Anti-Inflammatory Effects of SGLT1 Synthetic Ligand in In Vitro and In Vivo Models of Lung Diseases
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells and Cell Treatments
2.2. Co-Culture of HT29 and Dendritic Cells
2.3. Small Interfering RNA (siRNA)
2.4. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Exposure of Mice to Aerosolized LPS
2.6. Asthma Model
2.7. Broncho-Alveolar Lavage
2.8. Hematoxylin–Eosin Staining
2.9. Immunohistochemistry
2.10. Immunofluorescence
2.11. Isolation of Murine Dendritic Cells
2.12. Statistical Analysis
3. Results
3.1. The Engagement of SGLT1 Inhibits the Response of Human Pneumocytes to LPS
3.2. Anti-Inflammatory Effects Induced by Engagement of SGLT1 by BLF501 Protect Lungs from Injury Due to Aerosol Administration of LPS
3.3. Anti-Inflammatory Effects of BLF501 in OVA-Induced Model of Allergic Asthma
3.4. OVA-Induced Lung Inflammation Is Inhibited by Oral Administration of BLF501
3.5. Hsp27 Orchestrates the Anti-Inflammatory Effects of BLF501 Through the Induction of IL-10 Production by Dendritic Cells and Monocytes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Pasrija, R.; Naime, M. The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease. Int. Immunopharmacol. 2021, 90, 107225. [Google Scholar] [CrossRef] [PubMed]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Tay, M.Z.; Poh, C.M.; Renia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Chignard, M.; Balloy, V. Neutrophil recruitment and increased permeability during acute lung injury induced by lipopolysaccharide. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L1083–L1090. [Google Scholar] [CrossRef]
- Shinbori, T.; Walczak, H.; Krammer, P.H. Activated T killer cells induce apoptosis in lung epithelial cells and the release of pro-inflammatory cytokine TNF-alpha. Eur. J. Immunol. 2004, 34, 1762–1770. [Google Scholar] [CrossRef]
- Wright, M.M.; Powell, C.S.; Jackson, R.M. Effects of intratracheal tumor necrosis factor-alpha plasmid vector on lipopolysaccharide lethality and lung injury in mice. Exp. Lung Res. 2004, 30, 653–671. [Google Scholar] [CrossRef]
- Haddad, I.Y.; Pataki, G.; Hu, P.; Galliani, C.; Beckman, J.S.; Matalon, S. Quantitation of Nitrotyrosine Levels in Lung Sections of Patients and Animals with Acute Lung Injury. J. Clin. Investig. 1994, 94, 2407–2413. [Google Scholar] [CrossRef]
- Matthay, M.A.; Geiser, T.; Matalon, S.; Ischiropoulos, H. Oxidant-mediated lung injury in the acute respiratory distress syndrome. Crit. Care Med. 1999, 27, 2028–2030. [Google Scholar] [CrossRef]
- Dorger, M.; Allmeling, A.M.; Kiefmann, R.; Munzing, S.; Messmer, K.; Krombach, F. Early inflammatory response to asbestos exposure in rat and hamster lungs: Role of inducible nitric oxide synthase. Toxicol. Appl. Pharmacol. 2002, 181, 93–105. [Google Scholar] [CrossRef]
- Greene, C.M.; McElvaney, N.G. Toll-like receptor expression and function in airway epithelial cells. Arch. Immunol. Ther. Exp. 2005, 53, 418–427. [Google Scholar]
