Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = hollow mesoporous nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2602 KiB  
Article
Hollow Mesoporous ZnO/ZnCo2O4 Based on Ostwald Ripening for H2S Detection
by Hongtao Wang, Yang Liu, Yuanchao Xie, Jianan Ma, Dan Han and Shengbo Sang
Chemosensors 2025, 13(7), 239; https://doi.org/10.3390/chemosensors13070239 - 5 Jul 2025
Viewed by 337
Abstract
Mesoporous ZnO/ZnCo2O4 nanocomposites with excellent gas-sensing performance were synthesized using the Ostwald ripening method. The as-prepared ZnO/ZnCo2O4 comprised aggregated monodisperse nanoparticles, and the nanoparticle size grew with increasing thermal treatment temperature. Increasing the calcination temperature did not [...] Read more.
Mesoporous ZnO/ZnCo2O4 nanocomposites with excellent gas-sensing performance were synthesized using the Ostwald ripening method. The as-prepared ZnO/ZnCo2O4 comprised aggregated monodisperse nanoparticles, and the nanoparticle size grew with increasing thermal treatment temperature. Increasing the calcination temperature did not significantly change the overall size of the ZnO/ZnCo2O4 nanocomposites, but the pore size and specific surface area were noticeably affected. The gas-sensing results showed that ZnO/ZnCo2O4 composites calcined at 500 °C exhibited the highest response to H2S at 200 °C, with a detection limit of 500 ppb. The ZnO/ZnCo2O4 composites also exhibited remarkable selectivity, response/recovery speed, and stability. Their excellent gas-sensing performance might be attributed to their porous structure, large specific surface area, and the heterogeneous interface between ZnO and ZnCo2O4. This work not only represents a new example of the Ostwald ripening-based formation of inorganic hollow structures in a template-free aqueous solution but also provides a novel and efficient sensing material for the detection of H2S gas. Full article
(This article belongs to the Special Issue Recent Progress in Nano Material-Based Gas Sensors)
Show Figures

Figure 1

20 pages, 2708 KiB  
Article
Sustainable Pest Management with Hollow Mesoporous Silica Nanoparticles Loaded with β-Cypermethrin
by Min Li, Linmiao Xue, Teng Gao, Zhuo Zhang, Dan Zhao, Xing Li and Zhanhai Kang
Agronomy 2025, 15(3), 737; https://doi.org/10.3390/agronomy15030737 - 19 Mar 2025
Cited by 1 | Viewed by 731
Abstract
β-cypermethrin (BCP) is a broad-spectrum insecticide known for its rapid efficacy. However, it is highly toxic to non-target organisms such as bees and fish, and its effectiveness is limited by a short duration of action. Improving the release profile of BCP is essential [...] Read more.
β-cypermethrin (BCP) is a broad-spectrum insecticide known for its rapid efficacy. However, it is highly toxic to non-target organisms such as bees and fish, and its effectiveness is limited by a short duration of action. Improving the release profile of BCP is essential for reducing its environmental toxicity while preserving its effectiveness. In this study, hollow mesoporous silica nanoparticles (HMSNs) were synthesized using a self-templating method, and BCP-loaded HMSNs were prepared through physical adsorption. The structural and physicochemical properties of the nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption analysis, Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The BCP release profile was assessed using the dialysis bag method. The results showed that the synthesized nanoparticles exhibited uniform morphology, thin shells, and large internal cavities. The HMSNs had a pore size of 3.09 nm, a specific surface area of 1318 m2·g−1, a pore volume of 1.52 cm3·g−1, and an average particle size of 183 nm. TEM, FT-IR, and TGA analyses confirmed the successful incorporation of BCP into the HMSNs, achieving a drug loading efficiency of 32.53%. The BCP-loaded nanoparticles exhibited sustained-release properties, with an initial burst followed by gradual release, extending efficacy for 30 days. Safety evaluations revealed minimal toxicity to maize seedlings, confirming the biocompatibility of the nanoparticles. These findings indicate that BCP-loaded HMSNs can enhance the efficacy of BCP while reducing its environmental toxicity, providing a biocompatible and environmentally friendly solution for pest control. Full article
Show Figures

