. Conclusions: LL-37 may alleviate the progression of sepsis-evoked ALI by attenuating pulmonary epithelial cell oxidative injury and inflammatory response via ZBP1-mediated autophagy activation, indicating a promising approach for the therapy of ALI patients. Full article
Show Figures

Figure 1

16 pages, 5142 KiB  
Article
The Generation of Two Induced Pluripotent Cell Lines from Patients with an Atypical Familial Form of Lung Fibrosis
by Eid Al-Mutairy, Somaya M. Al Qattan, Faiqa Imtiaz, Azizah AlAnazi, Angela Inglis, Rana Al-Rabiah and Reem S. Al-Hejailan
Cells 2025, 14(11), 781; https://doi.org/10.3390/cells14110781 - 26 May 2025
Viewed by 714
Abstract
Background: Pulmonary fibrosis is a major disease that leads to the progressive loss of lung function. The disease manifests early, resulting in type 2 respiratory failure. This is likely due to the bronchocentric fibrosis around the major airways, which causes airflow limitation. [...] Read more.
Background: Pulmonary fibrosis is a major disease that leads to the progressive loss of lung function. The disease manifests early, resulting in type 2 respiratory failure. This is likely due to the bronchocentric fibrosis around the major airways, which causes airflow limitation. It affects approximately three million patients worldwide and has a poor prognosis. Skin fibroblasts isolated from patients offer valuable insights into understanding the disease mechanisms, identifying the genetic causes, and developing personalized therapies. However, the use of skin fibroblasts to study a disease that exclusively impacts the lungs is often questioned, particularly since lung fibrosis primarily affects the alveolar epithelium. Method: We report the reprogramming of skin fibroblasts from patients with an atypical early-onset form of lung fibrosis into induced pluripotent stem cells (iPSCs) and subsequently into alveolar epithelial cells. This was achieved using a Sendai virus approach. Results: We show that the reprogrammed cells carry mutations in the calcium-binding protein genes S100A3 and S100A13, leading to diminished protein expression, thus mimicking the patients’ cells. Additionally, we demonstrate that the generated patient iPSCs exhibit aberrant calcium and mitochondrial functions. Conclusions: Due to the lack of a suitable animal model that accurately resembles the human disease, generating patient lung cells from these iPSCs can provide a valuable “disease in a dish” model for studying the atypical form of inherited lung fibrosis. This condition is associated with mutations in the calcium-binding protein genes S100A3 (NM_002960) and S100A13 (NM_001024210), aiding in the understanding of its pathogenesis. Full article
Show Figures

Graphical abstract

17 pages, 2564 KiB  
Article
Protective Action of 3,5-Diiodo-L-Thyronine on Cigarette Smoke-Induced Mitochondrial Dysfunction in Human Alveolar Epithelial Cells
by Francesca Panico, Davida Mirra, Giuseppe Petito, Giuseppe Spaziano, Vitale Del Vecchio, Renata Esposito, Rosalba Senese, Vincenzo Desiderio, Antonia Lanni and Bruno D’Agostino
Biomedicines 2025, 13(5), 1014; https://doi.org/10.3390/biomedicines13051014 - 22 Apr 2025
Viewed by 548
Abstract
Background: Cigarette smoke (CS) is a major risk factor for chronic lung conditions. Oxidative stress and mitochondrial dysfunction play a crucial role in CS-induced pulmonary injury. 3,5-Diiodothyronine (T2) affects energy metabolism, having mitochondria as a major target. However, the underlying mechanisms of [...] Read more.
Background: Cigarette smoke (CS) is a major risk factor for chronic lung conditions. Oxidative stress and mitochondrial dysfunction play a crucial role in CS-induced pulmonary injury. 3,5-Diiodothyronine (T2) affects energy metabolism, having mitochondria as a major target. However, the underlying mechanisms of T2 related to lung diseases are poorly understood. Aims: To investigate the protective action of T2 on CS-induced mitochondrial dysfunction in an in vitro model of human epithelial alveolar cells. Methods: ATP synthesis and cytochrome c oxidase (COX) activity, as a marker of mitochondrial function, was assessed in A549 cells pretreated with T2 and exposed to CS using a bioluminescence assay and an Oroboros 2k-Oxygraph system, respectively. An evaluation of the oxidative status was conducted by assessing superoxide radical production, superoxide dismutase (SOD) activity, and H2O2 levels. Moreover, we investigated the mitochondrial mass via Mito-Tracker Green (MTG) staining and flow cytometry analysis. Results: CS significantly reduced ATP production. T2 pretreatment was found to prevent CS-induced impairments in ATP synthesis, enhancing COX activity. Additionally, the 2 h T2 pretreatment of CS-exposed cells mitigated CS-induced oxidative stress, thereby enhancing SOD activity and reducing the superoxide anion and H2O2 levels. Finally, MTG labeling was correlated with CS-induced mitochondrial mass gain, which is associated with cell senescence. Unexpectedly, T2 was not able to significantly prevent this mass increment, probably due to its rapid mode of action. Conclusions: Our results provide new insights into the protective effects of T2 against CS-induced mitochondrial damage. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

