Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = human Oral Tissue Stem Cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 1109 KB  
Review
Engineered Human Dental Pulp Stem Cells with Promising Potential for Regenerative Medicine
by Emi Inada, Issei Saitoh, Masahiko Terajima, Yuki Kiyokawa, Naoko Kubota, Haruyoshi Yamaza, Kazunori Morohoshi, Shingo Nakamura and Masahiro Sato
BioTech 2025, 14(4), 88; https://doi.org/10.3390/biotech14040088 - 3 Nov 2025
Viewed by 1441
Abstract
The fields of regenerative medicine and stem cell-based tissue engineering hold great potential for treating a wide range of tissue and organ defects. Stem cells are ideal candidates for regenerative medicine because they are undifferentiated cells with the capacity for self-renewal, rapid proliferation, [...] Read more.
The fields of regenerative medicine and stem cell-based tissue engineering hold great potential for treating a wide range of tissue and organ defects. Stem cells are ideal candidates for regenerative medicine because they are undifferentiated cells with the capacity for self-renewal, rapid proliferation, multilineage differentiation, and expression of pluripotency-associated genes. Human dental pulp stem cells (DPSCs) consist of various cell types (including stem cells) and possess multilineage differentiation potential. Owing to their easy isolation and rapid proliferation, DPSCs and their derivatives are considered promising candidates for repairing injured tissues. Recent advances in gene engineering have enabled cells to express specific genes of interest, leading to the secretion of medically important proteins or the alteration of cell behavior. For example, transient expression of Yamanaka’s factors in DPSCs can induce transdifferentiation into induced pluripotent stem cells (iPSCs). These gene-engineered cells represent valuable candidates for regenerative medicine, including stem cell therapies and tissue engineering. However, challenges remain in their development and application, particularly regarding safety, efficacy, and scalability. This review summarizes current knowledge on gene-engineered DPSCs and their derivatives and explores possible clinical applications, with a special focus on oral regeneration. Full article
(This article belongs to the Section Medical Biotechnology)
Show Figures

Figure 1

18 pages, 1232 KB  
Review
The Role of Endoplasmic Reticulum Stress in the Development of Periodontitis—From Experimental Cell and Animal Models to Humans
by Sebastian Gawlak-Socka, Paulina Sokołowska, Gabriela Henrykowska, Edward Kowalczyk, Sebastian Kłosek and Anna Wiktorowska-Owczarek
Int. J. Mol. Sci. 2025, 26(19), 9620; https://doi.org/10.3390/ijms26199620 - 2 Oct 2025
Cited by 1 | Viewed by 1276
Abstract
Periodontal disease is a prevalent inflammatory disorder that can lead to severe oral complications. Recent studies increasingly underline the role of endoplasmic reticulum (ER) stress in its pathogenesis. Experimental models using inflammatory agents such as lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-α), and ligature-induced [...] Read more.
Periodontal disease is a prevalent inflammatory disorder that can lead to severe oral complications. Recent studies increasingly underline the role of endoplasmic reticulum (ER) stress in its pathogenesis. Experimental models using inflammatory agents such as lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-α), and ligature-induced periodontitis in rodents, as well as chemical hypoxia, have consistently demonstrated the activation of unfolded protein response (UPR) pathways in periodontal cells. Key ER stress markers, including CHOP, GRP78, PERK, and ATF6, were upregulated in periodontal ligament cells, stem cells, and gingival epithelial cells under these conditions. While ER stress in periodontitis is primarily associated with detrimental outcomes such as apoptosis and inflammation, it may also have a physiological role in bone remodeling via the PERK-eIF2α-ATF4 axis. Importantly, several ER stress-modulating agents—such as oridonin, melatonin, and exosomes derived from M2 macrophages—have shown therapeutic potential by reducing stress marker expression and limiting periodontal damage. These findings suggest that targeting ER stress may offer a novel therapeutic strategy. Future human studies are essential to determine whether a combined approach targeting inflammation and ER stress could more effectively halt or reverse periodontal tissue destruction, while also assessing the long-term safety of ER stress modulation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