Figure 1

18 pages, 3305 KiB  
Article
Controllable Synthesis of Ultrafine Ag NPs/Functionalized Graphene-Introduced TiO2 Mesoporous Hollow Nanofibers by Coaxial Electrospinning for Photocatalytic Oxidation of CO
by Tianwei Dou, Yangyang Zhu, Zhanyu Chu, Zhijun Li, Lei Sun and Liqiang Jing
Catalysts 2025, 15(3), 231; https://doi.org/10.3390/catal15030231 - 27 Feb 2025
Cited by 1 | Viewed by 692
Abstract
Solar-driven catalytic oxidation processes for the removal of toxic gaseous pollutants have attracted considerable scientific attention, and there is a strong desire to improve the mass transfer, photogenerated charge separation, and O2 activation by regulating the structure of the photocatalyst. Initially, functionalized [...] Read more.
Solar-driven catalytic oxidation processes for the removal of toxic gaseous pollutants have attracted considerable scientific attention, and there is a strong desire to improve the mass transfer, photogenerated charge separation, and O2 activation by regulating the structure of the photocatalyst. Initially, functionalized graphene–TiO2 mesoporous hollow nanofibers have been controllably fabricated by a coaxial electrospinning technique, in which functionalized graphene is controllably prepared through a sequential diazonium functionalization and silane modification and ensures its uniform distribution among TiO2 nanoparticles (NPs). Subsequently, the ultrafine Ag NPs are primarily anchored onto the surface of graphene by an in situ frozen photodeposition strategy, producing Ag/functionalized graphene–TiO2 mesoporous hollow nanofibers (Ag/SiG-TO MPHNFs). The optimal Ag/SiG-TO MPHNFs exhibit 3.9-fold and 4.6-fold enhancements in CO photooxidation compared with TO MPHNFs and P25 TiO2, respectively. The enhanced photoactivity can be attributed to three factors: the creation of the mesoporous hollow structure accelerates mass transfer, the incorporation of graphene facilitates the transfer of photogenerated electrons from TiO2 to graphene, and the anchoring of Ag NPs improves O2 activation. Full article
(This article belongs to the Special Issue TiO2 Photocatalysts: Design, Optimization and Application)
Show Figures

Graphical abstract

10 pages, 1708 KiB  
Communication
N Simultaneously Doped TiO2@Carbon Hollow Spheres with Enhanced Photocatalytic CO2 Reduction Activity
by Weiwei Fu, Ziyun Wang, Xinjie Liu and Tianjiao Li
Catalysts 2025, 15(1), 39; https://doi.org/10.3390/catal15010039 - 4 Jan 2025
Viewed by 1074
Abstract
Converting carbon dioxide (CO2) into solar fuels through photocatalysis represents an appealing approach to tackling the escalating energy crisis and mitigating the greenhouse effect. In this study, using melamine–formaldehyde (MF) nanospheres as a nitrogen source, a N element was simultaneously doped [...] Read more.
Converting carbon dioxide (CO2) into solar fuels through photocatalysis represents an appealing approach to tackling the escalating energy crisis and mitigating the greenhouse effect. In this study, using melamine–formaldehyde (MF) nanospheres as a nitrogen source, a N element was simultaneously doped into the TiO2 nanoparticle structure supported by carbon hollow spheres using a one-step carbonization method to form a heterojunction N-CHS@N-TiO2 (marked as (N-(CHS@TiO2)). The composite showed superior photocatalytic activity in reducing CO2 compared with TiO2 and N-CHS: after 6 h of visible light irradiation, the CO yield was 4.3 times that of N-CHS and TiO2; 6 h of UV irradiation later, the CO yield reached 2.6 times that of TiO2 and 7 times that of N-CHS. The substantial enhancement in photocatalytic activity was attributed to the nitrogen simultaneously doped carbon hollow spheres and TiO2, mesoporous structure, small average TiO2 crystal size, large surface areas, and the heterostructure formed by N-CHS and N-TiO2. The UV-vis diffuse reflectance spectra (DRS) exhibit a significant improvement in light absorption, attributed to the visible-light-active carbon hollow sphere and the N element doping, thereby enhancing solar energy utilization. Full article
(This article belongs to the Special Issue Catalytic Properties of Hybrid Catalysts)
Show Figures