- Koff, J.L.; Shao, M.X.G.; Ueki, I.F.; Nadel, J.A. Multiple TLRs activate EGFR via a signaling cascade to produce innate immune responses in airway epithelium. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2008, 294, L1068–L1075. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, M.; Gariboldi, S.; Zanobbio, L.; Selleri, S.; Dusio, G.F.; Mauro, V.; Rossini, A.; Balsari, A.; Rumio, C. Sodium-dependent glucose transporter-1 as a novel immunological player in the intestinal mucosa. J. Immunol. 2008, 181, 3126–3136. [Google Scholar] [CrossRef] [PubMed]
- Koepsell, H. Glucose transporters in the small intestine in health and disease. Pflug. Arch. Eur. J. Physiol. 2020, 472, 1207–1248. [Google Scholar] [CrossRef]
- Mamchaoui, K.; Makhloufi, Y.; Saumon, G. Glucose transporter gene expression in freshly isolated and cultured rat pneumocytes. Acta Physiol. Scand. 2002, 175, 19–24. [Google Scholar] [CrossRef]
- Bodega, F.; Sironi, C.; Armilli, M.; Porta, C.; Agostoni, E. Evidence for Na+-glucose cotransporter in type I alveolar epithelium. Histochem. Cell Biol. 2010, 134, 129–136. [Google Scholar] [CrossRef]
- Vrhovac, I.; Eror, D.B.; Klessen, D.; Burger, C.; Breljak, D.; Kraus, O.; Radovic, N.; Jadrijevic, S.; Aleksic, I.; Walles, T.; et al. Localizations of Na+-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflug. Arch. Eur. J. Physiol. 2015, 467, 1881–1898. [Google Scholar] [CrossRef]
- Cardoso-Sousa, L.; Aguiar, E.M.G.; Caixeta, D.C.; Vilela, D.D.; da Costa, D.P.; Silva, T.L.; Cunha, T.M.; Faria, P.R.; Espindola, F.S.; Jardim, A.C.; et al. Effects of salbutamol and phlorizin on acute pulmonary inflammation and disease severity in experimental sepsis. PLoS ONE 2019, 14, e0222575. [Google Scholar] [CrossRef]
- Oliveira, T.L.; Candeia-Medeiros, N.; Cavalcante-Araujo, P.M.; Melo, I.S.; Favaro-Pipi, E.; Fatima, L.A.; Rocha, A.A.; Goulart, L.R.; Machado, U.F.; Campos, R.R.; et al. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation. Sci. Rep. 2016, 6, 21752. [Google Scholar] [CrossRef]
- Sharma, P.; Khairnar, V.; Madunic, I.V.; Singh, Y.; Pandyra, A.; Salker, M.S.; Koepsell, H.; Sabolic, I.; Lang, F.; Lang, P.A.; et al. SGLT1 Deficiency Turns Listeria Infection into a Lethal Disease in Mice. Cell. Physiol. Biochem. 2017, 42, 1358–1365. [Google Scholar] [CrossRef]
- La Ferla, B.; Spinosa, V.; D’Orazio, G.; Palazzo, M.; Balsari, A.; Foppoli, A.A.; Rumio, C.; Nicotra, F. Dansyl C-glucoside as a novel agent against endotoxic shock. ChemMedChem 2010, 5, 1677–1680. [Google Scholar] [CrossRef] [PubMed]
- Nicotra, F.; Airoldi, C.; Cardona, F.; Johannis, P.K. Synthesis of C- and S-Glycosides. In Comprehensive Glycoscience; Elsevier: Oxford, UK, 2007; pp. 647–683. [Google Scholar]
- Paiotta, A.; D’Orazio, G.; Palorini, R.; Ricciardiello, F.; Zoia, L.; Votta, G.; De Gioia, L.; Chiaradonna, F.; La Ferla, B. Design, Synthesis, and Preliminary Biological Evaluation of GlcNAc-6P Analogues for the Modulation of Phosphoacetylglucosamine Mutase 1 (AGM1/PGM3). Eur. J. Org. Chem. 2018, 2018, 1946–1952. [Google Scholar] [CrossRef]
- Ernst, B.; Magnani, J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov. 2009, 8, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Ricciardiello, F.; Votta, G.; Palorini, R.; Raccagni, I.; Brunelli, L.; Paiotta, A.; Tinelli, F.; D’Orazio, G.; Valtorta, S.; De Gioia, L.; et al. Inhibition of the Hexosamine Biosynthetic Pathway by targeting PGM3 causes breast cancer growth arrest and apoptosis. Cell Death Dis. 2018, 9, 377. [Google Scholar] [CrossRef]