9 pages, 647 KB  
Brief Report
Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Oral Mucosal Engraftment in Urethral Reconstruction: Influence of Tissue Origin and Culture Growth Phase (Log vs. Stationary) on miRNA Content
by Daisuke Watanabe, Akio Mizushima and Akio Horiguchi
Int. J. Mol. Sci. 2025, 26(19), 9412; https://doi.org/10.3390/ijms26199412 - 26 Sep 2025
Viewed by 753
Abstract
Urethral stricture involves fibrotic narrowing of the urethral mucosa and spongiosum. Although urethroplasty using oral mucosal grafts is the gold standard for complex cases due to its high success rate, technical complexity limits its broader adoption. To address this, endoscopic transplantation of oral [...] Read more.
Urethral stricture involves fibrotic narrowing of the urethral mucosa and spongiosum. Although urethroplasty using oral mucosal grafts is the gold standard for complex cases due to its high success rate, technical complexity limits its broader adoption. To address this, endoscopic transplantation of oral mucosal tissue has been proposed. While feasibility has been demonstrated, clinical efficacy remains suboptimal. Developing adjunctive factors that facilitate mucosal engraftment may improve outcomes of endoscopic transplantation. Extracellular vesicles (EVs)—membrane-bound nanoparticles secreted by cells that deliver miRNAs and other bioactive molecules—have recently emerged as promising candidates. We investigated EVs derived from four mesenchymal stromal cell (MSC) sources—stem cells from human exfoliated deciduous teeth (SHED), adipose tissue, umbilical cord, and bone marrow (BM)—isolated during both logarithmic (log) and stationary culture phases. miRNA profiling revealed distinct phase- and origin-specific signatures. SHED-derived EVs from the log phase and bone marrow-derived EVs from the stationary phase expressed miR-31, the let-7 family, and miR-205, suggesting early wound healing potential. In contrast, stationary-phase SHED-EVs and log-phase BM-MSC-EVs were enriched in the miR-99 family and miR-31, indicating potential roles in epithelial stabilization and fibrosis modulation. These findings support phase-specific application of MSC-EVs to optimize mucosal engraftment in transurethral reconstruction. Full article
Show Figures

Figure 1

22 pages, 1555 KB  
Review
The Human Amniotic Membrane: A Rediscovered Tool to Improve Wound Healing in Oral Surgery
by Maurizio Sabbatini, Paolo Boffano, Martina Ferrillo, Mario Migliario and Filippo Renò
Int. J. Mol. Sci. 2025, 26(17), 8470; https://doi.org/10.3390/ijms26178470 - 31 Aug 2025
Viewed by 2930
Abstract
Wound healing in oral surgery is influenced by systemic conditions (aging, diabetes) and habits (smoking, alcoholism), which can hinder the natural regenerative capacity of the oral mucosa. The human amniotic membrane (hAM), long recognized for its wound-healing properties, has gained attention as a [...] Read more.
Wound healing in oral surgery is influenced by systemic conditions (aging, diabetes) and habits (smoking, alcoholism), which can hinder the natural regenerative capacity of the oral mucosa. The human amniotic membrane (hAM), long recognized for its wound-healing properties, has gained attention as a valuable biomaterial in regenerative dentistry. Its biological composition—including epithelial and mesenchymal stem cells, collagen, growth factors, cytokines, and proteins with anti-inflammatory and antimicrobial properties—supports anti-inflammatory, angiogenic, immunomodulatory, and pro-epithelializing effects. These elements work synergistically to enhance tissue repair, reduce scarring, and promote rapid healing. The hAM can be preserved through cryopreservation, dehydration, or freeze-drying, maintaining its structural and functional integrity for diverse clinical uses. In oral surgery, the hAM has been applied with significant success to surgical wound coverage, treatment of periodontal and bone defects, and implant site regeneration, as well as management of complex conditions like medication-related osteonecrosis of the jaw (MRONJ). Clinical studies and meta-analyses support its safety, efficacy, and adaptability. Despite its proven therapeutic benefits, the hAM remains underutilized in dentistry due to challenges related to its preparation and storage. This review aims to highlight its potential and encourage broader clinical adoption in regenerative oral surgical practices. Full article
(This article belongs to the Special Issue Recent Advances in Wound Healing: 2nd Edition)
Show Figures