Graphical abstract

30 pages, 16269 KiB  
Article
Nanotechnology-Driven Delivery of Caffeine Using Ultradeformable Liposomes-Coated Hollow Mesoporous Silica Nanoparticles for Enhanced Follicular Delivery and Treatment of Androgenetic Alopecia
by Nattanida Thepphankulngarm, Suwisit Manmuan, Namon Hirun and Pakorn Kraisit
Int. J. Mol. Sci. 2024, 25(22), 12170; https://doi.org/10.3390/ijms252212170 - 13 Nov 2024
Cited by 8 | Viewed by 3974
Abstract
Androgenetic alopecia (AGA) is caused by the impact of dihydrotestosterone (DHT) on hair follicles, leading to progressive hair loss in men and women. In this study, we developed caffeine-loaded hollow mesoporous silica nanoparticles coated with ultradeformable liposomes (ULp-Caf@HMSNs) to enhance caffeine delivery to [...] Read more.
Androgenetic alopecia (AGA) is caused by the impact of dihydrotestosterone (DHT) on hair follicles, leading to progressive hair loss in men and women. In this study, we developed caffeine-loaded hollow mesoporous silica nanoparticles coated with ultradeformable liposomes (ULp-Caf@HMSNs) to enhance caffeine delivery to hair follicles. Caffeine, known to inhibit DHT formation, faces challenges in skin penetration due to its hydrophilic nature. We investigated caffeine encapsulated in liposomes, hollow mesoporous silica nanoparticles (HMSNs), and ultradeformable liposome-coated HMSNs to optimize drug delivery and release. For ultradeformable liposomes (ULs), the amount of polysorbate 20 and polysorbate 80 was varied. TEM images confirmed the mesoporous shell and hollow core structure of HMSNs, with a shell thickness of 25–35 nm and a hollow space of 80–100 nm. SEM and TEM analysis showed particle sizes ranging from 140–160 nm. Thermal stability tests showed that HMSNs coated with ULs exhibited a Td10 value of 325 °C and 70% residue ash, indicating good thermal stability. Caffeine release experiments indicated that the highest release occurred in caffeine-loaded HMSNs without a liposome coating. In contrast, systems incorporating ULp-Caf@HMSNs exhibited slower release rates, attributable to the dual encapsulation mechanism. Confocal laser scanning microscopy revealed that ULs-coated particles penetrated deeper into the skin than non-liposome particles. MTT assays confirmed the non-cytotoxicity of all HMSN concentrations to human follicle dermal papilla cells (HFDPCs). ULp-Caf@HMSNs promoted better cell viability than pure caffeine or caffeine-loaded HMSNs, highlighting enhanced biocompatibility without increased toxicity. Additionally, ULp-Caf@HMSNs effectively reduced ROS levels in DHT-damaged HFDPCs, suggesting they are promising alternatives to minoxidil for promoting hair follicle growth and reducing hair loss without increasing oxidative stress. This system shows promise for treating AGA. Full article
(This article belongs to the Special Issue Properties and Applications of Nanoparticles and Nanomaterials)
Show Figures