- D’Orazio, G.; Parisi, G.; Policano, C.; Mechelli, R.; Pisanelli, G.C.; Pitaro, M.; Ristori, G.; Salvetti, M.; Nicotra, F.; La Ferla, B. Arsenical C-Glucoside Derivatives with Promising Antitumor Activity. Eur. J. Org. Chem. 2015, 2015, 4620–4623. [Google Scholar] [CrossRef]
- Nicotra, F.; Cipolla, L.; La Ferla, B.; Airoldi, C.; Zona, C.; Orsato, A.; Shaikh, N.; Russo, L. Carbohydrate scaffolds in chemical genetic studies. J. Biotechnol. 2009, 144, 234–241. [Google Scholar] [CrossRef]
- Tamburrini, A.; Colombo, C.; Bernardi, A. Design and synthesis of glycomimetics: Recent advances. Med. Res. Rev. 2020, 40, 495–531. [Google Scholar] [CrossRef]
- Hevey, R. Strategies for the Development of Glycomimetic Drug Candidates. Pharmaceuticals 2019, 12, 55. [Google Scholar] [CrossRef]
- Fernández-Tejada, A.; Cañada, F.J.; Jiménez-Barbero, J. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics. Chem. Eur. J. 2015, 21, 10616–10628. [Google Scholar] [CrossRef]
- Compain, P.; Martin, O.R. Carbohydrate mimetics-based glycosyltransferase inhibitors. Bioorg. Med. Chem. 2001, 9, 3077–3092. [Google Scholar] [CrossRef]
- Barchi, J.J. Emerging roles of carbohydrates and glycomimetics in anticancer drug design. Curr. Pharm. Des. 2000, 6, 485–501. [Google Scholar] [CrossRef] [PubMed]
- Filice, M.; Palomo, J.M. Monosaccharide derivatives as central scaffolds in the synthesis of glycosylated drugs. RSC Adv. 2012, 2, 1729–1742. [Google Scholar] [CrossRef]
- D’Orazio, G.; Martorana, A.M.; Filippi, G.; Polissi, A.; Gioia, L.D.; Ferla, B.L. N-Spirofused Bicyclic Derivatives of 1-Deoxynojirimycin: Synthesis and Preliminary Biological Evaluation. ChemistrySelect 2016, 1, 2444–2447. [Google Scholar] [CrossRef]
- Cardani, D.; Sardi, C.; La Ferla, B.; D’Orazio, G.; Sommariva, M.; Marcucci, F.; Olivero, D.; Tagliabue, E.; Koepsell, H.; Nicotra, F.; et al. Sodium glucose cotransporter 1 ligand BLF501 as a novel tool for management of gastrointestinal mucositis. Mol. Cancer 2014, 13, 23. [Google Scholar] [CrossRef]
- D’Orazio, G.; Marradi, M.; La Ferla, B. Dual-Targeting Gold Nanoparticles: Simultaneous Decoration with Ligands for Co-Transporters SGLT-1 and B0AT1. Appl. Sci. 2024, 14, 2248. [Google Scholar] [CrossRef]
- Giudicelli, J.; Bertrand, M.F.; Bilski, S.; Tran, T.T.; Poiree, J.C. Effect of cross-linkers on the structure and function of pig-renal sodium-glucose cotransporters after papain treatment. Biochem. J. 1998, 330, 733–736. [Google Scholar] [CrossRef]
- Stevens, B.R.; Fernandez, A.; Hirayama, B.; Wright, E.M.; Kempner, E.S. Intestinal Brush-Border Membrane Na+/Glucose Cotransporter Functions Insitu as a Homotetramer. Proc. Natl. Acad. Sci. USA 1990, 87, 1456–1460. [Google Scholar] [CrossRef]
- Takahashi, M.; Malathi, P.; Preiser, H.; Jung, C.Y. Radiation Inactivation Studies on the Rabbit Kidney Sodium-Dependent Glucose Transporter. J. Biol. Chem. 1985, 260, 551–556. [Google Scholar] [CrossRef]
- Turner, R.J.; Kempner, E.S. Radiation Inactivation Studies of the Renal Brush-Border Membrane Phlorizin-Binding Protein. J. Biol. Chem. 1982, 257, 794–797. [Google Scholar] [CrossRef]