Figure 1

28 pages, 1708 KB  
Review
Thallium Toxicity: Mechanisms of Action, Available Therapies, and Experimental Models
by Karla Alejandra Avendaño-Briseño, Jorge Escutia-Martínez, José Pedraza-Chaverri and Estefani Yaquelin Hernández-Cruz
Future Pharmacol. 2025, 5(3), 49; https://doi.org/10.3390/futurepharmacol5030049 - 30 Aug 2025
Cited by 2 | Viewed by 4399 | Correction
Abstract
Thallium (Tl) is a non-essential and highly toxic heavy metal capable of replacing potassium (K+) in biological systems, leading to mitochondrial dysfunction, oxidative stress, and inhibition of protein synthesis. In humans, the estimated oral lethal dose ranges from 10 to 15 [...] Read more.
Thallium (Tl) is a non-essential and highly toxic heavy metal capable of replacing potassium (K+) in biological systems, leading to mitochondrial dysfunction, oxidative stress, and inhibition of protein synthesis. In humans, the estimated oral lethal dose ranges from 10 to 15 mg/kg, with acute mortality rates of 6–15% and chronic neurological sequelae in up to 55% of survivors. Environmental releases of thallium of up to 5000 metric tons annually from industrial and mining activities, combined with its high oral bioavailability and nonspecific multisystemic symptoms, underscore the urgent need for more effective therapeutic strategies. This review summarizes current evidence on Tl toxicity, including its mechanisms of action, clinical manifestations, and available treatments. It emphasizes the strategic selection of biological models: simple organisms such as Caenorhabditis elegans and Drosophila melanogaster enable high-throughput screening and early biomarker detection; zebrafish (Danio rerio) provide vertebrate-level evaluation of multi-organ effects; and rodent models offer systemic toxicokinetic and therapeutic validation. Human-derived organoids and induced pluripotent stem cell (iPSC) systems recreate tissue-specific microenvironments, allowing translational assessment of mitochondrial, neuronal, and cardiac toxicity. Integrating these models within a tiered and complementary framework, alongside environmental and clinical surveillance, can accelerate the development of targeted treatments and strengthen public health responses to Tl exposure. Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2025)
Show Figures

Graphical abstract

18 pages, 4077 KB  
Article
Exosome-Derived miR-11987 in Bovine Milk Inhibits Obesity Through Browning of White Fat
by In-Seon Bae and Sang Hoon Kim
Int. J. Mol. Sci. 2025, 26(13), 6006; https://doi.org/10.3390/ijms26136006 - 23 Jun 2025
Viewed by 1246
Abstract
The global obese population accounts for approximately 30% of the total population and continues to increase. White adipocytes, which accumulate in the body for energy storage, are associated with obesity. Mechanisms that activate browning of white adipocytes are an attractive therapeutic target for [...] Read more.
The global obese population accounts for approximately 30% of the total population and continues to increase. White adipocytes, which accumulate in the body for energy storage, are associated with obesity. Mechanisms that activate browning of white adipocytes are an attractive therapeutic target for obesity and metabolic disorders. Exosomes are nano-sized biovesicles that play a role in cell-to-cell communication though the transfer of cargos such as microRNAs. Although milk exosomes contain many endogenous microRNA molecules, the role of microRNAs in milk exosomes is limited. Therefore, the aim of this study was to investigate the effects of milk exosomes on the browning of white adipocyte. Mouse pre-adipocytes (3T3-L1) and human adipose-derived stem cells (hADSCs) were differentiated and exposed to milk exosomes. Compared to control, milk exosomes promoted the expression of thermogenic genes and cellular mitochondrial energy metabolism in both 3T3-L1 cells and hADSCs. Additionally, milk exosomes were orally administered to mice fed a high-fat diet. As the intake of milk exosomes increased, the mice’s body weight decreased. Milk exosomes also increased the protein levels of thermogenic genes and mitochondrial-related genes in mouse adipose tissue. The overexpression of miR-11987, which is abundant in milk exosomes, in both 3T3-L1 cells and hADSCs led to the increased expression of thermogenic genes and mitochondrial activity. Our results support that bovine-specific miR-11987 in milk exosomes promotes the browning of white adipocytes. Therefore, milk exosome and milk exosomal miR-11987 could have significant clinical implications for obesity and metabolic syndrome. Full article
(This article belongs to the Special Issue Molecular Research on Diabetes and Obesity)
Show Figures

