Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = hot-stamped boron steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1472 KiB  
Technical Note
Modeling of Tensile Tests Flow Curves Using an Explicit Piecewise Inverse Approach
by Aditya Vuppala, Holger Brüggemann, David Bailly and Emad Scharifi
Metals 2025, 15(6), 638; https://doi.org/10.3390/met15060638 - 5 Jun 2025
Viewed by 438
Abstract
Tensile tests are a common method for characterizing plastic behavior for sheet metal forming applications. During tensile testing at the beginning of the deformation, the stress state is uniaxial; however, as the deformation proceeds, the state changes to triaxial, making the post-processing of [...] Read more.
Tensile tests are a common method for characterizing plastic behavior for sheet metal forming applications. During tensile testing at the beginning of the deformation, the stress state is uniaxial; however, as the deformation proceeds, the state changes to triaxial, making the post-processing of experimental data challenging using analytical methods. In contrast, inverse approaches in which the behavior is represented by constitutive equations and the parameters are fitted using an iterative procedure are extremely dependent on the empirical equation chosen at the outset and can be computationally expensive. The inverse piecewise flow curve determination method, previously developed for compression tests, is extended in this paper to tensile testing. A stepwise approach is proposed to calculate constant strain rate flow curves accounting for the unique characteristics of tensile deformation. To capture the effects of localized strain rate variations during necking, a parallel flow curve determination strategy is introduced. Tensile test flow curves for manganese-boron steel 22MnB5, a material commonly used in hot stamping applications, are determined, and the approach is demonstrated for virtual force–displacement curves. It has been shown that these curves can replicate the virtual experimental flow curves data with a maximum deviation of 1%. Full article
Show Figures

Figure 1

16 pages, 23580 KiB  
Article
Study on Surface Quality Analysis of an Uncoated Boron Steel and Its Oxide Layer Suppression Method for Hot Stamping
by Jiho Lee, Junghan Song and Gihyun Bae
Materials 2024, 17(22), 5563; https://doi.org/10.3390/ma17225563 - 14 Nov 2024
Cited by 2 | Viewed by 1058
Abstract
This study investigates the effects of hot stamping on boron steel surface properties, comparing uncoated steel to Al–Si-coated steel, with a focus on developing atmosphere-controlled hot stamping technology. Experiments using a hat-shaped specimen revealed that uncoated steel formed a thick oxide layer due [...] Read more.
This study investigates the effects of hot stamping on boron steel surface properties, comparing uncoated steel to Al–Si-coated steel, with a focus on developing atmosphere-controlled hot stamping technology. Experiments using a hat-shaped specimen revealed that uncoated steel formed a thick oxide layer due to exposure to atmospheric oxygen at high temperatures, negatively impacting surface quality and weldability. In contrast, the Al–Si-coated steel showed no oxide formation. Although uncoated steel exhibited higher average Vickers hardness, the detrimental effects of the oxide layer on weld quality necessitate advancements in process technology. A lab-scale hot stamping simulator was developed to control atmospheric oxygen levels, utilizing a donut-shaped induction heating coil to heat the material above 1000 °C, followed by rapid cooling in a forming die. Results demonstrated that maintaining oxygen concentrations below 6% significantly reduced oxide layer thickness, with near-vacuum conditions eliminating oxide formation altogether. These findings emphasize the critical role of oxygen control in enhancing the surface quality and weldability of uncoated boron steel for ultra-high-strength automotive applications, potentially reducing manufacturing costs while ensuring part performance. Full article
(This article belongs to the Special Issue Metal Additive Manufacturing: Design, Performance, and Applications)
Show Figures