- Dusio, G. Immunomodulation and Intestinal Barrier Protection Activities of a Novel Synthetic Glucose Analogue in Inflammatory Animal Model of Colitis and Asthma. Ph.D. Thesis, University of Milan, Milan, Italy, 2010. [Google Scholar]
- Tiruppathi, C.; Shimizu, J.; Miyawaki-Shimizu, K.; Vogel, S.M.; Bair, A.M.; Minshall, R.D.; Predescu, D.; Malik, A.B. Role of NF-kappa B-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide. J. Biol. Chem. 2008, 283, 4210–4218. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, C.; Qin, Y.; Niu, S.; Gao, S.; Li, X.; Tao, T.; Shen, A. Role of Mitogen-Activated Protein Kinase Cascades in Inducible Nitric Oxide Synthase Expression by Lipopolysaccharide in a Rat Schwann Cell Line. Neurochem. Res. 2009, 34, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-L.; Chang, P.-Y.; Tsao, K.-C.; Sun, C.-F.; Wu, L.L.; Wu, J.T. A panel of multiple markers associated with chronic systemic inflammation and the risk of atherogenesis is detectable in asthma and chronic obstructive pulmonary disease. J. Clin. Lab. Anal. 2007, 21, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Hessel, E.M.; VanOosterhout, A.J.M.; VanArk, I.; VanEsch, B.; Hofman, G.; VanLoveren, H.; Savelkoul, H.F.J.; Nijkamp, F.P. Development of airway hyperresponsiveness is dependent on interferon-gamma and independent of eosinophil infiltration. Am. J. Respir. Cell Mol. Biol. 1997, 16, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Hoidal, J.R.; Mukherjee, T.K. Role of TNF alpha in pulmonary pathophysiology. Respir. Res. 2006, 7, 125. [Google Scholar] [CrossRef]
- Zanobbio, L.; Palazzo, M.; Gariboldi, S.; Dusio, G.F.; Cardani, D.; Mauro, V.; Marcucci, F.; Balsari, A.; Rumio, C. Intestinal Glucose Uptake Protects Liver from Lipopolysaccharide and D-Galactosamine, Acetaminophen, and Alpha-Amanitin in Mice. Am. J. Pathol. 2009, 175, 1066–1076. [Google Scholar] [CrossRef]
- Ogawa, Y.; Duru, E.A.; Ameredes, B.T. Role of IL-10 in the resolution of airway inflammation. Curr. Mol. Med. 2008, 8, 437–445. [Google Scholar] [CrossRef]
- Wheeler, D.S.; Wong, H.R. Heat shock response and acute lung injury. Free Radic. Biol. Med. 2007, 42, 1–14. [Google Scholar] [CrossRef]
- Laudanski, K.; De, A.; Miller-Graziano, C. Exogenous heat shock protein 27 uniquely blocks differentiation of monocytes to dendritic cells. Eur. J. Immunol. 2007, 37, 2812–2824. [Google Scholar] [CrossRef]
- Gopallawa, I.; Dehinwal, R.; Bhatia, V.; Gujar, V.; Chirmule, N. A four-part guide to lung immunology: Invasion, inflammation, immunity, and intervention. Front. Immunol. 2023, 14, 1119564. [Google Scholar] [CrossRef]
- He, R.; Zuo, Y.; Yi, K.; Liu, B.; Song, C.; Li, N.; Geng, Q. The role and therapeutic potential of itaconate in lung disease. Cell. Mol. Biol. Lett. 2024, 29, 129. [Google Scholar] [CrossRef]
- Michalaki, C.; Albers, G.J.; Byrne, A.J. Itaconate as a key regulator of respiratory disease. Clin. Exp. Immunol. 2024, 215, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, E.I.; Qureshi, S.T.; Schnare, M. The role of toll-like receptors in acute and chronic lung inflammation. J. Inflamm. 2010, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Borchers, M.T.; Lau, G.W.; Dela Cruz, C.S. Editorial: Outsmarting the Host: How Bacterial Pathogens Modulate Immune Responses in the Lung. Front. Immunol. 2020, 11, 629491. [Google Scholar] [CrossRef]