Figure 1

15 pages, 1335 KB  
Article
Elucidating the Synergistic Effect of the PrimeC Combination for Amyotrophic Lateral Sclerosis in Human Induced Pluripotent Stem Cell-Derived Motor Neurons and Mouse Models
by Shiran Salomon-Zimri, Nitai Kerem, Gabriel R. Linares, Niva Russek-Blum, Justin K. Ichida and Ferenc Tracik
Pharmaceuticals 2025, 18(4), 524; https://doi.org/10.3390/ph18040524 - 3 Apr 2025
Cited by 2 | Viewed by 1989
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by the involvement of multiple pathways and mechanisms. The complexity of its pathophysiology is reflected in the diverse hypotheses relating to its underlying causes. Given this intricate interplay of processes, a combination [...] Read more.
Background: Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease characterized by the involvement of multiple pathways and mechanisms. The complexity of its pathophysiology is reflected in the diverse hypotheses relating to its underlying causes. Given this intricate interplay of processes, a combination therapy approach offers a promising strategy. Combination therapies have demonstrated significant success in treating complex diseases, where they aim to achieve synergistic therapeutic effects and reduce drug dosage. PrimeC is an oral combination treatment composed of a patented novel formulation consisting of specific and unique doses of two well-characterized drugs (ciprofloxacin and celecoxib). It aims to synergistically inhibit the progression of ALS by addressing key elements of its pathophysiology. Objectives: Demonstrating the synergistic effect of the PrimeC combination compared to each of its individual components, celecoxib and ciprofloxacin, and assessing its ability to improve the drug concentration profile and efficacy. Methods: The efficacy of the PrimeC combination was assessed in a survival assay using human induced pluripotent stem cell (iPSC)-derived motor neurons. Additionally, a drug profiling study was conducted, measuring drug levels in the brain and serum of C57BL mice treated with a single compound versus the combination. Results: Motor neurons modeling ALS treated with the PrimeC combination exhibited better survival rates compared to treatment with either individual compound alone. The enhanced efficacy of the combination was further supported by a drug concentration profiling study in rodents, demonstrating that the PrimeC combination resulted in increased ciprofloxacin concentrations in both brain tissue and serum—highlighting the optimized interaction and synergistic potential of its two comprising agents. Conclusions: Our findings support the potential of combination therapy as an effective strategy for ALS treatment. Specifically, the PrimeC combination demonstrated promising therapeutic effects, providing a strong rationale for its ongoing development as a targeted treatment for ALS. Full article
Show Figures