Figure 1

11 pages, 3595 KiB  
Article
Mechanical and Microstructural Characteristics of 1.5 GPa-Grade Boron Steel by High-Frequency Induction of Eddy Currents
by Kunyoung Kim and Myungchang Kang
Metals 2023, 13(11), 1810; https://doi.org/10.3390/met13111810 - 27 Oct 2023
Cited by 3 | Viewed by 1609
Abstract
In the automobile industry, high-strength plates are increasingly used to reduce vehicle weight due to strict regulations on fuel efficiency and safety, and these plates achieve a tensile strength of 1500 MPa due to the hot-stamping process. Recently, research has been conducted to [...] Read more.
In the automobile industry, high-strength plates are increasingly used to reduce vehicle weight due to strict regulations on fuel efficiency and safety, and these plates achieve a tensile strength of 1500 MPa due to the hot-stamping process. Recently, research has been conducted to examine the flow behavior of materials according to the relationship between hot stamping time-temperature characteristics, coil shape, cooling method, and thermodynamic flow characteristics of quenching materials. In this study, a basic experiment in the form of a plate was conducted using an eddy current generated during high-frequency induction heating. It presents the surface temperature change, mechanical characteristics, and microstructure of boron steel that has undergone a high-frequency induction heating process. Surface temperature data were analyzed at different high-frequency induction heating forces (15, 18, 21, 24, 27, and 30 kW) and distances from specimens (6, 9, 12, and 15 mm). Two phases, austenite and ferrite, were formed in the low-temperature region, and martensite was formed in the high-temperature region. Mechanical properties and microstructures were also analyzed under different high-frequency induction heating coil conditions. The correlation between the high-frequency induction heating force and the specimen with the maximum tensile strength was investigated. Due to high-frequency induction heating, scale generation and surface decarbonization can be avoided. As a result of this experiment, 1500 MPa of the same tensile strength as the mechanical characteristics obtained in the existing heat treatment could be obtained. Full article
Show Figures

Figure 1

13 pages, 10827 KiB  
Article
Investigation on Mechanical Properties and Oxidation Behavior of 1.2 and 1.7 GPa Grades Coating-Free Press-Hardened Steels
by Zhisong Chai, Qi Lu, Sarah Tedesco, Mingfeng Shi, Jason Coryell, Luke Reini, Qingquan Lai, Jianfeng Wang, Lingyu Wang and Wei Xu
Metals 2023, 13(3), 489; https://doi.org/10.3390/met13030489 - 27 Feb 2023
Cited by 12 | Viewed by 2385
Abstract
Al-Si-coated boron-alloyed steels are the most widely used press-hardened steels (PHSs), which offers good oxidation resistance during hot forming due to the presence of the near eutectic Al-Si coating. In this study, a recently developed novel un-coated oxidation resistant PHS, called coating-free PHS [...] Read more.
Al-Si-coated boron-alloyed steels are the most widely used press-hardened steels (PHSs), which offers good oxidation resistance during hot forming due to the presence of the near eutectic Al-Si coating. In this study, a recently developed novel un-coated oxidation resistant PHS, called coating-free PHS (CF-PHS), is introduced as an alternative to the commercial Al-Si coated PHSs. With tailored additions of Cr, Mn, and Si, the new steel demonstrates superior oxidation resistance with a sub-micron oxide layer after the conventional hot stamping process. Hence, it does not require shot blasting before the subsequent welding and E-coating process. Two CF-PHS grades have been developed with ultimate tensile strengths of approximately 1.2 and 1.7 GPa, respectively. Both grades have a total elongation of 8–9%, exceeding the corresponding Al-Si-coated PHS grades (1.0 GPa/6–7%, 1.5 GPa/6–7%). Furthermore, the bendability of CF-PHS was similar to the corresponding Al-Si PHS grades. On the other hand, performance evaluations relevant to automotive applications, such as weldability, the E-coat adhesion, and tailor-welded hot stamp door ring, were also conducted on the CF-PHS steel to satisfy the requirements of manufacturing. Full article
Show Figures