- Marrella, V.; Nicchiotti, F.; Cassani, B. Microbiota and Immunity during Respiratory Infections: Lung and Gut Affair. Int. J. Mol. Sci. 2024, 25, 4051. [Google Scholar] [CrossRef]
- Li, K.; Li, M.; Li, W.; Yu, H.; Sun, X.; Zhang, Q.; Li, Y.; Li, X.; Abel, E.D.; Wu, Q.; et al. Airway epithelial regeneration requires autophagy and glucose metabolism. Cell Death Dis. 2019, 10, 875. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Sun, X.; Wu, Q.; Li, Y.; Li, K.; Zhang, Q.; Abel, E.D.; Chen, H. Autophagy Reprograms Alveolar Progenitor Cell Metabolism in Response to Lung Injury. Stem Cell Rep. 2020, 14, 420–432. [Google Scholar] [CrossRef]
- Bachofen, M.; Weibel, E.R. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin. Chest Med. 1982, 3, 35–56. [Google Scholar] [CrossRef]
- Kline, J.N.; Cowden, J.D.; Hunninghake, G.W.; Schutte, B.C.; Watt, J.L.; Wohlford-Lenane, C.L.; Powers, L.S.; Jones, M.P.; Schwartz, D.A. Variable airway responsiveness to inhaled lipopolysaccharide. Am. J. Respir. Crit. Care Med. 1999, 160, 297–303. [Google Scholar] [CrossRef]
- Arbour, N.C.; Lorenz, E.; Schutte, B.C.; Zabner, J.; Kline, J.N.; Jones, M.; Frees, K.; Watt, J.L.; Schwartz, D.A. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 2000, 25, 187–191. [Google Scholar] [CrossRef]
- Chollet-Martin, S. Polymorphonuclear neutrophil activation during the acute respiratory distress syndrome. Intensive Care Med. 2000, 26, 1575–1577. [Google Scholar] [CrossRef]
- Martin, M.A.; Silverman, H.J. Gram-Negative Sepsis and the Adult Respiratory-Distress Syndrome. Clin. Infect. Dis. 1992, 14, 1213–1228. [Google Scholar] [CrossRef] [PubMed]
- Puneet, P.; Moochhala, S.; Bhatia, M. Chemokines in acute respiratory distress syndrome. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005, 288, L3–L15. [Google Scholar] [CrossRef] [PubMed]
- Davidson, K.G.; Bersten, A.D.; Barr, H.A.; Dowling, K.D.; Nicholas, T.E.; Doyle, I.R. Lung function, permeability, and surfactant composition in oleic acid-induced acute lung injury in rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L1091–L1102. [Google Scholar] [CrossRef]
- Howard, M.; Muchamuel, T.; Andrade, S.; Menon, S. Interleukin-10 Protects Mice from Lethal Endotoxemia. J. Exp. Med. 1993, 177, 1205–1208. [Google Scholar] [CrossRef]
- Xu, W.; Schlagwein, N.; Roos, A.; van den Berg, T.K.; Daha, M.R.; van Kooten, C. Human peritoneal macrophage show functional characteristics of M-CSF-driven anti-inflammatory type 2 macrophages. Eur. J. Immunol. 2007, 37, 1594–1599. [Google Scholar] [CrossRef]
- Miller-Graziano, C.L.; De, A.; Laudanski, K.; Herrmann, T.; Bandyopadhyay, S. HSP27: An anti-inflammatory and immunomodulatory stress protein acting to dampen immune function. In The Biology of Extracellular Molecular Chaperones: Novartis Foundation Symposium 291; Wiley: Hoboken, NJ, USA, 2008; pp. 196–294. [Google Scholar] [CrossRef]
- De, A.K.; Kodys, K.M.; Yeh, B.S.; Miller-Graziano, C. Exaggerated human monocyte IL-10 concomitant to minimal TNF-alpha induction by heat-shock protein 27 (Hsp27) suggests Hsp27 is primarily an antiinflammatory stimulus. J. Immunol. 2000, 165, 3951–3958. [Google Scholar] [CrossRef]