13 pages, 1229 KiB  
Article
Selection of Reference Genes for Normalization of Gene Expression After Exposure of Human Endothelial and Epithelial Cells to Hypoxia
by Juliane Hannemann, Lena Schmidt-Hutten, Jannik Hannemann, Fiona Kleinsang and Rainer Böger
Int. J. Mol. Sci. 2025, 26(4), 1763; https://doi.org/10.3390/ijms26041763 - 19 Feb 2025
Cited by 1 | Viewed by 856
Abstract
The selection of a stably expressed reference gene is a critical step for the quantitation of gene expression by qRT-PCR. We tested the stability of expression of nine putative reference genes in normoxia and hypoxia in four different human cell types: coronary (HCAECs) [...] Read more.
The selection of a stably expressed reference gene is a critical step for the quantitation of gene expression by qRT-PCR. We tested the stability of expression of nine putative reference genes in normoxia and hypoxia in four different human cell types: coronary (HCAECs) and pulmonary endothelial cells (HPAECs), EA.hy926 endothelial cells, and A549 alveolar epithelial cells. Cells were cultured in normoxic and hypoxic conditions for up to 72 h. Total RNA was isolated and used for qRT-PCR. Stability of expression was assessed by calculating the coefficient of variation of the cycle threshold (Ct CV) by pairwise comparison of ΔCt values, and by the NormFinder algorithm. A final rank was calculated for each gene. Finally, we analyzed VEGFA expression by using GAPDH or the optimal candidate reference gene found in this study. Gene expression was variable between cell lines and experimental conditions. The most stable reference gene across all cell lines was TBP, followed by RPLP1 and RPL13A. VEGFA expression was significantly upregulated by 4-fold in hypoxia when using TBP as reference, whilst this result was insignificant when GAPDH was used. The selection of a stably expressed reference gene is a critical step for the generation of reliable and reproducible data in gene expression studies. The most appropriate reference gene may vary in different cell lines and experimental conditions; it should be chosen individually for each experimental set-up. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

26 pages, 3803 KiB  
Article
Novel Integration of Spatial and Single-Cell Omics Data Sets Enables Deeper Insights into IPF Pathogenesis
by Fei Wang, Liang Jin, Xue Wang, Baoliang Cui, Yingli Yang, Lori Duggan, Annette Schwartz Sterman, Sarah M. Lloyd, Lisa A. Hazelwood, Neha Chaudhary, Bhupinder Bawa, Lucy A. Phillips, Yupeng He and Yu Tian
Proteomes 2025, 13(1), 3; https://doi.org/10.3390/proteomes13010003 - 13 Jan 2025
Cited by 1 | Viewed by 2747
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by repetitive alveolar injuries with excessive deposition of extracellular matrix (ECM) proteins. A crucial need in understanding IPF pathogenesis is identifying cell types associated with histopathological regions, particularly local fibrosis centers known as fibroblast foci. To address this, we integrated published spatial transcriptomics and single-cell RNA sequencing (scRNA-seq) transcriptomics and adopted the Query method and the Overlap method to determine cell type enrichments in histopathological regions. Distinct fibroblast cell types are highly associated with fibroblast foci, and transitional alveolar type 2 and aberrant KRT5-/KRT17+ (KRT: keratin) epithelial cells are associated with morphologically normal alveoli in human IPF lungs. Furthermore, we employed laser capture microdissection-directed mass spectrometry to profile proteins. By comparing with another published similar dataset, common differentially expressed proteins and enriched pathways related to ECM structure organization and collagen processing were identified in fibroblast foci. Importantly, cell type enrichment results from innovative spatial proteomics and scRNA-seq data integration accord with those from spatial transcriptomics and scRNA-seq data integration, supporting the capability and versatility of the entire approach. In summary, we integrated spatial multi-omics with scRNA-seq data to identify disease-associated cell types and potential targets for novel therapies in IPF intervention. The approach can be further applied to other disease areas characterized by spatial heterogeneity. Full article
Show Figures