Figure 1

8 pages, 4228 KiB  
Proceeding Paper
New Challenges on Developing Experimental Methods for Innovative Metal Forming Techniques
by Ruiqiang Zhang and Jianguo Lin
Phys. Sci. Forum 2022, 4(1), 15; https://doi.org/10.3390/psf2022004015 - 5 Aug 2022
Viewed by 1411
Abstract
For industrial applications of innovative metal forming techniques, advanced experimental methods have been developed to characterize the mechanical properties of materials under the corresponding forming conditions. This paper focuses on uniaxial tensile tests for the characterization of the thermomechanical behavior of materials and [...] Read more.
For industrial applications of innovative metal forming techniques, advanced experimental methods have been developed to characterize the mechanical properties of materials under the corresponding forming conditions. This paper focuses on uniaxial tensile tests for the characterization of the thermomechanical behavior of materials and biaxial tensile tests for the evaluation of the material formability under hot-stamping conditions; these test methods have been improved in recent years. Applications of both the uniaxial and biaxial tensile tests to a boron steel sheet are presented, and the associated experimental results are analyzed. Importantly, new challenges encountered in the development of these experimental methods are discussed and summarized. This paper concludes that more efforts are needed for the standardization of these experimental methods in future. Full article
(This article belongs to the Proceedings of The 19th International Conference on Experimental Mechanics)
Show Figures

Figure 1

17 pages, 5284 KiB  
Article
Microstructure and Wear Resistance of Hot-Work Tool Steels after Electron Beam Surface Alloying with B4C and Al
by Undrakh Mishigdorzhiyn, Aleksandr Semenov, Nikolay Ulakhanov, Aleksandr Milonov, Dorzho Dasheev and Pavel Gulyashinov
Lubricants 2022, 10(5), 90; https://doi.org/10.3390/lubricants10050090 - 7 May 2022
Cited by 7 | Viewed by 3052
Abstract
(1) Background: Operational properties and durability of dies in different metal-forming processes significantly depend on their surface quality. Major die failures are related to surface damage due to heat checking cracks, wear, etc. Thereby, strengthening of the working surfaces of dies for hot [...] Read more.
(1) Background: Operational properties and durability of dies in different metal-forming processes significantly depend on their surface quality. Major die failures are related to surface damage due to heat checking cracks, wear, etc. Thereby, strengthening of the working surfaces of dies for hot bending, stamping, forging, and die casting processes is an urgent engineering challenge. Surface alloying with high-energy beams improves the properties of steel products. In these processes, the alloying powders and the treated surfaces can be remelted by electron beam within a short time while the bulk structure of the component remains unchanged, resulting in minimal distortion. The paper presents the results of the electron beam surface alloying (EBSA) of H21 and L6 tool steels with the treatment pastes containing boron carbide and aluminum powders. (2) Methods: Two types of pastes were used for surface alloying: a single-component (B4C) paste and a two-component (B4C+Al) one. The microstructure, microhardness, wear resistance, and elemental and phase composition of the layers obtained on steels were investigated. (3) Results: Four layers up to 0.4 mm thick were distinguished on the surface of the steels after the EBSA. Metallographic analysis showed coarse dendrite formation in the layers embedded in matrices of a eutectic or a solid solution. Microhardness of the steels after the two-component EBSA was higher than after B4C EBSA, which was related to a higher concentration of hard phases, such as iron borides and carbides. In addition, aluminum boride was revealed by the XRD analysis on L6 steel after B4C+Al EBSA. (4) Conclusions: Wear test indicated that the most resistant samples were H21 steel after single B4C EBSA and L6 steel after B4C+Al EBSA. Both samples contained carbon particles in the layer contributing to the high wear resistance as a lubricant. The conducted research is beneficial for mechanical engineering, automotive engineering, medical technology, aerospace engineering, and related industries, where coatings with high microhardness, wear resistance, and surface quality are demanded. Full article
Show Figures