Graphical abstract

18 pages, 3582 KiB  
Article
Hollow Mesoporous Silica Nanoparticles as a New Nanoscale Resistance Inducer for Fusarium Wilt Control: Size Effects and Mechanism of Action
by Chaopu Ding, Yunfei Zhang, Chongbin Chen, Junfang Wang, Mingda Qin, Yu Gu, Shujing Zhang, Lanying Wang and Yanping Luo
Int. J. Mol. Sci. 2024, 25(8), 4514; https://doi.org/10.3390/ijms25084514 - 20 Apr 2024
Cited by 5 | Viewed by 2186
Abstract
In agriculture, soil-borne fungal pathogens, especially Fusarium oxysporum strains, are posing a serious threat to efforts to achieve global food security. In the search for safer agrochemicals, silica nanoparticles (SiO2NPs) have recently been proposed as a new tool to alleviate pathogen [...] Read more.
In agriculture, soil-borne fungal pathogens, especially Fusarium oxysporum strains, are posing a serious threat to efforts to achieve global food security. In the search for safer agrochemicals, silica nanoparticles (SiO2NPs) have recently been proposed as a new tool to alleviate pathogen damage including Fusarium wilt. Hollow mesoporous silica nanoparticles (HMSNs), a unique class of SiO2NPs, have been widely accepted as desirable carriers for pesticides. However, their roles in enhancing disease resistance in plants and the specific mechanism remain unknown. In this study, three sizes of HMSNs (19, 96, and 406 nm as HMSNs-19, HMSNs-96, and HMSNs-406, respectively) were synthesized and characterized to determine their effects on seed germination, seedling growth, and Fusarium oxysporum f. sp. phaseoli (FOP) suppression. The three HMSNs exhibited no side effects on cowpea seed germination and seedling growth at concentrations ranging from 100 to 1500 mg/L. The inhibitory effects of the three HMSNs on FOP mycelial growth were very weak, showing inhibition ratios of less than 20% even at 2000 mg/L. Foliar application of HMSNs, however, was demonstrated to reduce the FOP severity in cowpea roots in a size- and concentration-dependent manner. The three HMSNs at a low concentration of 100 mg/L, as well as HMSNs-19 at a high concentration of 1000 mg/L, were observed to have little effect on alleviating the disease incidence. HMSNs-406 were most effective at a concentration of 1000 mg/L, showing an up to 40.00% decline in the disease severity with significant growth-promoting effects on cowpea plants. Moreover, foliar application of HMSNs-406 (1000 mg/L) increased the salicylic acid (SA) content in cowpea roots by 4.3-fold, as well as the expression levels of SA marker genes of PR-1 (by 1.97-fold) and PR-5 (by 9.38-fold), and its receptor gene of NPR-1 (by 1.62-fold), as compared with the FOP infected control plants. Meanwhile, another resistance-related gene of PAL was also upregulated by 8.54-fold. Three defense-responsive enzymes of POD, PAL, and PPO were also involved in the HMSNs-enhanced disease resistance in cowpea roots, with varying degrees of reduction in activity. These results provide substantial evidence that HMSNs exert their Fusarium wilt suppression in cowpea plants by activating SA-dependent SAR (systemic acquired resistance) responses rather than directly suppressing FOP growth. Overall, for the first time, our results indicate a new role of HMSNs as a potent resistance inducer to serve as a low-cost, highly efficient, safe and sustainable alternative for plant disease protection. Full article
(This article belongs to the Special Issue Bioactive Nanoparticles: Synthesis and Potential Applications)
Show Figures

Figure 1

14 pages, 7480 KiB  
Article
Size Tuning of Mesoporous Silica Adjuvant for One-Shot Vaccination with Long-Term Anti-Tumor Effect
by Xiupeng Wang, Yu Sogo and Xia Li
Pharmaceutics 2024, 16(4), 516; https://doi.org/10.3390/pharmaceutics16040516 - 8 Apr 2024
Cited by 1 | Viewed by 2084
Abstract
Despite recent clinical successes in cancer immunotherapy, it remains difficult to initiate a long-term anti-tumor effect. Therefore, repeated administrations of immune-activating agents are generally required in most cases. Herein, we propose an adjuvant particle size tuning strategy to initiate a long-term anti-tumor effect [...] Read more.
Despite recent clinical successes in cancer immunotherapy, it remains difficult to initiate a long-term anti-tumor effect. Therefore, repeated administrations of immune-activating agents are generally required in most cases. Herein, we propose an adjuvant particle size tuning strategy to initiate a long-term anti-tumor effect by one-shot vaccination. This strategy is based on the size-dependent immunostimulation mechanism of mesoporous silica particles. Hollow mesoporous silica (HMS) nanoparticles enhance the antigen uptake with dendritic cells around the immunization site in vivo. In contrast, hierarchically porous silica (HPS) microparticles prolong cancer antigen retention and release in vivo. The size tuning of the mesoporous silica adjuvant prepared by combining both nanoparticles and microparticles demonstrates the immunological properties of both components and has a long-term anti-tumor effect after one-shot vaccination. One-shot vaccination with HMS-HPS-ovalbumin (OVA)-Poly IC (PIC, a TLR3 agonist) increases CD4+ T cell, CD8+ T cell, and CD86+ cell populations in draining lymph nodes even 4 months after vaccination, as well as effector memory CD8+ T cell and tumor-specific tetramer+CD8+ T cell populations in splenocytes. The increases in the numbers of effector memory CD8+ T cells and tumor-specific tetramer+CD8+ T cells indicate that the one-shot vaccination with HMS-HPS-OVA-PIC achieved the longest survival time after a challenge with E.G7-OVA cells among all groups. The size tuning of the mesoporous silica adjuvant shows promise for one-shot vaccination that mimics multiple clinical vaccinations in future cancer immunoadjuvant development. This study may have important implications in the long-term vaccine design of one-shot vaccinations. Full article
(This article belongs to the Special Issue Anti-Cancer Drug Delivery Systems)
Show Figures