Figure 1

19 pages, 1734 KiB  
Article
Anti-Inflammatory Effects of SGLT1 Synthetic Ligand in In Vitro and In Vivo Models of Lung Diseases
by Cristiano Rumio, Giuseppina Dusio, Diego Cardani, Barbara La Ferla and Giuseppe D’Orazio
Immuno 2024, 4(4), 502-520; https://doi.org/10.3390/immuno4040031 - 8 Nov 2024
Cited by 2 | Viewed by 1597
Abstract
Background. Several research findings suggest that sodium–glucose co-transporter 1 (SGLT1) is implicated in the progression and control of infections and inflammation processes at the pulmonary level. Moreover, our previous works indicate an engagement of SGLT1 in inhibiting the inflammatory response induced in intestinal [...] Read more.
Background. Several research findings suggest that sodium–glucose co-transporter 1 (SGLT1) is implicated in the progression and control of infections and inflammation processes at the pulmonary level. Moreover, our previous works indicate an engagement of SGLT1 in inhibiting the inflammatory response induced in intestinal epithelial cells by TLR agonists. In this study, we report the anti-inflammatory effects observed in the lung upon engagement of the transporter, and upon the use of glucose and BLF501, a synthetic SGLT1 ligand, for the treatment of animal models of lung inflammation, including a model of allergic asthma. Methods. In vitro experiments were carried out on human pneumocytes stimulated with LPS from Pseudomonas aeruginosa and co-treated with glucose or BLF501, and the production of IL-8 was determined. The anti-inflammatory effect associated with SGLT1 engagement was then assessed in in vivo models of LPS-induced lung injury, as well as in a murine model of ovalbumin (OVA)-induced asthma, treating mice with aerosolized LPS and the synthetic ligand. After the treatments, lung samples were collected and analyzed for morphological alterations by histological examination and immunohistochemical analysis; serum and BALF samples were collected for the determination of several pro- and anti-inflammatory markers. Results. In vitro experiments on human pneumocytes treated with LPS showed significant inhibition of IL-8 production. The results of two in vivo experimental models, mice exposed to aerosolized LPS and OVA-induced asthma, revealed that the engagement of glucose transport protein 1 (SGLT1) induced a significant anti-inflammatory effect in the lungs. In the first model, the acute respiratory distress induced in mice was abrogated by co-treatment with the ligand, with almost complete recovery of the lung morphology and physiology. Similar results were observed in the OVA-induced model of allergic asthma, both with aerosolized and oral BLF501, suggesting an engagement of SGLT1 expressed both in intestinal and alveolar cells. Conclusions. Our results confirmed the engagement of SGLT1 in lung inflammation processes and suggested that BLF501, a non-metabolizable synthetic ligand of the co-transporter, might represent a drug candidate for therapeutic intervention against lung inflammation states. Full article
Show Figures