Figure 1

26 pages, 8131 KB  
Article
Human-Specific Organization of Proliferation and Stemness in Squamous Epithelia: A Comparative Study to Elucidate Differences in Stem Cell Organization
by Ashlee Harris, Kaylee Burnham, Ram Pradhyumnan, Arthi Jaishankar, Lari Häkkinen, Rafael E. Góngora-Rosero, Yelena Piazza, Claudia D. Andl and Thomas Andl
Int. J. Mol. Sci. 2025, 26(7), 3144; https://doi.org/10.3390/ijms26073144 - 28 Mar 2025
Viewed by 1393
Abstract
The mechanisms that influence human longevity are complex and operate on cellular, tissue, and organismal levels. To better understand the tissue-level mechanisms, we compared the organization of cell proliferation, differentiation, and cytoprotective protein expression in the squamous epithelium of the esophagus between mammals [...] Read more.
The mechanisms that influence human longevity are complex and operate on cellular, tissue, and organismal levels. To better understand the tissue-level mechanisms, we compared the organization of cell proliferation, differentiation, and cytoprotective protein expression in the squamous epithelium of the esophagus between mammals with varying lifespans. Humans are the only species with a quiescent basal stem cell layer that is distinctly physically separated from parabasal transit-amplifying cells. In addition to these stark differences in the organization of proliferation, human squamous epithelial stem cells express DNA repair-related markers, such as MECP2 and XPC, which are absent or low in mouse basal cells. Furthermore, we investigated whether the transition from basal to suprabasal is different between species. In humans, the parabasal cells seem to originate from cells detaching from the basement membrane, and these can already begin to proliferate while delaminating. In most other species, delaminating cells have been rare or their proliferation rate is different from that of their human counterparts, indicating an alternative mode of how stem cells maintain the tissue. In humans, the combination of an elevated cytoprotective signature and novel tissue organization may enhance resistance to aging and prevent cancer. Our results point to enhanced cellular cytoprotection and a tissue architecture which separates stemness and proliferation. These are both potential factors contributing to the increased fitness of human squamous epithelia to support longevity by suppressing tumorigenesis. However, the organization of canine oral mucosa shows some similarities to that of human tissue and may provide a useful model to understand the relationship between tissue architecture, gene expression regulation, tumor suppression, and longevity. Full article
(This article belongs to the Special Issue Stem Cell Biology in Health and Disease)
Show Figures

Figure 1

18 pages, 11632 KB  
Article
Tobacco Residues Deposition at the Surface of Cobalt–Chromium Dental Alloys and the Effect of Cigarette Smoke Extract on Human Mesenchymal Stem Cells: An In Vitro Study
by Willi-Andrei Uriciuc, Bianca Adina Bosca, Mihaela Tertis, Adrian-Bogdan Țigu, Radu-Cristian Moldovan, Maria Suciu, Lucian Barbu-Tudoran, Tamara Liana Topală, Liana Crisan, Cătălin Ovidiu Popa and Aranka Ilea
Coatings 2025, 15(3), 279; https://doi.org/10.3390/coatings15030279 - 26 Feb 2025
Cited by 2 | Viewed by 1643
Abstract
The current study began with the following question: Is smoking a balanced factor between human body systems? One of the particular features of the oral cavity is its localization at the gateway of respiratory and digestive. Morphologically, the oral cavity encompasses a complex [...] Read more.
The current study began with the following question: Is smoking a balanced factor between human body systems? One of the particular features of the oral cavity is its localization at the gateway of respiratory and digestive. Morphologically, the oral cavity encompasses a complex association of soft tissues, hard tissues, salivary glands, and taste receptors. The main purpose of this study was to analyze the tobacco residues (TAR) deposited on dental materials and the alterations of artificial saliva that comes into contact with tobacco smoke, by obtaining a solution of cigarette smoke extracts (CSE) after 5, 10, 15, and 20 tobacco cigarettes. According to LC-MS analysis and FT-IR spectra, carbonyl compounds, phenols, and carboxylic acids are present in CSE, which could explain the pH decrease and acid characteristic. Moreover, the CSE solution was added to the culture medium of Mesenchymal Stem Cells (MSCs) to evaluate the cytotoxicity. The MTT study revealed decreased MSC viability; morphological changes and cell death were more intense at higher doses of CSE added to the culture medium. Scanning Electron Microscopy (SEM) indicated cellular ruffling and irregular cell surface under higher concentrations of CSE-15 and CSE-20 in culture media, which is a characteristic feature demonstrating the membrane stress. In conclusion, the present study, with its limitations, showed the negative cellular effects of tobacco cigarette smoking and the impact of this habit on the oral cavity homeostasis. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