Figure 1

15 pages, 3115 KiB  
Article
pH-Responsive Pesticide-Loaded Hollow Mesoporous Silica Nanoparticles with ZnO Quantum Dots as a Gatekeeper for Control of Rice Blast Disease
by Yi Zhao, Yanning Zhang, Yilin Yan, Zunyao Huang, Yuting Zhang, Xiaoli Wang and Nandi Zhou
Materials 2024, 17(6), 1344; https://doi.org/10.3390/ma17061344 - 14 Mar 2024
Cited by 9 | Viewed by 2394
Abstract
Nanotechnology-enabled pesticide delivery systems have been widely studied and show great prospects in modern agriculture. Nanodelivery systems not only achieve the controlled release of agrochemicals but also possess many unique characteristics. This study presents the development of a pH-responsive pesticide nanoformulation utilizing hollow [...] Read more.
Nanotechnology-enabled pesticide delivery systems have been widely studied and show great prospects in modern agriculture. Nanodelivery systems not only achieve the controlled release of agrochemicals but also possess many unique characteristics. This study presents the development of a pH-responsive pesticide nanoformulation utilizing hollow mesoporous silica nanoparticles (HMSNs) as a nanocarrier. The nanocarrier was loaded with the photosensitive pesticide prochloraz (Pro) and then combined with ZnO quantum dots (ZnO QDs) through electrostatic interactions. ZnO QDs serve as both the pH-responsive gatekeeper and the enhancer of the pesticide. The results demonstrate that the prepared nanopesticide exhibits high loading efficiency (24.96%) for Pro. Compared with Pro technical, the degradation rate of Pro loaded in HMSNs@Pro@ZnO QDs was reduced by 26.4% after 24 h ultraviolet (UV) exposure, indicating clearly improved photostability. In a weak acidic environment (pH 5.0), the accumulated release of the nanopesticide after 48 h was 2.67-fold higher than that in a neutral environment. This indicates the excellent pH-responsive characteristic of the nanopesticide. The tracking experiments revealed that HMSNs can be absorbed by rice leaves and subsequently transported to other tissues, indicating their potential for effective systemic distribution and targeted delivery. Furthermore, the bioactivity assays confirmed the fungicidal efficacy of the nanopesticide against rice blast disease. Therefore, the constructed nanopesticide holds great prospect in nanoenabled agriculture, offering a novel strategy to enhance pesticide utilization. Full article
Show Figures

Figure 1

16 pages, 3301 KiB  
Article
Lignin-Based Mesoporous Hollow Carbon@MnO2 Nanosphere Composite as an Anodic Material for Lithium-Ion Batteries
by Shun Li, Jianguo Huang and Guijin He
Materials 2023, 16(23), 7283; https://doi.org/10.3390/ma16237283 - 23 Nov 2023
Cited by 4 | Viewed by 1874
Abstract
The lignin-based mesoporous hollow carbon@MnO2 nanosphere composites (L-C-NSs@MnO2) were fabricated by using lignosulfonate as the carbon source. The nanostructured MnO2 particles with a diameter of 10~20 nm were uniformly coated onto the surfaces of the [...] Read more.
The lignin-based mesoporous hollow carbon@MnO2 nanosphere composites (L-C-NSs@MnO2) were fabricated by using lignosulfonate as the carbon source. The nanostructured MnO2 particles with a diameter of 10~20 nm were uniformly coated onto the surfaces of the hollow carbon nanospheres. The obtained L-C-NSs@MnO2 nanosphere composite showed a prolonged cycling lifespan and excellent rate performance when utilized as an anode for LIBs. The L-C-NSs@MnO2 nanocomposite (24.6 wt% of MnO2) showed a specific discharge capacity of 478 mAh g−1 after 500 discharge/charge cycles, and the capacity contribution of MnO2 in the L-C-NSs@MnO2 nanocomposite was estimated ca. 1268.8 mAh g−1, corresponding to 103.2% of the theoretical capacity of MnO2 (1230 mAh g−1). Moreover, the capacity degradation rate was ca. 0.026% per cycle after long-term and high-rate Li+ insertion/extraction processes. The three-dimensional lignin-based carbon nanospheres played a crucial part in buffering the volumetric expansion and agglomeration of MnO2 nanoparticles during the discharge/charge processes. Furthermore, the large specific surface areas and mesoporous structure properties of the hollow carbon nanospheres significantly facilitate the fast transport of the lithium-ion and electrons, improving the electrochemical activities of the L-C-NSs@MnO2 electrodes. The presented work shows that the combination of specific structured lignin-based carbon nanoarchitecture with MnO2 provides a brand-new thought for the designation and synthesis of high-performance materials for energy-related applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