Figure 1

15 pages, 10638 KiB  
Article
Dual Inhibition of Phosphodiesterase 3 and 4 Enzymes by Ensifentrine Protects against MRSA-Induced Lung Endothelial and Epithelial Dysfunction
by Mohammed Yaman Al Matni, Lucille Meliton, Steven M. Dudek and Eleftheria Letsiou
Cells 2024, 13(21), 1750; https://doi.org/10.3390/cells13211750 - 23 Oct 2024
Cited by 2 | Viewed by 2313
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a severe lung condition with a high mortality rate for which there are no effective therapeutics. The failure of the alveolar–capillary barrier, composed of lung endothelial (EC) and alveolar epithelial (AEC) cells, is a critical factor leading [...] Read more.
Acute Respiratory Distress Syndrome (ARDS) is a severe lung condition with a high mortality rate for which there are no effective therapeutics. The failure of the alveolar–capillary barrier, composed of lung endothelial (EC) and alveolar epithelial (AEC) cells, is a critical factor leading to excessive inflammation and edema characteristic of acute lung injury (ALI) pathophysiology. Phosphodiesterases (PDE) are enzymes well-recognized for their roles in regulating endothelial permeability and inflammation. Although PDE inhibitors are used as therapeutics for inflammatory diseases like COPD (chronic obstructive pulmonary disease), their efficacy in treating ARDS has not yet been established. In this study, we investigated the effects of ensifentrine, an FDA-approved novel dual PDE 3/4 inhibitor, on lung endothelial and epithelial dysfunction caused by methicillin-resistant S. aureus (MRSA), a pathogen involved in bacterial ARDS. Human primary lung endothelial cells and alveolar epithelial cell lines (A549 and immortalized AEC) were treated with heat-killed MRSA, and their responses were assessed in the presence or absence of ensifentrine. Ensifentrine given either pre- or post-exposure attenuated MRSA-induced increased lung endothelial permeability. VE-cadherin junctions, which serve to stabilize the EC barrier, were disrupted by MRSA; however, ensifentrine effectively prevented this disruption. Pre-treatment with ensifentrine protected against MRSA-induced EC pro-inflammatory signaling by inhibiting the expression of VCAM-1, ICAM-1, and by reducing the IL-6 and IL-8 release. In AEC, MRSA caused the upregulation of ICAM-1, the activation of NF-kB, and the production of IL-8, all of which were inhibited by ensifentrine. These results indicate that the dual inhibition of phosphodiesterases 3 and 4 by ensifentrine is barrier protective and attenuates MRSA-induced inflammation in both lung endothelial and epithelial cells. The PDE3/4 inhibitor ensifentrine may represent a promising novel strategy for the treatment of MRSA-induced ARDS. Full article
Show Figures

Figure 1

13 pages, 3552 KiB  
Article
Humanized L184Q Mutated Surfactant Protein C Gene Alters Alveolar Type 2 Epithelial Cell Fate
by Krishan G. Jain, Yang Liu, Runzhen Zhao, Preeti J. Muire, Jiwang Zhang, Qun Sophia Zang and Hong-Long Ji
Int. J. Mol. Sci. 2024, 25(16), 8723; https://doi.org/10.3390/ijms25168723 - 9 Aug 2024
Cited by 2 | Viewed by 2491
Abstract
Alveolar type 2 epithelial (AT2) cells synthesize surfactant protein C (SPC) and repair an injured alveolar epithelium. A mutated surfactant protein C gene (SftpcL184Q, Gene ID: 6440) in newborns has been associated with respiratory distress syndrome and pulmonary fibrosis. However, [...] Read more.
Alveolar type 2 epithelial (AT2) cells synthesize surfactant protein C (SPC) and repair an injured alveolar epithelium. A mutated surfactant protein C gene (SftpcL184Q, Gene ID: 6440) in newborns has been associated with respiratory distress syndrome and pulmonary fibrosis. However, the underlying mechanisms causing Sftpc gene mutations to regulate AT2 lineage remain unclear. We utilized three-dimensional (3D) feeder-free AT2 organoids in vitro to simulate the alveolar epithelium and compared AT2 lineage characteristics between WT (C57BL/6) and SftpcL184Q mutant mice using colony formation assays, immunofluorescence, flow cytometry, qRT-PCR, and Western blot assays. The AT2 numbers were reduced significantly in SftpcL184Q mice. Organoid numbers and colony-forming efficiency were significantly attenuated in the 3D cultures of primary SftpcL184Q AT2 cells compared to those of WT mice. Podoplanin (PDPN, Alveolar type 1 cell (AT1) marker) expression and transient cell count was significantly increased in SftpcL184Q organoids compared to in the WT mice. The expression levels of CD74, heat shock protein 90 (HSP90), and ribosomal protein S3A1 (RPS3A1) were not significantly different between WT and SftpcL184Q AT2 cells. This study demonstrated that humanized SftpcL184Q mutation regulates AT2 lineage intrinsically. This regulation is independent of CD74, HSP90, and RPS3A1 pathways. Full article
(This article belongs to the Special Issue Organoids and Organs-on-Chip for Medical Research)
Show Figures