24 pages, 7012 KB  
Article
Mutanobactin-D, a Streptococcus mutans Non-Ribosomal Cyclic Lipopeptide, Induces Osteogenic/Odontogenic Differentiation of Human Dental Pulp Stem Cells and Human Bone Marrow Stem Cells
by Sandra Nikolic, Giuseppe Alastra, Felix Pultar, Lukas Lüthy, Bernd Stadlinger, Erick M. Carreira, Isaac Maximiliano Bugueno and Thimios A. Mitsiadis
Int. J. Mol. Sci. 2025, 26(3), 1144; https://doi.org/10.3390/ijms26031144 - 28 Jan 2025
Cited by 1 | Viewed by 1791
Abstract
Bacterium-triggered carious lesions implicate dental hard tissue destruction and the simultaneous initiation of regenerative events comprising dental stem cell activation. Streptococcus mutans (S. mutans) is a prominent pathogen of the oral cavity and the principal cause of caries. S. mutans generates [...] Read more.
Bacterium-triggered carious lesions implicate dental hard tissue destruction and the simultaneous initiation of regenerative events comprising dental stem cell activation. Streptococcus mutans (S. mutans) is a prominent pathogen of the oral cavity and the principal cause of caries. S. mutans generates complex products involved in interbacterial interactions, including Mutanobactin-D (Mub-D), which belongs to a group of non-ribosomal cyclic lipopeptides. In the present study, we aimed to analyse the potential role of the synthetic Mub-D peptide in cell populations involved in tissue regenerative processes. To this end, we assessed the in vitro effects of Mub-D in human dental pulp stem cells (hDPSCs) and human bone marrow stem cells (hBMSCs). Our data demonstrated a concentration-dependent effect of Mub-D on their viability and a significant increase in their proliferation and osteogenic/odontogenic differentiation. These events were associated with specific changes in gene expression, where CCDN-1, RUNX-2, OSX, OCN, DMP-1, DSPP, and BMP-2 genes were upregulated. The ability of Mub-D to modulate the osteogenic/odontogenic differentiation of both hDPSCs and hBMSCs and considerably enhance mineralisation in a controlled and concentration-dependent manner opens new perspectives for stem cell-based regenerative approaches in the clinics. Full article
Show Figures

Figure 1

23 pages, 7303 KB  
Article
Functional and Biological Characterization of the LGR5Δ5 Splice Variant in HEK293T Cells
by Matthias Kappler, Laura Thielemann, Markus Glaß, Laura Caggegi, Antje Güttler, Jonas Pyko, Sarah Blauschmidt, Tony Gutschner, Helge Taubert, Sven Otto, Alexander W. Eckert, Frank Tavassol, Matthias Bache, Dirk Vordermark, Tom Kaune and Swetlana Rot
Int. J. Mol. Sci. 2024, 25(24), 13417; https://doi.org/10.3390/ijms252413417 - 14 Dec 2024
Viewed by 2385
Abstract
The regulator of the canonical Wnt pathway, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), is expressed in the stem cell compartment of several tissues and overexpressed in different human carcinomas. The isoform of the stem cell marker LGR5, named LGR5Δ5 and first described [...] Read more.
The regulator of the canonical Wnt pathway, leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), is expressed in the stem cell compartment of several tissues and overexpressed in different human carcinomas. The isoform of the stem cell marker LGR5, named LGR5Δ5 and first described by our group, is associated with prognosis and metastasis in oral squamous cell carcinoma (OSCC) and soft tissue sarcoma (STS). In a proof-of-principle analysis, the function of LGR5Δ5 was investigated in HEK293T cells, a model cell line of the Wnt pathway, compared to full-length LGR5 (FL) expression. The CRISPR/CAS knockout of LGR5 and LGR4 (thereby avoiding the side effects of LGR4) resulted in a loss of Wnt activity that cannot be restored by LGR5Δ5 but by LGR5FL rescue. The ability to migrate was not affected by LGR5Δ5, but was reduced by LGR5FL overexpression. The CRISPR/CAS of LGR4 and 5 induced radiosensitization, which was enhanced by the overexpression of LGR5FL or LGR5Δ5. RNA sequencing analysis revealed a significant increase in the ligand R-spondin 1 (RSPO1) level by LGR5Δ5. Furthermore, LGR5Δ5 appears to be involved in the regulation of genes related to the cytoskeleton, extracellular matrix stiffness, and angiogenesis, while LGR5FL is associated with the regulation of collagens and histone proteins. Full article
Show Figures