Figure 1

36 pages, 12528 KiB  
Article
Damage Evolution of Hot Stamped Boron Steels Subjected to Various Stress States: Macro/Micro-Scale Experiments and Simulations
by Hao Zhang, Guoqiang Liu, Ning Guo, Xiangbin Meng, Yanbin Shi, Hangqi Su, Zhe Liu and Bingtao Tang
Materials 2022, 15(5), 1751; https://doi.org/10.3390/ma15051751 - 25 Feb 2022
Cited by 3 | Viewed by 2534
Abstract
Hot stamping components with tailored mechanical properties have excellent safety-related performance in the field of lightweight manufacturing. In this paper, the constitutive relation and damage evolution of bainite, martensite, and mixed bainite/martensite (B/M) phase were studied. Two-dimensional representative volume element (RVE) models were [...] Read more.
Hot stamping components with tailored mechanical properties have excellent safety-related performance in the field of lightweight manufacturing. In this paper, the constitutive relation and damage evolution of bainite, martensite, and mixed bainite/martensite (B/M) phase were studied. Two-dimensional representative volume element (RVE) models were constructed according to microstructure characteristics. The constitutive relations of individual phases were defined based on the dislocation strengthening theory. Results showed that the damage initiation and evolution of martensite and bainite phases can well described by the Lou-Huh damage criterion (DF2015) determined by the hybrid experimental–numerical method. The calibrated damage parameters of each phase were applied to the numerical simulation, followed by the 2D RVE simulations of B/M phase under different stress states. To study the influence of martensite volume fraction (Vm) and distribution of damage evolution, the void nucleation and growth were evaluated by RVEs and verified by scanning electron microscope (SEM). Three types of void nucleation modes under different stress states were experimentally and numerically studied. The results showed that with the increase of Vm and varying martensite distribution, the nucleation location of voids move from bainite to martensite. Full article
(This article belongs to the Special Issue Plasticity, Damage, and Fracture for Lightweight High-Strength Metals)
Show Figures

Figure 1

23 pages, 10041 KiB  
Article
Hot Stamping Parts Shear Mold Manufacturing via Metal Additive Manufacturing
by Myoung-Pyo Hong
Appl. Sci. 2022, 12(3), 1158; https://doi.org/10.3390/app12031158 - 23 Jan 2022
Cited by 3 | Viewed by 3338
Abstract
Hot stamping uses boron (B) steel to simultaneously form parts at high temperatures while cooling the parts in a mold, which is advantageous because of the ability to freeze the forms. However, compared to conventional cold forming, this technique requires additional facilities that [...] Read more.
Hot stamping uses boron (B) steel to simultaneously form parts at high temperatures while cooling the parts in a mold, which is advantageous because of the ability to freeze the forms. However, compared to conventional cold forming, this technique requires additional facilities that include heating devices and additional time for cooling after forming at high temperatures. Additionally, because of the high strengths of hot stamping parts, shear process operations after molding tend to be difficult to perform as a continuous operation via press processing; thus, most operations depend on separate laser processing, which results in lower productivity and increased manufacturing costs. This limitation continues to be the most significant problem with this technology, therefore, restricting its commercialization because of increased mold manufacturing costs and durability problems. This study investigated a low-cost, high-functionality shear mold manufacturing method for 1.5 GPa grade hot-stamped components using heterogeneous metal additive manufacturing. After the concentrated stress in steel during the shearing processes was analyzed using a multi-physical analysis, metal additive manufacturing was used to fabricate the shear mold. Its life was evaluated through trial molding and compared with that for conventional technology. Finally, the commercialization potential of the newly developed method was assessed. Full article
(This article belongs to the Topic Additive Manufacturing)
Show Figures

Figure 1

11 pages, 6096 KiB  
Article
Performance Comparison of Zn-Based and Al–Si Based Coating on Boron Steel in Hot Stamping
by Long Chen, Wei Chen, Miao Cao and Xin Li
Materials 2021, 14(22), 7043; https://doi.org/10.3390/ma14227043 - 20 Nov 2021
Cited by 5 | Viewed by 2534
Abstract
The coatings of boron steels play an important role in affecting the quality of hot stamping parts, so it is important to evaluate the hot stamping performance of coatings before designing processes. Taking the U-type hot stamping part of boron steel as research [...] Read more.
The coatings of boron steels play an important role in affecting the quality of hot stamping parts, so it is important to evaluate the hot stamping performance of coatings before designing processes. Taking the U-type hot stamping part of boron steel as research objects, the surface quality, microstructure and temperature variation of samples with GA (galvannealed), GI (galvanized) and Al–Si coatings were observed and analyzed to evaluate the anti-oxidation, forming and quenching performances of different coatings. The results show that all the GA, GI and Al–Si coatings could provide good oxidation protection and also act as the lubricants for avoiding the friction damage of sample substrates and die-surface. But the different compositions of GA, GI and Al–Si coatings will contribute the different colors. Under the same deformation degree, the Al–Si coating can provide the best substrate protection and the GI coating will induce cracks in the substrate because of the liquid metal-induced embrittlement phenomenon. There is no significant difference between the quenching performances of GA, GI and Al–Si coatings, and the thermal conductivity of the GI coating is slightly better than Al–Si and GA coatings. Full article
Show Figures