Figure 1

17 pages, 12571 KiB  
Article
IL-17A Drives Oxidative Stress and Cell Growth in A549 Lung Epithelial Cells: Potential Protective Action of Oleuropein
by Angela Marina Montalbano, Caterina Di Sano, Giusy Daniela Albano, Mark Gjomarkaj, Fabio Luigi Massimo Ricciardolo and Mirella Profita
Nutrients 2024, 16(13), 2123; https://doi.org/10.3390/nu16132123 - 3 Jul 2024
Cited by 1 | Viewed by 2543
Abstract
IL-17A drives inflammation and oxidative stress, affecting the progression of chronic lung diseases (asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and cystic fibrosis). Oleuropein (OLP) is a polyphenolic compound present in olive oil and widely included in the Mediterranean diet. It exerts [...] Read more.
IL-17A drives inflammation and oxidative stress, affecting the progression of chronic lung diseases (asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and cystic fibrosis). Oleuropein (OLP) is a polyphenolic compound present in olive oil and widely included in the Mediterranean diet. It exerts antioxidant and anti-inflammatory activities, oxidative stress resistance, and anticarcinogenic effects with a conceivable positive impact on human health. We hypothesized that OLP positively affects the mechanisms of oxidative stress, apoptosis, DNA damage, cell viability during proliferation, and cell growth in alveolar epithelial cells and tested its effect in a human alveolar epithelial cell line (A549) in the presence of IL-17A. Our results show that OLP decreases the levels of oxidative stress (Reactive Oxygen Species, Mitochondrial membrane potential) and DNA damage (H2AX phosphorylation-ser139, Olive Tail Moment data) and increases cell apoptosis in A549 cells exposed to IL-17A. Furthermore, OLP decreases the number of viable cells during proliferation, the migratory potential (Scratch test), and the single cell capacity to grow within colonies as a cancer phenotype in A549 cells exposed to IL-17A. In conclusion, we suggest that OLP might be useful to protect lung epithelial cells from oxidative stress, DNA damage, cell growth, and cell apoptosis. This effect might be exerted in lung diseases by the downregulation of IL-17A activities. Our results suggest a positive effect of the components of olive oil on human lung health. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

21 pages, 8084 KiB  
Article
Stimuli-Specific Senescence of Primary Human Lung Fibroblasts Modulates Alveolar Stem Cell Function
by Maria Camila Melo-Narváez, Nora Bramey, Fenja See, Katharina Heinzelmann, Beatriz Ballester, Carina Steinchen, Eshita Jain, Kathrin Federl, Qianjiang Hu, Deepesh Dhakad, Jürgen Behr, Oliver Eickelberg, Ali Önder Yildirim, Melanie Königshoff and Mareike Lehmann
Cells 2024, 13(13), 1129; https://doi.org/10.3390/cells13131129 - 29 Jun 2024
Cited by 5 | Viewed by 3278
Abstract
Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging like cellular senescence are increased in these patients in different lung cell types including fibroblasts. However, little [...] Read more.
Aging is the main risk factor for chronic lung diseases (CLDs) including idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). Accordingly, hallmarks of aging like cellular senescence are increased in these patients in different lung cell types including fibroblasts. However, little is known about the different triggers that induce a senescence phenotype in different disease backgrounds and its role in CLD pathogenesis. Therefore, we characterized senescence in primary human lung fibroblasts (phLF) from control, IPF, or COPD patients at baseline and after exposure to disease-relevant insults (H2O2, bleomycin, TGF-β1) and studied their capacity to support progenitor cell potential in a lung organoid model. Bulk-RNA sequencing revealed that phLF from IPF and COPD activate different transcriptional programs but share a similar senescence phenotype at baseline. Moreover, H2O2 and bleomycin but not TGF-β1 induced senescence in phLF from different disease origins. Exposure to different triggers resulted in distinct senescence programs in phLF characterized by different SASP profiles. Finally, co-culture with bleomycin- and H2O2-treated phLF reduced the progenitor cell potential of alveolar epithelial progenitor cells. In conclusion, phLF from COPD and IPF share a conserved senescence response that varies depending on the insult and impairs alveolar epithelial progenitor capacity ex vivo. Full article
(This article belongs to the Special Issue The Role of Cellular Senescence in Health, Disease, and Aging)
Show Figures