Figure 1

11 pages, 637 KB  
Systematic Review
A Systematic Review of Stem Cell Applications in Maxillofacial Regeneration
by Man Hung, Mahsa Sadri, Melanie Katz, Connor Schwartz and Amir Mohajeri
Dent. J. 2024, 12(10), 315; https://doi.org/10.3390/dj12100315 - 29 Sep 2024
Cited by 3 | Viewed by 4385
Abstract
Introduction: Regenerative medicine is revolutionizing oral and maxillofacial surgeries with stem cells, particularly mesenchymal stem cells, for tissue and bone regeneration. Despite promising in-vitro results, human trials are limited. A systematic review is needed to evaluate stem cell efficacy in maxillofacial issues, aiming [...] Read more.
Introduction: Regenerative medicine is revolutionizing oral and maxillofacial surgeries with stem cells, particularly mesenchymal stem cells, for tissue and bone regeneration. Despite promising in-vitro results, human trials are limited. A systematic review is needed to evaluate stem cell efficacy in maxillofacial issues, aiming to improve surgical outcomes and patient satisfaction. Methods: Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines, this review included peer-reviewed articles (2013–2023) on stem cells in oral surgery, excluding non-English publications, abstracts, reviews, and opinion pieces. Searches were conducted in PubMed, Web of Science, OVID, Cochrane, Dentistry & Oral Sciences Source—Ebscohost, and Scopus. Two authors independently screened titles and abstracts, resolving disagreements by consensus. Full-text analysis involved extracting key data, verified by a secondary reviewer and additional quality checks. Results: From 3540 initial articles, 2528 were screened after removing duplicates, and 7 met the inclusion criteria after excluding irrelevant studies. Key themes included the safety and efficacy of stem cell therapy, and bone regeneration and quality. Studies predominantly used mesenchymal stem cells. Findings showed positive outcomes in clinical safety and effectiveness and significant potential for bone regeneration. Conclusions: This systematic review highlights the potential of stem cell therapies in maxillofacial applications, supporting their safety, efficacy, and bone regeneration capabilities. Further research is needed to standardize protocols and confirm long-term benefits. Full article
(This article belongs to the Special Issue Feature Review Papers in Dentistry)
Show Figures

Graphical abstract

14 pages, 5422 KB  
Review
The Buccal Fat Pad: A Unique Human Anatomical Structure and Rich and Easily Accessible Source of Mesenchymal Stem Cells for Tissue Repair
by Gaia Favero, Cornelis J. F. van Noorden and Rita Rezzani
Bioengineering 2024, 11(10), 968; https://doi.org/10.3390/bioengineering11100968 - 27 Sep 2024
Cited by 5 | Viewed by 10248
Abstract
Buccal fat pads are biconvex adipose tissue bags that are uniquely found on both sides of the human face along the anterior border of the masseter muscles. Buccal fat pads are important determinants of facial appearance, facilitating gliding movements of facial masticatory and [...] Read more.
Buccal fat pads are biconvex adipose tissue bags that are uniquely found on both sides of the human face along the anterior border of the masseter muscles. Buccal fat pads are important determinants of facial appearance, facilitating gliding movements of facial masticatory and mimetic muscles. Buccal fad pad flaps are used for the repair of oral defects and as a rich and easily accessible source of mesenchymal stem cells. Here, we introduce the buccal fat pad anatomy and morphology and report its functions and applications for oral reconstructive surgery and for harvesting mesenchymal stem cells for clinical use. Future frontiers of buccal fat pad research are discussed. It is concluded that many biological and molecular aspects still need to be elucidated for the optimal application of buccal fat pad tissue in regenerative medicine. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