Figure 1

17 pages, 4690 KiB  
Article
Hydrogen Absorption and Desorption Behavior on Aluminum-Coated Hot-Stamped Boron Steel during Hot Press Forming and Automotive Manufacturing Processes
by Hye-Jin Kim, Hyun-Yeong Jung, Seung-Pill Jung, Ji-Hee Son, Joo-Sik Hyun and Ju-Sung Kim
Materials 2021, 14(21), 6730; https://doi.org/10.3390/ma14216730 - 8 Nov 2021
Cited by 5 | Viewed by 2720
Abstract
Our study mainly focused on diffusible hydrogen in aluminum–silicon-coated hot-stamped boron steel during a hot press forming process and in pre-treatment sequential lines of the automotive manufacturing process using a thermal desorption spectroscopy (TDS) technique. First, in the hot stamping procedure, as the [...] Read more.
Our study mainly focused on diffusible hydrogen in aluminum–silicon-coated hot-stamped boron steel during a hot press forming process and in pre-treatment sequential lines of the automotive manufacturing process using a thermal desorption spectroscopy (TDS) technique. First, in the hot stamping procedure, as the soaking time increased in the heating furnace at a specific dew point when austenitizing, a high concentration of diffusible hydrogen was absorbed into the hot-stamped boron steel. Based on the TDS analysis of hydrogen absorbed from hot stamping, the activation energy value of hydrogen trapping in 1.8 GPa grade steel is lower than that of 1.5 GPa grade steel. This means that diffusible hydrogen can be more easily diffused into defective sites of the microstructure at a higher level of the tensile strength grade. Second, in sequential pre-treatment lines of the automotive manufacturing process, additional hydrogen did not flow into the surface, and an electro-deposition process, including a baking procedure, was effective in removing diffusible hydrogen, which was similar to the residual hydrogen of the as-received state (i.e., initial cold rolled blank). Based on these results, the hydrogen absorption was facilitated during hot press forming, but the hydrogen was sequentially desorbed during automotive sequential lines on aluminum-coated hot-stamped steel parts. Full article
(This article belongs to the Special Issue Reliability of Structural Integrity and Engineering Materials)
Show Figures

Figure 1

18 pages, 12234 KiB  
Article
Research on Parameters of Wire-Filling Laser Welding and Quenching Process for Joints Microstructure and Mechanical Property of BR1500HS Steel
by Lianpu Zhou, Chundong Zhu, Rongfei Ma and Zihao Wei
Metals 2021, 11(7), 1047; https://doi.org/10.3390/met11071047 - 30 Jun 2021
Cited by 4 | Viewed by 2517
Abstract
With the aim to investigate the effect of parameters and the quenching process on the joint microstructure and mechanical properties of hot stamping steel by laser welding, BR1500HS boron steel was welded by wire-filling laser welding with ER70-G welding wire under different parameters. [...] Read more.
With the aim to investigate the effect of parameters and the quenching process on the joint microstructure and mechanical properties of hot stamping steel by laser welding, BR1500HS boron steel was welded by wire-filling laser welding with ER70-G welding wire under different parameters. The welded specimens were heated to 900 °C and held for 5 min before water quenching. A universal material test machine, optical microscope, Vickers hardness tester, scanning electron microscope, and electron backscatter diffraction (EBSD) were used to characterize. The results show that the heat input should be greater than 1040 J/cm and the optimal wire-feeding speed is between 160 cm/min and 180 cm/min. The tensile strength of the quenched joint can reach greater than 1601.9 MPa at compatible parameters. More retained austenite distributes in the fusion zone (FZ) and fine grain zone (FGZ) than the coarse grain zone (CGZ) before quenching. However, the retained austenite in FZ and heat-affected zone (HAZ) decreases clearly and distributes uniformly after quenching. The grain diameter in FZ before quenching is not uniform and there are some coarse grains with the diameter greater than 40 μm. After quenching, the grains are refined and grain diameter is more uniform in the joint. With the increase in heat input, the microhardness of FZ and HAZ before quenching decreases from 500 HV to 450 HV. However, if the wire-feeding speed increases, the microhardness of FZ and HAZ before quenching increases from 450 HV to 500 HV. After quenching, the joint microhardness of all samples is between 450 HV and 550 HV. The fracture morphology of the joint before quenching consists of a large number of dimples and little river patterns. After quenching, the fracture morphology consists of a large amount of river patterns and cleavage facets due to the generation of martensite. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