12 pages, 5108 KiB  
Article
Stability of Filled PDMS Pervaporation Membranes in Bio-Ethanol Recovery from a Real Fermentation Broth
by Cédric Van Goethem, Parimal V. Naik, Miet Van de Velde, Jim Van Durme, Alex Verplaetse and Ivo F. J. Vankelecom
Membranes 2023, 13(11), 863; https://doi.org/10.3390/membranes13110863 - 27 Oct 2023
Cited by 4 | Viewed by 2966
Abstract
Mixed matrix membranes (MMMs) have shown great potential in pervaporation (PV). As for many novel membrane materials however, lab-scale testing often involves synthetic feed solutions composed of mixed pure components, overlooking the possibly complex interactions and effects caused by the numerous other components [...] Read more.
Mixed matrix membranes (MMMs) have shown great potential in pervaporation (PV). As for many novel membrane materials however, lab-scale testing often involves synthetic feed solutions composed of mixed pure components, overlooking the possibly complex interactions and effects caused by the numerous other components in a real PV feed. This work studies the performance of MMMs with two different types of fillers, a core-shell material consisting of ZIF-8 coated on mesoporous silica and a hollow sphere of silicalite-1, in the PV of a real fermented wheat/hay straw hydrolysate broth for the production of bio-ethanol. All membranes, including a reference unfilled PDMS, show a declining permeability over time. Interestingly, the unfilled PDMS membrane maintains a stable separation factor, whereas the filled PDMS membranes rapidly lose selectivity to levels below that of the reference PDMS membrane. A membrane autopsy using XRD and SEM-EDX revealed an almost complete degradation of the crystalline ZIF-8 in the MMMs. Reference experiments with ZIF-8 nanoparticles in the fermentation broth demonstrated the influence of the broth on the ZIF-8 particles. However, the observed effects from the membrane autopsy could not exactly be replicated, likely due to distinct differences in conditions between the in-situ pervaporation process and the ex-situ reference experiments. These findings raise significant questions regarding the potential applicability of MOF-filled MMMs in real-feed pervaporation processes and, potentially, in harsh condition membrane separations in general. This study clearly confirms the importance of testing membranes in realistic conditions. Full article
Show Figures

Figure 1

15 pages, 7510 KiB  
Article
Accelerated Deactivation of Mesoporous Co3O4-Supported Au–Pd Catalyst through Gas Sensor Operation
by Xuemeng Lyu, Olena Yurchenko, Patrick Diehle, Frank Altmann, Jürgen Wöllenstein and Katrin Schmitt
Chemosensors 2023, 11(5), 271; https://doi.org/10.3390/chemosensors11050271 - 2 May 2023
Cited by 6 | Viewed by 2155
Abstract
High activity of a catalyst and its thermal stability over a lifetime are essential for catalytic applications, including catalytic gas sensors. Highly porous materials are attractive to support metal catalysts because they can carry a large quantity of well-dispersed metal nanoparticles, which are [...] Read more.
High activity of a catalyst and its thermal stability over a lifetime are essential for catalytic applications, including catalytic gas sensors. Highly porous materials are attractive to support metal catalysts because they can carry a large quantity of well-dispersed metal nanoparticles, which are well-accessible for reactants. The present work investigates the long-term stability of mesoporous Co3O4-supported Au–Pd catalyst (Au–Pd@meso-Co3O4), with a metal loading of 7.5 wt% and catalytically active mesoporous Co3O4 (meso-Co3O4) for use in catalytic gas sensors. Both catalysts were characterized concerning their sensor response towards different concentrations of methane and propane (0.05–1%) at operating temperatures ranging from 200 °C to 400 °C for a duration of 400 h. The initially high sensor response of Au–Pd@meso-Co3O4 to methane and propane decreased significantly after a long-term operation, while the sensor response of meso-Co3O4 without metallic catalyst was less affected. Electron microscopy studies revealed that the hollow mesoporous structure of the Co3O4 support is lost in the presence of Au–Pd particles. Additionally, Ostwald ripening of Au–Pd nanoparticles was observed. The morphology of pure meso-Co3O4 was less altered. The low thermodynamical stability of mesoporous structure and low phase transformation temperature of Co3O4, as well as high metal loading, are parameters influencing the accelerated sintering and deactivation of Au–Pd@meso-Co3O4 catalyst. Despite its high catalytic activity, Au–Pd@meso-Co3O4 is not long-term stable at increased operating temperatures and is thus not well-suited for gas sensors. Full article
Show Figures