Figure 1

11 pages, 1605 KiB  
Article
Volatile Organic Compounds in Cellular Headspace after Hyperbaric Oxygen Exposure: An In Vitro Pilot Study
by Feiko J. M. de Jong, Thijs A. Lilien, Dominic W. Fenn, Thijs T. Wingelaar, Pieter-Jan A. M. van Ooij, Anke H. Maitland-van der Zee, Markus W. Hollmann, Rob A. van Hulst and Paul Brinkman
Metabolites 2024, 14(5), 281; https://doi.org/10.3390/metabo14050281 - 13 May 2024
Viewed by 1630
Abstract
Volatile organic compounds (VOCs) might be associated with pulmonary oxygen toxicity (POT). This pilot study aims to identify VOCs linked to oxidative stress employing an in vitro model of alveolar basal epithelial cells exposed to hyperbaric and hyperoxic conditions. In addition, the feasibility [...] Read more.
Volatile organic compounds (VOCs) might be associated with pulmonary oxygen toxicity (POT). This pilot study aims to identify VOCs linked to oxidative stress employing an in vitro model of alveolar basal epithelial cells exposed to hyperbaric and hyperoxic conditions. In addition, the feasibility of this in vitro model for POT biomarker research was evaluated. The hyperbaric exposure protocol, similar to the U.S. Navy Treatment Table 6, was conducted on human alveolar basal epithelial cells, and the headspace VOCs were analyzed using gas chromatography–mass spectrometry. Three compounds (nonane [p = 0.005], octanal [p = 0.009], and decane [p = 0.018]), of which nonane and decane were also identified in a previous in vivo study with similar hyperbaric exposure, varied significantly between the intervention group which was exposed to 100% oxygen and the control group which was exposed to compressed air. VOC signal intensities were lower in the intervention group, but cellular stress markers (IL8 and LDH) confirmed increased stress and injury in the intervention group. Despite the observed reductions in compound expression, the model holds promise for POT biomarker exploration, emphasizing the need for further investigation into the complex relationship between VOCs and oxidative stress. Full article
(This article belongs to the Section Environmental Metabolomics)
Show Figures

Figure 1

18 pages, 982 KiB  
Review
Unlocking the Future: Pluripotent Stem Cell-Based Lung Repair
by Tobias Goecke, Fabio Ius, Arjang Ruhparwar and Ulrich Martin
Cells 2024, 13(7), 635; https://doi.org/10.3390/cells13070635 - 5 Apr 2024
Cited by 1 | Viewed by 3664
Abstract
The human respiratory system is susceptible to a variety of diseases, ranging from chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis to acute respiratory distress syndrome (ARDS). Today, lung diseases represent one of the major challenges to the health care sector and represent [...] Read more.
The human respiratory system is susceptible to a variety of diseases, ranging from chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis to acute respiratory distress syndrome (ARDS). Today, lung diseases represent one of the major challenges to the health care sector and represent one of the leading causes of death worldwide. Current treatment options often focus on managing symptoms rather than addressing the underlying cause of the disease. The limitations of conventional therapies highlight the urgent clinical need for innovative solutions capable of repairing damaged lung tissue at a fundamental level. Pluripotent stem cell technologies have now reached clinical maturity and hold immense potential to revolutionize the landscape of lung repair and regenerative medicine. Meanwhile, human embryonic (HESCs) and human-induced pluripotent stem cells (hiPSCs) can be coaxed to differentiate into lung-specific cell types such as bronchial and alveolar epithelial cells, or pulmonary endothelial cells. This holds the promise of regenerating damaged lung tissue and restoring normal respiratory function. While methods for targeted genetic engineering of hPSCs and lung cell differentiation have substantially advanced, the required GMP-grade clinical-scale production technologies as well as the development of suitable preclinical animal models and cell application strategies are less advanced. This review provides an overview of current perspectives on PSC-based therapies for lung repair, explores key advances, and envisions future directions in this dynamic field. Full article
(This article belongs to the Special Issue Mechanisms of Respiratory Diseases)
Show Figures