18 pages, 1121 KB  
Review
Promising Experimental Treatment in Animal Models and Human Studies of Interstitial Cystitis/Bladder Pain Syndrome
by Ju-Chuan Hu, Hong-Tai Tzeng, Wei-Chia Lee, Jian-Ri Li and Yao-Chi Chuang
Int. J. Mol. Sci. 2024, 25(15), 8015; https://doi.org/10.3390/ijms25158015 - 23 Jul 2024
Cited by 5 | Viewed by 5913
Abstract
Interstitial cystitis/bladder pain Syndrome (IC/BPS) remains a mysterious and intricate urological disorder, presenting significant challenges to healthcare providers. Traditional guidelines for IC/BPS follow a hierarchical model based on symptom severity, advocating for conservative interventions as the initial step, followed by oral pharmacotherapy, intravesical [...] Read more.
Interstitial cystitis/bladder pain Syndrome (IC/BPS) remains a mysterious and intricate urological disorder, presenting significant challenges to healthcare providers. Traditional guidelines for IC/BPS follow a hierarchical model based on symptom severity, advocating for conservative interventions as the initial step, followed by oral pharmacotherapy, intravesical treatments, and, in refractory cases, invasive surgical procedures. This approach embraces a multi-tiered strategy. However, the evolving understanding that IC/BPS represents a paroxysmal chronic pain syndrome, often involving extravesical manifestations and different subtypes, calls for a departure from this uniform approach. This review provides insights into recent advancements in experimental strategies in animal models and human studies. The identified therapeutic approaches fall into four categories: (i) anti-inflammation and anti-angiogenesis using monoclonal antibodies or immune modulation, (ii) regenerative medicine, including stem cell therapy, platelet-rich plasma, and low-intensity extracorporeal shock wave therapy, (iii) drug delivery systems leveraging nanotechnology, and (iv) drug delivery systems assisted by energy devices. Future investigations will require a broader range of animal models, studies on human bladder tissues, and well-designed clinical trials to establish the efficacy and safety of these therapeutic interventions. Full article
Show Figures

Figure 1

22 pages, 362 KB  
Review
Scaffold Application for Bone Regeneration with Stem Cells in Dentistry: Literature Review
by Elham Saberian, Andrej Jenča, Yaser Zafari, Andrej Jenča, Adriána Petrášová, Hadi Zare-Zardini and Janka Jenčová
Cells 2024, 13(12), 1065; https://doi.org/10.3390/cells13121065 - 19 Jun 2024
Cited by 20 | Viewed by 7147
Abstract
Bone tissue injuries within oral and dental contexts often present considerable challenges because traditional treatments may not be able to fully restore lost or damaged bone tissue. Novel approaches involving stem cells and targeted 3D scaffolds have been investigated in the search for [...] Read more.
Bone tissue injuries within oral and dental contexts often present considerable challenges because traditional treatments may not be able to fully restore lost or damaged bone tissue. Novel approaches involving stem cells and targeted 3D scaffolds have been investigated in the search for workable solutions. The use of scaffolds in stem cell-assisted bone regeneration is a crucial component of tissue engineering techniques designed to overcome the drawbacks of traditional bone grafts. This study provides a detailed review of scaffold applications for bone regeneration with stem cells in dentistry. This review focuses on scaffolds and stem cells while covering a broad range of studies explaining bone regeneration in dentistry through the presentation of studies conducted in this field. The role of different stem cells in regenerative medicine is covered in great detail in the reviewed literature. These studies have addressed a wide range of subjects, including the effects of platelet concentrates during dental surgery or specific combinations, such as human dental pulp stem cells with scaffolds for animal model bone regeneration, to promote bone regeneration in animal models. Noting developments, research works consider methods to improve vascularization and explore the use of 3D-printed scaffolds, secretome applications, mesenchymal stem cells, and biomaterials for oral bone tissue regeneration. This thorough assessment outlines possible developments within these crucial regenerative dentistry cycles and provides insights and suggestions for additional study. Furthermore, alternative creative methods for regenerating bone tissue include biophysical stimuli, mechanical stimulation, magnetic field therapy, laser therapy, nutritional supplements and diet, gene therapy, and biomimetic materials. These innovative approaches offer promising avenues for future research and development in the field of bone tissue regeneration in dentistry. Full article
Back to TopTop