Figure 1

17 pages, 5449 KiB  
Article
Effect of Calcination Temperature on the Structure, Crystallinity, and Photocatalytic Activity of Core-Shell SiO2@TiO2 and Mesoporous Hollow TiO2 Composites
by Ning Fu, Hongjin Chen, Renhua Chen, Suying Ding and Xuechang Ren
Coatings 2023, 13(5), 852; https://doi.org/10.3390/coatings13050852 - 30 Apr 2023
Cited by 18 | Viewed by 3729
Abstract
TiO2 and core–shell SiO2@TiO2 nanoparticles were synthesized by sol-gel process at different calcination temperatures. Mesoporous hollow TiO2 composites were prepared by etching SiO2 from SiO2@TiO2 nanoparticles with alkali solution. X-ray diffraction (XRD), Scanning electron [...] Read more.
TiO2 and core–shell SiO2@TiO2 nanoparticles were synthesized by sol-gel process at different calcination temperatures. Mesoporous hollow TiO2 composites were prepared by etching SiO2 from SiO2@TiO2 nanoparticles with alkali solution. X-ray diffraction (XRD), Scanning electron microscope (SEM),Transmission electron microscope (TEM), and N2 adsorption–desorption isotherms, and Roman and Diffuse reflectance spectroscopy (DRS) were employed to characterize the synthesized materials. The effects of different calcination temperatures on the morphology, crystallinity, phase composition, and photocatalytic activity of the prepared materials were investigated in detail. It was found that the calcination temperature altered the phase structure, crystallinity, morphology, specific surface area, and porous structure. Additionally, it was verified that SiO2 could inhibit the transfer of TiO2 from anatase phase to rutile phase under high temperature calcination (850 °C). The hollow TiO2 calcined at 850 °C showed the highest photocatalytic efficiency of 97.5% for phenol degradation under UV irradiation. Full article
Show Figures

Figure 1

20 pages, 5053 KiB  
Article
Fabricating a PDA-Liposome Dual-Film Coated Hollow Mesoporous Silica Nanoplatform for Chemo-Photothermal Synergistic Antitumor Therapy
by Chuanyong Fan, Xiyu Wang, Yuwen Wang, Ziyue Xi, Yuxin Wang, Shuang Zhu, Miao Wang and Lu Xu
Pharmaceutics 2023, 15(4), 1128; https://doi.org/10.3390/pharmaceutics15041128 - 3 Apr 2023
Cited by 9 | Viewed by 3014
Abstract
In this study, we synthesized hollow mesoporous silica nanoparticles (HMSNs) coated with polydopamine (PDA) and a D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-modified hybrid lipid membrane (denoted as HMSNs-PDA@liposome-TPGS) to load doxorubicin (DOX), which achieved the integration of chemotherapy and photothermal therapy (PTT). Dynamic [...] Read more.
In this study, we synthesized hollow mesoporous silica nanoparticles (HMSNs) coated with polydopamine (PDA) and a D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-modified hybrid lipid membrane (denoted as HMSNs-PDA@liposome-TPGS) to load doxorubicin (DOX), which achieved the integration of chemotherapy and photothermal therapy (PTT). Dynamic light scattering (DLS), transmission electron microscopy (TEM), N2 adsorption/desorption, Fourier transform infrared spectrometry (FT-IR), and small-angle X-ray scattering (SAXS) were used to show the successful fabrication of the nanocarrier. Simultaneously, in vitro drug release experiments showed the pH/NIR-laser-triggered DOX release profiles, which could enhance the synergistic therapeutic anticancer effect. Hemolysis tests, non-specific protein adsorption tests, and in vivo pharmacokinetics studies exhibited that the HMSNs-PDA@liposome-TPGS had a prolonged blood circulation time and greater hemocompatibility compared with HMSNs-PDA. Cellular uptake experiments demonstrated that HMSNs-PDA@liposome-TPGS had a high cellular uptake efficiency. In vitro and in vivo antitumor efficiency evaluations showed that the HMSNs-PDA@liposome-TPGS + NIR group had a desirable inhibitory activity on tumor growth. In conclusion, HMSNs-PDA@liposome-TPGS successfully achieved the synergistic combination of chemotherapy and photothermal therapy, and is expected to become one of the candidates for the combination of photothermal therapy and chemotherapy antitumor strategies. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