9 pages, 3732 KiB  
Article
Study on the Effect of Heat Treatment on Microstructures and High Temperature Mechanical Properties of Welding Spots of Hot Stamped Ultra-High Strength Steel Patchwork Blanks
by Xiao Ouyang, Zhiqiang Zhang, Hongjie Jia, Mingwen Ren and Yaping Sun
Metals 2021, 11(7), 1033; https://doi.org/10.3390/met11071033 - 28 Jun 2021
Cited by 7 | Viewed by 2208
Abstract
Insufficient strength of welding spots is a common problem in the hot stamping process of ultra-high strength steel patchwork blanks (UHSSP). In this paper, the welding spots of 22MnB5 boron steel with thicknesses of 1.2 and 1.5 mm were austenitized and then air-cooled [...] Read more.
Insufficient strength of welding spots is a common problem in the hot stamping process of ultra-high strength steel patchwork blanks (UHSSP). In this paper, the welding spots of 22MnB5 boron steel with thicknesses of 1.2 and 1.5 mm were austenitized and then air-cooled to 650–850 °C for high temperature tensile shear tests and high temperature cross-tension tests, respectively. To study the mechanical properties of the welding spots at room temperature after heat treatment, the austenitized welding spots were quenched in cold water to room temperature, and microhardness tests and microstructure observations were performed. The results indicated that compared to the original welding spots, the heat-affected softening zone disappeared after heat treatment, and the hardness values of the fusion zone, heat-affected zone and base material were basically the same, at about 500 HV. After heat treatment, the welding spots were mainly martensite. With the increase in deformation temperature, the peak loads of the tensile shear and the cross tension of the welding spots decreased. At 750 °C, the peak loads of the welding spots decreased less, energy absorption was larger, and the welding spots had the comprehensive mechanical properties of strength and ductility. Full article
Show Figures

Figure 1

13 pages, 5422 KiB  
Article
Numerical and Experimental Study of AlSi Coating Effect on Nugget Size Growth in Resistance Spot Welding of Hot-Stamped Boron Steels
by Ali Afzal, Mohsen Hamedi and Chris Valentin Nielsen
J. Manuf. Mater. Process. 2021, 5(1), 10; https://doi.org/10.3390/jmmp5010010 - 15 Jan 2021
Cited by 6 | Viewed by 3185
Abstract
In recent years, increasing automotive safety by improving crashworthiness has been a focal point in the automotive industry, employing high-strength steel such as press hardenable steel (PHS). In addition to the improved strength of individual parts in the body of the vehicle, the [...] Read more.
In recent years, increasing automotive safety by improving crashworthiness has been a focal point in the automotive industry, employing high-strength steel such as press hardenable steel (PHS). In addition to the improved strength of individual parts in the body of the vehicle, the strength of the resistance-spot-welded joints of these parts is highly important to obtain a safe structure. In general, dimensions of weld nuggets are regarded as one of the criteria for the quality of spot-welded joints. In the presented research, a three-dimensional axisymmetric finite element model is developed to predict the nugget formation in resistance spot welding (RSW) of two types of PHS: the uncoated and AlSi-coated 1.8 mm boron steel after hot stamping. A fully coupled electro-thermo-mechanical analysis was conducted using the commercial software package Abaqus. The FE predicted weld nugget development is compared with experimental results. The computed weld nugget sizes show good agreement with experimental values. Full article
(This article belongs to the Special Issue Metal Forming and Joining)
Show Figures