- Salari, S.; Seibert, T.; Chen, Y.X.; Hu, T.; Shi, C.; Zhao, X.; Cuerrier, C.M.; Raizman, J.E.; O’Brien, E.R. Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages. Cell Stress Chaperones 2013, 18, 53–63. [Google Scholar] [CrossRef]
- Batulan, Z.; Pulakazhi Venu, V.K.; Li, Y.; Koumbadinga, G.; Alvarez-Olmedo, D.G.; Shi, C.; O’Brien, E.R. Extracellular Release and Signaling by Heat Shock Protein 27: Role in Modifying Vascular Inflammation. Front. Immunol. 2016, 7, 285. [Google Scholar] [CrossRef]
- Rayner, K.; Sun, J.; Chen, Y.X.; McNulty, M.; Simard, T.; Zhao, X.; Wells, D.J.; de Belleroche, J.; O’Brien, E.R. Heat shock protein 27 protects against atherogenesis via an estrogen-dependent mechanism: Role of selective estrogen receptor beta modulation. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1751–1756. [Google Scholar] [CrossRef]
- Shi, C.; Deng, J.; Chiu, M.; Chen, Y.X.; O’Brien, E.R. Heat shock protein 27 immune complex altered signaling and transport (ICAST): Novel mechanisms of attenuating inflammation. FASEB J. 2020, 34, 14287–14301. [Google Scholar] [CrossRef]
- Newton, R.; Holden, N.S.; Catley, M.C.; Oyelusi, W.; Leigh, R.; Proud, D.; Barnes, P.J. Repression of inflammatory gene expression in human pulmonary epithelial cells by small-molecule I kappa B kinase inhibitors. J. Pharmacol. Exp. Ther. 2007, 321, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Ten, R.M.; McKinstry, M.J.; Trushin, S.A.; Asin, S.; Paya, C.V. The signal transduction pathway of CD23 (Fc epsilon RIIb) targets I kappa B kinase. J. Immunol. 1999, 163, 3851–3857. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.Y.; Qi, Y.; Liu, X.H.; Jiang, Q.B.; Liu, S.Y.; Jiang, Y.; Jiang, Z.F. Activation of NF-kappa B in bronchial epithelial cells from children with asthma. Chin. Med. J. 2001, 114, 909–911. [Google Scholar] [PubMed]
Untr 1 | BLF501 1 | LPS 1 | BLF501 + LPS 1 | |
---|---|---|---|---|
Neutrophiles | 132/mL ± 13 | 122/mL ± 21 | 3500/mL ± 216 | 127/mL ± 28 |
Macrophages | 36/mL ± 6 | 26/mL ± 7 | 350/mL ± 39 | 29/mL ± 11 |
Untr 1 | OVA 1 | BLF501 1 | BLF501 + OVA 1 | |
---|---|---|---|---|
CD11c + DCs | 217 ± 35 | 360 ± 27 | 289 ± 52 | 4110 ± 328 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumio, C.; Dusio, G.; Cardani, D.; La Ferla, B.; D’Orazio, G. Anti-Inflammatory Effects of SGLT1 Synthetic Ligand in In Vitro and In Vivo Models of Lung Diseases. Immuno 2024, 4, 502-520. https://doi.org/10.3390/immuno4040031
Rumio C, Dusio G, Cardani D, La Ferla B, D’Orazio G. Anti-Inflammatory Effects of SGLT1 Synthetic Ligand in In Vitro and In Vivo Models of Lung Diseases. Immuno. 2024; 4(4):502-520. https://doi.org/10.3390/immuno4040031
Chicago/Turabian StyleRumio, Cristiano, Giuseppina Dusio, Diego Cardani, Barbara La Ferla, and Giuseppe D’Orazio. 2024. "Anti-Inflammatory Effects of SGLT1 Synthetic Ligand in In Vitro and In Vivo Models of Lung Diseases" Immuno 4, no. 4: 502-520. https://doi.org/10.3390/immuno4040031
APA StyleRumio, C., Dusio, G., Cardani, D., La Ferla, B., & D’Orazio, G. (2024). Anti-Inflammatory Effects of SGLT1 Synthetic Ligand in In Vitro and In Vivo Models of Lung Diseases. Immuno, 4(4), 502-520. https://doi.org/10.3390/immuno4040031