Figure 1

23 pages, 5112 KiB  
Article
ERK1/2-CEBPB Axis-Regulated hBD1 Enhances Anti-Tuberculosis Capacity in Alveolar Type II Epithelial Cells
by Yaoxin Chen, Zhenyu Han, Sian Zhang, Honglin Liu, Ke Wang, Jieyu Liu, Feichang Liu, Shiyun Yu, Na Sai, Haiyan Mai, Xinying Zhou, Chaoying Zhou, Qian Wen and Li Ma
Int. J. Mol. Sci. 2024, 25(4), 2408; https://doi.org/10.3390/ijms25042408 - 18 Feb 2024
Cited by 3 | Viewed by 2272
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a global health crisis with substantial morbidity and mortality rates. Type II alveolar epithelial cells (AEC-II) play a critical role in the pulmonary immune response against Mtb infection by secreting effector molecules such as antimicrobial peptides [...] Read more.
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a global health crisis with substantial morbidity and mortality rates. Type II alveolar epithelial cells (AEC-II) play a critical role in the pulmonary immune response against Mtb infection by secreting effector molecules such as antimicrobial peptides (AMPs). Here, human β-defensin 1 (hBD1), an important AMP produced by AEC-II, has been demonstrated to exert potent anti-tuberculosis activity. HBD1 overexpression effectively inhibited Mtb proliferation in AEC-II, while mice lacking hBD1 exhibited susceptibility to Mtb and increased lung tissue inflammation. Mechanistically, in A549 cells infected with Mtb, STAT1 negatively regulated hBD1 transcription, while CEBPB was the primary transcription factor upregulating hBD1 expression. Furthermore, we revealed that the ERK1/2 signaling pathway activated by Mtb infection led to CEBPB phosphorylation and nuclear translocation, which subsequently promoted hBD1 expression. Our findings suggest that the ERK1/2-CEBPB-hBD1 regulatory axis can be a potential therapeutic target for anti-tuberculosis therapy aimed at enhancing the immune response of AEC-II cells. Full article
Show Figures

Figure 1

15 pages, 4335 KiB  
Article
Del-1 Plays a Protective Role against COPD Development by Inhibiting Inflammation and Apoptosis
by Nakwon Kwak, Kyoung-Hee Lee, Jisu Woo, Jiyeon Kim, Jimyung Park, Chang-Hoon Lee and Chul-Gyu Yoo
Int. J. Mol. Sci. 2024, 25(4), 1955; https://doi.org/10.3390/ijms25041955 - 6 Feb 2024
Cited by 5 | Viewed by 2126
Abstract
Neutrophilic inflammation is a prominent feature of chronic obstructive pulmonary disease (COPD). Developmental endothelial locus-1 (Del-1) has been reported to limit excessive neutrophilic inflammation by inhibiting neutrophil adhesion to the vascular endothelial cells. However, the effects of Del-1 in COPD are not known. [...] Read more.
Neutrophilic inflammation is a prominent feature of chronic obstructive pulmonary disease (COPD). Developmental endothelial locus-1 (Del-1) has been reported to limit excessive neutrophilic inflammation by inhibiting neutrophil adhesion to the vascular endothelial cells. However, the effects of Del-1 in COPD are not known. We investigated the role of Del-1 in the pathogenesis of COPD. Del-1 protein expression was decreased in the lungs of COPD patients, especially in epithelial cells and alveolar macrophages. In contrast to human lung tissue, Del-1 expression was upregulated in lung tissue from mice treated with cigarette smoke extracts (CSE). Overexpression of Del-1 significantly suppressed IL-8 release and apoptosis in CSE-treated epithelial cells. In contrast, knockdown of Del-1 enhanced IL-8 release and apoptosis. In macrophages, overexpression of Del-1 significantly suppressed inflammatory cytokine release, and knockdown of Del-1 enhanced it. This anti-inflammatory effect was mediated by inhibiting the phosphorylation and acetylation of NF-κB p65. Nuclear factor erythroid 2-related factor 2 (Nrf2) activators, such as quercetin, resveratrol, and sulforaphane, increased Del-1 in both cell types. These results suggest that Del-1, mediated by Nrf2, plays a protective role against the pathogenesis of COPD, at least in part through anti-inflammatory and anti-apoptotic effects. Full article
(This article belongs to the Special Issue Programmed Cell Death and Oxidative Stress 2.0)
Show Figures

Figure 1

Back to TopTop