Figure 1

17 pages, 11948 KiB  
Article
Effect of Double Pulse Resistance Spot Welding Process on 15B22 Hot Stamped Boron Steel
by Hwa-Teng Lee and Yuan-Chih Chang
Metals 2020, 10(10), 1279; https://doi.org/10.3390/met10101279 - 24 Sep 2020
Cited by 15 | Viewed by 4339
Abstract
Double pulse resistance spot welding process by applying a second step welding current is a new pathway to alter the mechanical properties for advanced high strength steels. Herein, the resistance spot welding (RSW) of hot stamped boron steel 15B22 by one-step and two-step [...] Read more.
Double pulse resistance spot welding process by applying a second step welding current is a new pathway to alter the mechanical properties for advanced high strength steels. Herein, the resistance spot welding (RSW) of hot stamped boron steel 15B22 by one-step and two-step welding with different welding currents is investigated. The results of the tensile–shear test, size of the weld nugget, hardness distribution, microstructure, and failure mode of different welding parameters are analyzed. The weldment of the two-step RSW with a higher heat input exhibits a lower tensile–shear load and lower fracture energy when the size of the weld nugget is large. The microstructural study reveals the appearance of a partially melted zone and sub-critical heat affected zone in the weldment where the fracture readily occurred. Thus, the two-step RSW process weakens the strength of the sample, which is attributed to the partial softening in the weldment due to the higher heat input. Full article
(This article belongs to the Special Issue Welding of Advanced High Strength Steel (AHSS))
Show Figures

Figure 1

16 pages, 9559 KiB  
Article
Research on the Re-Deformation Characteristics of Hot Stamping of Boron Steel Parts with Tailored Properties
by Ling Kong, Yan Peng and Caiyi Liu
Metals 2020, 10(9), 1136; https://doi.org/10.3390/met10091136 - 24 Aug 2020
Cited by 3 | Viewed by 2799
Abstract
Traditional hot-stamping products have super-high strength, but their plasticity is usually low and their integrated mechanical properties are not excellent. Functionally graded property structures, a relatively novel configuration with a higher material utilization rate, have increasingly captured the attention of researchers. Hot stamping [...] Read more.
Traditional hot-stamping products have super-high strength, but their plasticity is usually low and their integrated mechanical properties are not excellent. Functionally graded property structures, a relatively novel configuration with a higher material utilization rate, have increasingly captured the attention of researchers. Hot stamping parts with tailored properties display the characteristics of local high strength and high plasticity, which can make up for the limitations of conventional hot stamping and optimize the crash safety performance of vehicles. This new idea provides a means of personalized control in the hot-stamping process. In this paper, a new strategy of local induction heating and press hardening was used for the hot stamping of boron steel parts with tailored properties, of which the microstructure from the hard zone to the soft zone shows a gradient distribution consisting of a martensite phase, multiphase and initial phase, with the hardness ranging from 550 HV to 180 HV. The re-deformation characteristics of hot stamping parts with tailored properties have been studied through the uniaxial tensile test, in cooperation with digital image correlation (DIC) and electron backscattered diffraction (EBSD) techniques. The experiments show that there are easily observable strain distribution characteristics in the re-deformation of hot stamping parts with tailored properties. In the process of tensile deformation, the initial phase zone takes the role of deformation and energy absorption, with the maximum strain before necking reaching 0.32. The local misorientation of this zone was high, and a large number of low angle grain boundaries were formed, while the proportion of small angle grain boundaries increased from 13.5% to 63.3%, and the average grain size decreased from 8.15 μm to 3.43 μm. Meanwhile, the martensite zone takes on the role of anti-collision protection, with a maximum strain of only 0.006, and its local misorientation is mostly unchanged. The re-deformation experimental results show that the hot stamping of boron steel parts with tailored properties meets the functional requirements of a hard zone for anti-collision and a soft zone for energy absorption, suitable for automobile safety parts. Full article
(This article belongs to the Special Issue Microstructural Engineering in Metallic Materials)
Show Figures

Figure 1

Back to TopTop