14 pages, 7916 KiB  
Article
Layer-by-Layer Hollow Mesoporous Silica Nanoparticles with Tunable Degradation Profile
by Jason William Grunberger and Hamidreza Ghandehari
Pharmaceutics 2023, 15(3), 832; https://doi.org/10.3390/pharmaceutics15030832 - 3 Mar 2023
Cited by 11 | Viewed by 3562
Abstract
Silica nanoparticles (SNPs) have shown promise in biomedical applications such as drug delivery and imaging due to their versatile synthetic methods, tunable physicochemical properties, and ability to load both hydrophilic and hydrophobic cargo with high efficiency. To improve the utility of these nanostructures, [...] Read more.
Silica nanoparticles (SNPs) have shown promise in biomedical applications such as drug delivery and imaging due to their versatile synthetic methods, tunable physicochemical properties, and ability to load both hydrophilic and hydrophobic cargo with high efficiency. To improve the utility of these nanostructures, there is a need to control the degradation profile relative to specific microenvironments. The design of such nanostructures for controlled combination drug delivery would benefit from minimizing degradation and cargo release in circulation while increasing intracellular biodegradation. Herein, we fabricated two types of layer-by-layer hollow mesoporous SNPs (HMSNPs) containing two and three layers with variations in disulfide precursor ratios. These disulfide bonds are redox-sensitive, resulting in a controllable degradation profile relative to the number of disulfide bonds present. Particles were characterized for morphology, size and size distribution, atomic composition, pore structure, and surface area. No difference was observed between in vitro cytotoxicity profiles of the fabricated nanoparticles at 24 h in the concentration range below 100 µg mL−1. The degradation profiles of particles were evaluated in simulated body fluid in the presence of glutathione. The results demonstrate that the composition and number of layers influence degradation rates, and particles containing a higher number of disulfide bridges were more responsive to enzymatic degradation. These results indicate the potential utility of layer-by-layer HMSNPs for delivery applications where tunable degradation is desired. Full article
(This article belongs to the Special Issue Mesoporous Silica Nanoparticles: Smart Delivery Platform)
Show Figures

Graphical abstract

16 pages, 3031 KiB  
Article
Synthesis of Hollow Mesoporous Silica Nanospheroids with O/W Emulsion and Al(III) Incorporation and Its Catalytic Activity for the Synthesis of 5-HMF from Carbohydrates
by Anirban Ghosh, Biswajit Chowdhury and Asim Bhaumik
Catalysts 2023, 13(2), 354; https://doi.org/10.3390/catal13020354 - 5 Feb 2023
Cited by 12 | Viewed by 3515
Abstract
Controlling the particle size as well as porosity and shape of silica nanoparticles is always a big challenge while tuning their properties. Here, we designed a cost-effective, novel, green synthetic method for the preparation of perforated hollow mesoporous silica nanoparticles (PHMS-1) using a [...] Read more.
Controlling the particle size as well as porosity and shape of silica nanoparticles is always a big challenge while tuning their properties. Here, we designed a cost-effective, novel, green synthetic method for the preparation of perforated hollow mesoporous silica nanoparticles (PHMS-1) using a very minute amount of cationic surfactant in o/w-type (castor oil in water) emulsion at room temperature. The grafting of Al(III) through post-synthetic modification onto this silica framework (PHMS-2, Si/Al ~20 atomic percentage) makes this a very efficient solid acid catalyst for the conversion of monosaccharides to 5-HMF. Brunauer–Emmett–Teller (BET) surface area for the pure silica and Al-doped mesoporous silica nanoparticles (MSNs) were found to be 866 and 660 m2g−1, respectively. Powder XRD, BET and TEM images confirm the mesoporosity of these materials. Again, the perforated hollow morphology was investigated using scanning electron microscopic analysis. Al-doped hollow MSNs were tested for acid catalytic-biomass conversion reactions. Our results show that PHMS-2 has much higher catalytic efficiency than contemporary aluminosilicate frameworks (83.7% of 5-HMF yield in 25 min at 160 °C for fructose under microwave irradiation). Full article
(This article belongs to the Special Issue Catalytic Conversion of Biomass to Added Value Chemicals)
Show Figures

Graphical abstract

Back to TopTop